MATH 247 Calculus 3, Solutions to the Exercises for Chapter 3

: (a) Show, from the definition of compactness, that the set A = Q N[0, 1] is not compact.

Solution: Let a € [E, 1] with @ ¢ Q and note that a is a limit point of A because Q is dense in R. For each
n € Zt let U, = B(a,%)c = (— oo,a—%) U (a—|—%,oo), and let S = {Un’n € Z+}. Note that each U, is

open and we have fj U, = R\ {a}, so S is an open cover of A. Let T be any nonempty finite subset of
A, say T = {Unl,Un;I,...7Um} with nqy < ng < .-+ < ny. Note that U; C Uy C Uz C --- and so we have
Ur= 6 Un, = Uy, = B(a, n%)c Since a is a limit point of A we have B(a, )N A # 0, hence B(a, L) NA # 0,
and so kfills not a subset of | J7'. Since no finite subset of S covers A, it follows that A is not compact.

n|n|
1+4+n2

(b) Show, from the definition of compactness, that the set B = {

Solution: Note that lim il =1and lim il = —1. Let S be any open cover of B. Since S covers B
n—oo 1 4+ n2 n——oo | —+ 7’l2

and +1 € B we can choose V,W € S such that 1 € V and —1 € W. Since V and W are open we can choose r > 0

n e Z} U {1, -1} is compact.

such that B(1,7) C V and B(—1,7) C W. Since lim n|n|2 =1 and lim ninl = —1 we can choose N € Z*
n—00 1+n n— o0 —|—n2

such that for all n € Z, if n > N then |{:‘_Z‘2 - 1| < 7 so that 1712‘2 € V and if n < —N then ‘fizlz +1 <7

so that 11'2'2 € W. For each n € Z with —N < n < N, choose U,, € S so that fiZL € U,. Then the set

T ={U,| = N <n<n}U{V,W} is a finite subcover of S. Thus B is compact.

(¢) Show that the set O,(R) = {A € M,,(R)|ATA = I} is compact. Here, we are identifying M, (R) with R,
so that the dot product of two matrices is given by A+« B =Y Ay ¢By s = trace(BTA).
ke

Solution: Note that for A € M,,(R) we have

A€ On(R) S ATA =] < (ATA)]C’Z = IkJ for all k‘,l <~ Z Ai,kAi,l = 5k,l for all k,l,

=1
lifk=1
Opy = .
0tk #£1.

For each pair k,!l, define fx; : M,(R) — R by fe.(4) = > A; A1 — dk;. Note that each function fy; is
i=1

?

where

continuous since it is an elementary function on the n? variables A; ;. We have

On(R) = {A € My(R)|fr1(A) = 0 for all k,1} = ({4 € Mp(R)|frs(A) =0} =) f1 (0).
k,l k,l
Note that f,;ll (0) is the complement in M, (R) of the set f,;ll(R\ {0}). Since R\ {0} is open in R and each

function fj; is continuous, it follows that each set f,;ll(R\ {0}) is open, and hence each set f;}(0) is closed.
Thus O, (R) is closed because it is the intersection of finitely many closed sets.
We claim that O, (R) is bounded. Let A € O,(R). Let uy,us, - -, u, be the columns of A. Note that

U1 Up*Up U U2 - U *Up
T .
A A= : (u1,~--,un):

Un, Up U1 Up » U2 Up * Un

and so
ATA=T—= (ATA)MC =1for all k = uy - ux, =1 for all k = |uy| =1 for all k, !

= AP =3 Y (Aip)’ = 3 [l = Y 1=n
k=1i=1 k=1 k=1
Thus for every A € O, (R"™) we have |A| = v/n and so O,,(R) is bounded, as claimed. We have shown that O, (R)

is closed and bounded, and so it is compact, by the Heine Borel Theorm (which we can apply because we are
identifying M, (R) with R™").



2: For each of the following functions f : R?\ {0} — R, find  lim  f(z,y) or show that the limit does not exist.

(z,y)—(0,0)

2 .2
() fe9) = s

Solution: Let § € R and define o : R — R? by a(t) = (tcosf,tsinf). Then we have }iH(lJ at) = (0,0) and
—

flat)) = % = cos 26 for all ¢ # 0, and so (by the Limits of Composites Theorem) if ( %im(0 0 f(z,y)
2,y)—+(0,

existed then it would be equal to cos26. Since different choices of @ yield different values for the limit, the limit
cannot exist.

