
MATH 247 Calculus 3, Solutions to the Exercises for Chapter 5

1: (a) Let (u, v) = f(t) =
(

cos t + 2, 2 sin t − 1
)

and let (x, y) = g(u, v) =
(u
v
,
v

u

)
. Use the Chain Rule to find the

tangent vector to the curve r(t) = g(f(t)) at the point where t = π
2 .

Solution: We express the solution in two ways; with and without matrix notation. First we express the solution
without matrix notation. We use the Chain Rule in the form

dx

dt
=
∂x

∂u

du

dt
+
∂x

∂v

dv

dt

dy

dt
=
∂y

∂u

du

dt
+
∂y

∂v

dv

dt

We have
∂x

∂u
=

1

v
,
∂x

∂v
= − u

v2
,
∂y

∂u
= − v

u2
,
∂y

∂v
=

1

u
,
du

dt
= − sin t , and

dv

dt
= 2 cos t .

When t = π
2 we have u = cos t+ 2 = 2 and v = 2 sin t− 1 = 1, and so

∂x

∂u
= 1 ,

∂x

∂v
= −2 ,

∂y

∂u
= −1

4
,
∂y

∂v
=

1

2
,
du

dt
= −1 , and

dv

dt
= 0 .

Put all these values into the two formulas given by the Chain Rule to get

dx

dt
=
∂x

∂u

du

dt
+
∂x

∂v

dv

dt
= (1)(−1) + (−2)(0) = −1

dy

dt
=
∂y

∂u

du

dt
+
∂y

∂v

dv

dt
=
(
− 1

4

)
(−1) +

(
1
2

)
(0) = 1

4 .

Thus the tangent vector is r′
(
π
4

)
=
(
x′
(
π
4

)
, y′
(
π
4

))
=
(
−1, 14

)
.

Here is the same solution in matrix notation. By the Chain Rule, we have r′(t) = Dg(f(t)) f ′(t), where

r′(t) =

( dx
dt
dy
dt

)
, f ′(t) =

(
du
dt
dv
dt

)
=

(
− sin t
2 cos t

)
, and Dg(u, v) =

( ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
=

( 1
v − u

v2

− v
u2

1
u

)
When t = π

2 we have (u, v) = f
(
π
2

)
= (2, 1), and f ′

(
π
2

)
=

(
−1

0

)
and Dg(2, 1) =

(
1 −2
− 1

4
1
2

)
so the tangent vector

at t = π
2 is

r′
(
π
2

)
= Dg(2, 1) f ′

(
π
2

)
=

(
1 −2
− 1

4
1
2

)(
−1

0

)
=

(
−1
1
4

)



(b) Let u = f(x, y, z) = 4x tan−1
(y
z

)
where (x, y, z) = g(s, t) =

(
s3 + t,

√
s t,

t

s

)
. Use the Chain Rule to find

∂u

∂s
and

∂u

∂t
when (s, t) = (1,−2).

Solution: First we give a solution which does not use matrix notation. Note that when (s, t) = (1,−2) we have
(x, y, z) = (−1,−2,−2), and at this point we have

∂u

∂x
= 4 tan−1

y

z
= π ,

∂u

∂y
=

4x

1 + (y/z)2
· 1

z
= 1 ,

∂u

∂z
=

4x

1 +
(
y
z

)2 (− y

z2

)
= −1

∂x

∂s
= 3s2 = 3 ,

∂x

∂t
= 1 ,

∂y

∂s
=

t

2
√
s

= −1 ,
∂y

∂t
=
√
s = 1 ,

∂z

∂s
= − t

s2
= 2 ,

∂z

∂t
=

1

s
= 1

and so
∂u

∂s
=
∂u

∂x

∂x

∂s
+
∂u

∂y

∂y

∂s
+
∂u

∂z

∂z

∂s
= (π)(3) + (1)(−1) + (−1)(2) = 3π − 3 , and

∂u

∂t
=
∂u

∂x

∂x

∂t
+
∂u

∂y

∂y

∂t
+
∂u

∂z

∂z

∂t
= (π)(1) + (1)(1) + (−1)(1) = π

Here is the same solution, using matrix notation. Write u = h(s, t) = f
(
g(s, t)

)
. By the Chain Rule, we have

Dh(s, t) = Df
(
g(s, t)