223

b = —
() fle) = 1

Solution: Consider the graph z = f(z,y). The level set y = ¢ > 0 is given by z = g(z) = f(z,¢) = % Then

3 X .'L'4 C6 — 1)2 .'L'S 03 xT C6—I4
7= gl(m> e (-"1_4+)c6()2 Wee)) ((2x4)ic5)2 ) )
SO Wesh%ve 2z =0 when z = 0 and when z = £¢3/2. When z = 0 we have z = 0 and when z = +¢3/2 we have
z= :64'_066 = % The graph z = f(z,y) with y > 0 has a maximum ridge of height z = % along z = :l:y?’/Q, that is
2% =3,

Define o : R — R? by a(t) = (0,t). Then }in(l) a(t) = (0,0) and f(a(t)) = 0 for all t # 0, and so (by The
—
Limits of Composites Theorem) if ~ lim  f(x,y) existed then it would be equal to 0. Define 3 : R — R? by

(2,y)—(0,0)
B(t) = (t3,¢%). Then }irr(l) B(t) = (0,0) and f(B(t)) = % = $ forall t # 0, and so if( %im(o 0 f(z,y) existed
— z,y)—(0,
then it would be equal to % Thus the limit cannot exist.
P
(C) f(x>y) = 78 +y6

Solution: Recall that for all u,v € R we have 0 < (Ju| — [v])? = u? — 2uv| + v? and so |uv| < L (u? +0?). It
follows that for all (z,y) # (0,0) we have

4.5 4.3 2 L (25 4y%)y? 1
’f(l‘,y) _0| = |;§_ﬁjy6 = ‘zsiyé <2 25440 = §y2-

Given € > 0 choose § = v/2¢. Then for all 2,y with 0 < |(x,y)‘ < 6 we have 0 < 22 4+ y% < 62 and so
|[f(z,y) =0 < 54 < 5(2° +9%) < 36° =€



3:Let f:ACR" —- BCR™.
(a) Show that f is continuous if and only if f~1(F) is closed in A for every closed set F' in B.

Solution: We already know that f is continuous if and only if f~1(E) is open in A for every open set E in B.
Suppose that f is continuous. Let F be a closed set in B. Then B\ F is open in B and so f~1(B\ F) is open in
A and hence A\ f~1(B\ F) is closed in A. But notice that f~1(F) = A\ f~1(B\ F) because for a € A we have

ac fUF) < fla)eF < fla)¢ B\F < ad fY(B\F) < ac A\ f{(B\F).

Thus f~1(F) is closed in A for every closed set F in B.

Conversely, suppose that f~1(F) is closed in A for every closed set F in B. Let E be an open set in B.
Then B\ E is closed in B, hence f~!(B\ E) is closed in B, and so A\ f~!(B\ E) is open in A. But notice that
f7YE)= A\ f~Y(B\ E), as above. This shows that that f~1(F) is open in A for every open set F in B, and
so f is continuous.

(b) Let E and F be closed sets in A with E U F = A. Let g be the restriction of f to E, and let h be the
restriction of f to F'. Show that f is continuous if and only if both g and h are continuous.

Solution: We begin by remarking that when S C A C R", the open sets in S are the sets of the form L N.S
with L being an open set in A. Indeed when L is open in A we can choose an open set U in R"™ such that
L =UnNA, and then we have LN S = (UNA)NS =UnNS since S C A. On the other hand, when E is open
in S we can choose an open set U in R™ such that E = U NS and then the set L = U N A is open in A with
LNS=UnNA)NS=UNS=E. Similarly, the closed sets in S are the sets of the form K NS with K being a
closed set in A.

Suppose f : A — B is continuous. We claim that the restriction of f to any subset S C A is continuous. Let
S C Aandlet p:SC A— B be the restriction of f to S. Let E be an open set in B. Then f~(E) is open in
A and so SN f~Y(E) is open in S. But notice that p~}(E) = SN f~1(E) since for a € A we have

acp HE) —= acSandp(a) € E <= ac Sand f(a) € E
<= acSandac fYE) < acSnfYE).

This shows that p~1(E) is open in S for every open set E in B, and so p is continuous in S.