)
Dg(s, t). When (s, t) = (1,−2) we have (x, y, z) = h(s, t) = (−1,−2,−2), and at this point

(
∂u

∂s

∂u

∂t

)
= Dh(s, t) = Df(x, y, z) ·Dg(s, t) =

( ∂f
∂x

∂f
∂y

∂f
∂z

)
∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

∂z
∂s

∂z
∂t


=

(
4 tan−1

y

z
,

4x(1/z)

1 + (y/z)2
,

4x(−y/z2)

1 + (y/z)2

) 3s2 1
1

2
√
t

1
2
√
s

− t
s2

1
s


=
(
π , 1 , −1

) 3 1
−1 1

2 1

 =
(
3π − 3 , π

)
.



2: (a) Let u = f(x, y, z) = (x+ y)ey
2+z. Find ∇f(1, 2,−4), then find the equation of the tangent plane at (1, 2,−4)

to the surface f(x, y, z) = 3, and find the directional derivative Duf(1, 2,−4) where u = 1
7 (2,−3, 6).

Solution: We have ∇f(x, y, z) =
(
∂f
∂x ,

∂f
∂y ,

∂f
∂z

)
= ey

2+z
(
1, 1 + (x + y)(2y), (x + y)

)
, so ∇f(1, 2,−4) = (1, 13, 3).

The gradient (1, 13, 3) is a normal vector, so the equation is of the form x + 13y + 3z = c, and by putting in
(x, y, z) = (1, 2,−4), we find that c = 15. Thus the equation is x + 13y + 3z = 15. Finally, the directional
derivative is Duf(1, 2,−4) = ∇f(1, 2,−4) .u = 1

7 (1, 13, 3) . (2,−3, 6) = − 19
7 .

(b) Let f(x, y) = x2y − y3. Find ∇f(3,−1), then for each of the values m = 0, 6, 6
√

2 and 10, find a unit vector
u, if one exists, such that Duf(3,−1) = m.

Solution: ∇f(x, y) =

(
∂f

∂x
,
∂f

∂y

)
= (2xy , x2 − 3y2) and so ∇f(3,−1) = (6, 6). For each value of m, we need to

find a vector u = (a, b) with a2 + b2 = 1 such that m = Duf(3,−1) = ∇f(3,−1) .u = (6, 6) . (a, b) = 6a + 6b,
thus we need to solve the two equations a2 + b2 = 1 (1) and a+ b = 1

6 m (2).
When m = 0, equation (2) becomes a+ b = 0 so that we have b = −a. Put b = −a into equation (1) to get

a2 + (−a)2 = 1 =⇒ 2a2 = 1 =⇒ a2 = 1
2 =⇒ a = ±

√
2
2 . Since b = −a, we obtain (a, b) = ±

(√
2
2 ,−

√
2
2

)
.

When m = 6, equation (2) becomes a + b = 1 so that we have b = 1 − a. Put this into equation (1) to get
a2 + (1−a)2 = 1 =⇒ a2 + 1−2a+a2 = 1 =⇒ 2a2−2a = 0 =⇒ 2a(a−1) = 0 =⇒ a = 0 or a = 1. Since b = 1−a,
we obtain (a, b) = (0, 1) or (1, 0).

When m = 6
√

2, equation (2) becomes a + b =
√

2 so that b =
√

2 − a. Put this into equation (1) to get

a2 + (
√

2− a)2 = 1 =⇒ a2 + 2− 2
√

2a+ a2 = 1 =⇒ 2a2 − 2
√

2a+ 1 = 0 =⇒ 2
(
a− 1√

2

)2
= 0 =⇒ a = 1√

2
. Since

b =
√

2− a, we obtain (a, b) =
(√

2
2 ,
√
2
2

)
.

Finally, note that since the vector (a, b) =
(√

2
2 ,
√
2
2

)
is in the direction of the gradient vector (6, 6), it gives

the maximum possible value for the directional derivative. So the maximum possible value for Duf(3,−1) is
equal to 6

√
2; there is no unit vector such that Duf(3,−1) = 10.



3: A boy is standing at the point (5, 10, 2) on a hill in the shape of the surface

z =
600

100 + 4x2 + y2

(where x, y and z are in meters).

(a) Sketch the surface.