Conversely, suppose that both of the two restrictions g and h are continuous. Let C' be a closed set in B.
Then g~ 1(C) is closed in E and h=1(C) is closed in F. Since g~1(C) is closed in E we can choose a closed set K in
A so that g71(C) = ENK. Since E and K are both closed in A, it follows that g=*(C) is closed in A. Similarly,
since h=1(C) is closed in F and F is closed in A, it follows that h=1(C) is closed in A. Since ¢g~!(C) and h=1(C)
are both closed in A, their union ¢='(C) U h=1(C) is closed in A. But notice that f~1(C) = g~ 1(C) Uh~1(O)
because for a € A we have

ac f71(C) &= acAand fla)eC <= a€ EUF and f(a) € C
< (a€ Eand f(a) € C) or (a € F and f(a) € C)
<= (a€ E and g(a) € C) or (a € F and h(a) € C)
> acg ' (C)orach }(C).

(c) Show that f is continuous if and only if for every E C A we have f(E) C f(E).

Solution: Suppose that f is continuous. Let E C A. Let b € f(E), say b = f(a) where a € ANE. We must show
that b € f(E). Let r > 0. Since Bp(b,r) is open in B and f is continuous, f_l(BB(b,r)) is open in A, so we can
choose s > 0 so that Ba(a,s) C f~'(Bg(b,r)). Since a € AN E, we have B4(a,s) N E # (), so we can choose a
point ¢ € Ba(a,s) N E. Since ¢ € Ba(a,s) C f~'(Bg(b,r)) we have f(c) € Bg(b,7), and since ¢ € E we have

f(e) € f(E), and so f(c) € Bg(b,r) N f(E). Thus Bg(b,r) N f(E) #( for all » > 0, so b € f(E), as required.

Conversely, suppose that for every F C A we have f (E) C f(E). Let K C B be closed in B. We claim that
fL(K) is closed in A. Let C = f~1(K). Note that f(C) C K. Let x € C. Then f(x) € f(C) C f(C)C K =K
and so z € f~}(K) = C. Thus C C C. Of course we also have C C C, so C' = C, and so C is closed, as claimed.

Thus f is continuous.




4: (a) Let f: A CR™ — R™. Show that if A is compact and f is continuous then f is uniformly continuous.

Solution: Suppose that A is compact and f is continuous. Let ¢ > 0. For each a € A, since f is continuous at a
we can choose §, > 0 such that |z —a| < 20, => |f(z) — f(a)| < §. Let S = {B(a,d,)|a € A} and note that S is
an open cover of A. Since A is compact, we can choose a finite subcover T of S, say T = {B(ak, 5%)’1 <k< E}.
Let 6 = min {(5%’1 <k < (}. Let z,y € A with |z —y| < 4. Since T covers A we can choose an index k such
that « € B(ag,dq, ). Since |x — ag| < 64, and |z —y| < § < d,, we have |y — ax| < 20,,. Since |z — ag| < 204,
and |y — ax| < 28,4, we have |f(z) — f(ax)| < § and |f(y) — f(ax)| < § and hence |f(z) — f(y)| <e.

(b) Let f: ACR™— BCR™. Show that if A is compact and f is continuous and bijective then f~! is continuous.

Solution: Suppose that A is compact and f is continuous and bijective, and let g = f~! : B — A. Let E be a
closed set in A. By the Heine-Borel Theorem, A is closed and bounded. Since F is closed in A we can choose a
closed set K in R™ such that F = K N A (by Theorem 2.31). Since K and A are closed in R", sois E= KN A
(by Theorem 2.14). Since E C A C R™ with E closed and A compact, it follows that F is compact (by Theorem
2.28). Since E is compact and f is continuous, it follows that f(E) is compact (by Theorem 3.37 Part 2) hence
f(E) closed (by the Heine-Borel Theorem). Since f and g are inverses, we have ¢~ 1(E) = f(E), which is closed.
Since g~1(E) is closed for every closed set E in A, it follows that g is continuous (by Theorem 3.36 Part 2, proved
in Problem 3 a).

(c) Let ) #£ A, B C R". Define the distance between A and B to be
d(A,B) =inf {|z —y| |z € A,y € B}.
Show that if A is compact and B is closed and AN B = (J then d(A, B) > 0.