Solution: The level set z = c is the ellipse 100 + 4x2 + y2 = 600
c , the level set x = 0 is the curve z = 600

100+y2 and

the level set y = 0 is the curve z = 600
100+4x2 . The surface is sketched below.

(b) At the point where the boy is standing, in which direction is the slope steepest?

Solution: Write z = f(x, y) = 600
100+4x2+y2 and a = (5, 10). Then ∇f =

(
−4800 x

(100+4x2+y2)2 ,
−1200 y

(100+4x2+y2)2

)
and so

∇f(a) =
(
− 24,000

90,000 ,−
12,000
90,000

)
=
(
− 4

15 ,−
2
15

)
= 2

15 (−2,−1). Thus the slope is the steepest in the direction of the

unit vector 1√
5
(−2,−1).

(c) If the boy walks southeast, then will he be ascending or descending?

Solution: The southeasterly direction is in the direction of the unit vector v = 1√
2
(1,−1), and the directional

derivative in that direction is Dvf(a) = 2
15
√
2
(−2,−1) . (1,−1) = −

√
2

15 < 0, so the boy would be descending.

(d) If the boy walks in the direction of steepest slope, then at what angle (from the horizontal) will he be climbing?

Solution: If the boy walks in the direction of the unit vector u = 1
|∇f(a)| ∇f(a), then the slope in that direction

is Duf(a) = |∇f | = 2
15

∣∣(−2,−1)
∣∣ = 2

√
5

15 , so the angle of ascent is θ = tan−1 2
√
5

15
∼= 16.6◦.



4: For each of the following functions f : R2 → R, determine where f is continuous and where f is differentiable.

(a) f(x, y) = (x2y2)1/3.

Solution: Note that f is continuous in R2 because it is an elementary function, and f is differentiable at all points
in the open set U =

{
(x, y) ∈ R2

∣∣xy 6= 0
}

because the restriction f : U → R is an open domain elementary

function, given by f = r ◦
(
s ◦ (p · q)

)
where p, q, r and s are the differentiable functions given by p(x, y) = x,

q(x, y) = y, s(u) = u2 and r(v) = v1/3 for v > 0. It remains to determine whether f is differentiable at points
(a, b) with ab = 0. We claim that f is differentiable at (0, 0) but f is not differentiable at points (a, b) 6= (0, 0)
with ab = 0. Let 0 6= a ∈ R. If f was differentiable at (a, 0) then ∂f

∂y (a, 0) would exist with ∂f
∂y (a, 0) = g′(0) where

g(t) = f(a, t) = (a2t2)1/3 = a2/3t2/3, but when g(t) = a2/3t2/3 the derivative g′(0) does not exist. Thus f is not
differentiable at (a, 0) when a 6= 0. Similarly, f is not differentiable at (0, b) when b 6= 0 because ∂f

∂x (0, b) does

not exist. We claim that f is differentiable at (0, 0) with Df(0, 0) =
(
0, 0
)
. Note that

∣∣(x, y)− (0, 0)
∣∣ =

√
x2 + y2

and recall that for u, v ∈ R we have |uv| ≤ 1
2 (u2 + v2) ≤ (u2 + v2). Let ε > 0 and choose δ = ε3. When∣∣(x, y)− (0, 0)

∣∣ ≤ δ, that is when
√
x2 + y2 ≤ δ, we have∣∣∣∣f(x, y)− f(0, 0)−

(
0, 0
)(x− 0

y − 0

)∣∣∣∣ =
∣∣(x2y2)1/3 − 0− 0

∣∣ = |xy|2/3 ≤
(
x2 + y2)2/3 = (x2 + y2)1/6(x2 + y2)1/2

=
(√

x2 + y2
)1/3√

x2 + y2 ≤ δ1/3
√
x2 + y2 = ε

∣∣(x, y)− (0, 0)
∣∣

and so f is differentiable at (0, 0) with Df(0, 0) =
(
0, 0
)
, as claimed.