Solution: Since B is closed, hence B¢ = R™\ B is open, for each a € A we can choose r, > 0 so that B(a,2r,) C B°.
The set S = {B(a, ra)|a € A} is an open cover of A. Since A is compact, we can choose a finite subcover T' C S,
say T = {B(a1,7a,), B(az,7a,), -+, Blag, ra,) } where each ay € A. Let r = min{ra,,rq,, -+, 7q,}. We claim that
d(A,B) > r. Let x € A and y € B. Since T covers A, we can choose an index k so that x € B(ay,r,,) hence
|z — ag| < 7q,. Since y € B and B(ag,2r,,) C B°® we must have |y — ax| > 2r,,. By the Triangle Inequality,
ly — ag| < |y — 2|+ |x — ax| hence |y — x| > |y — ax| — | — ag| > 2rq,, — T, = ra, > 1. Since |y — | > r for all
z € Aand y € B we have d(A,B) =inf {|y — z| |z € A,y € B} > r, as claimed.



5: Let A C R".

(a) For a,b € A, write a ~ b when there exists a continuous path in A from a to b. Show that ~ is an equivalence
relation on A (this means that for all a,b,c € A we have a ~ a, and if a ~ b then b ~ a, and if a ~ b and b ~ ¢
then a ~ c).

Solution: Let a,b,c € A. We have a ~ a because we can define « : [0,1] — A by «a(t) = a for all ¢, and then « is
continuous with «(0) = a and (1) = a, so « is a path in A from a to a.

Suppose that a ~ b. Let o be a path in A from a to b, so « : [0,1] — A is continuous with «(0) = a
and «(1) = b. Define 8 : [0,1] — A by 8(¢t) = a(1 — t). Note that § is continuous since it is the composite of
the continuous map « with the continuous map s : [0,1] — [0, 1] given by s(¢) = 1 — ¢, and note that we have
B(0) = (1) = b and B(1) = a(0) = a. Thus S is a path in A from b to a and so b ~ a.

Finally, suppose that a ~ b and b ~ ¢. Let a be a path from a to b in A and let 5 be a path from b to ¢ in
A. Define v : [0,1] — A by

(1) = a(2t) Lfor0<t< i,
= Bt—1), for L <t<1

Note that v(0) = a(0) = a, v (3) = a(1) = B(0) = b, and (1) = B(1) = c. Gamma is continuous by Problem
3(b), because the sets E = [0, 3] and F = [3,1] are closed in [0,1] with EU F = [0,1], and the restriction of y
to E is given by «(2t), which is continuous (being the composite of two continuous functions), and the restriction
of v to F is given by (2t — 1), which is also continuous.

(b) Suppose that A is open and connected. Show that A is path connected.
Solution: The empty set is open, connected and path-connected (vacuously). Suppose A # () and let a € A. Let

E={bec Ala~b}.

We claim that F is open in A. Let b € E. Since b € A and A is open in R", we can choose r > 0 so that
B(b,r) C A. Let ¢ € B(b,r). Since b € E we have a ~ b. Since ¢ € B(b,r) C A we have b ~ ¢, indeed we can
define « : [0,1] = B(b,7) € A by a(t) = b+ t(c —b) and then « is continuous (since it elementary), and a(0) = b
and o(1) = ¢, and «(t) € B(b,r) for all ¢ € [0,1] because |a(t) — b| = |t(c — b)| = |t||c — b < |c —b|] < r. Since
a ~band b~ ¢ we have a ~ ¢ by Part (a). Since a ~ ¢ we have ¢ € E, hence B(b,r) C E. This shows that E is
open in R"™ hence also in A.

We claim that E is also closed in A. Let b € A\ E. Since b € A and A is open in R™, we can choose 7 > 0 so
that B(b,r) C A. Let ¢ € B(b,r). Since b ¢ E we have a ¢ b. Since ¢ € B(b,r) C A we have b ~ ¢, as above. It
follows from Part (a) that a ¢ ¢ since otherwise we would have a ~ ¢ and ¢ ~ b and hence a ~ b. Since ¢ % a we
have c € A\ E. Thus B(b,r) C A\ E. This shows that A\ E is open (both in R™ and in A) so that E is closed
in A.

Since A is connected, the only subsets of A which are both open and closed are () and A. Since E is both
open and closed we must have £ = (§ or £ = A. Since a ~ a we have a € E so E # ) and so E = A. Since
A=F= {b € A’a ~ b} we have a ~ b for every b € A. Thus A is path connected.