(b) f(x, y) =


x2y2

x2 + y4
, if (x, y) 6= (0, 0)

0 , if (x, y) = (0, 0)

Solution: Note that f is differentiable at all points (x, y) 6= (0, 0) because the restriction of f to R2 \ {(0, 0)} is
an open-domain elementary function. We claim that f is also differentiable at (0, 0) with Df(0, 0) =

(
0, 0
)
. Let

ε > 0 and choose δ = ε. For (x, y) ∈ R2 with 0 <
∣∣(x, y)− (0, 0)

∣∣ ≤ δ, that is with 0 <
√
x2 + y2 ≤ δ, we have∣∣∣∣f(x, y)− f(0, 0)−

(
0, 0
)(x− 0

y − 0

) ∣∣∣∣ =
x2y2

x2 + y4
≤ (x2 + y4)y2

x2 + y4
= y2 ≤ x2 + y2

=
√
x2 + y2

√
x2 + y2 ≤ δ

√
x2 + y2 = ε

∣∣(x, y)− (0, 0)
∣∣

so f is indeed differentiable at (0, 0). Thus f is differentiable (hence also continuous) at every point (x, y) ∈ R2.

(c) f(x, y) =


xy3

x2 + y4
, if (x, y) 6= (0, 0)

0 , if (x, y) = (0, 0)

Solution: The function f is continuous and differentiable at all points (x, y) 6= (0, 0) because it is equal to an
open-domain elementary function on R2 \ {(0, 0)}. Note that f is continuous at (0, 0) because for (x, y) 6= (0, 0)
we have ∣∣f(x, y)− f(0, 0)

∣∣ =
|xy2||y|
x2 + y4

≤
1
2 (x2 + y4)|y|
x2 + y4

= 1
2 |y| ≤

1
2

√
x2 + y2 = 1

2

∣∣(x, y)− (0, 0)
∣∣.

We claim that f is not differentiable at (0, 0). For g1(t) = f(t, 0) we have g1(t) = 0 for all t (including t = 0)
so ∂f

∂x (0, 0) = g′1(0) = 0. For g2(t) = f(0, t) we have g2(t) = 0 for all t so ∂f
∂y (0, 0) = g′2(0) = 0. Thus we have

Df(0, 0) =
(
0, 0
)
. Let α(t) = (t2, t) and note that α′(t) = (2t, 1) so we have α(0) = (0, 0) and α′(0) = (0, 1).

Let g(t) = f(α(t)) = f(t2, t) and note that g(t) = 1
2 t for all t (including t = 0) so we have g′(t) = 1

2 for
all t so, in particular, g′(0) = 1

2 . But if f was differentiable at (0, 0) then, by the Chin Rule, we would have
g′(0) = Df(α(0))α′(0) = Df(0, 0)(0, 1)T = (0, 0)(0, 1)T = 0.



5: (a) For x ∈ R3, y ∈ R2 and z ∈ R2, define f : R5 → R2, written as z = f(x, y), by(
z1
z2

)
=

(
f1(x, y)
f2(x, y)

)
=

(
x1y2 − 4x2 + 2ey1 + 3

2x1 − x3 + y2 cos y1 − 6y1

)
.

Note that for a = (3, 2, 7) and b = (0, 1) we have f(a, b) = (0, 0). Find Df(a, b), explain why near the point (a, b)
the null set Null(f) is locally equal to the graph of a smooth function g : U ⊆ R3 → R2 with g(a) = b, and
calculate Dg(a).

Solution: We have

Df(x, y) =
(
∂z
∂z

∂z
∂y

)
=

( ∂z1
∂x1

∂z1
∂x2

∂z1
∂x3

∂z1
∂y1

∂z1
∂y2

∂z2
∂x1

∂z2
∂x2

∂z2
∂x3

∂z2
∂y1

∂z2
∂y2

)
=

(
y2 −4 0 2ey1 x1
2 0 −1 −y2 sin y1 − 6 cos y1

)
and so

Df(a, b) =
(
∂z
∂x (a, b) ∂z

∂y (a, b)
)

=

(
1 −4 0 2 3
2 0 −1 −6 1

)
.

Since the matrix ∂z
∂y (a, b) =

(
2 3
−6 1

)
is invertible, the Implicit Function Theorem shows that near the point

(a, b), the null set Null(f) is locally equal to the graph of a smooth function g : U ⊆ R3 → R2. We have

Dg(a) = −
(
∂z
∂y (a, b)

)−1(
∂z
∂x (a, b)

)
= − 1

20

(
1 −3
6 2

)(
1 −4 0
2 0 −1

)
=

( 1
4

1
5 − 3

20

− 1
2

6
5

1
10

)
.



(b) Let X be the set of all (a, b, c) ∈ R3 such that the polynomial f(t) = t3 + at2 + bt + c has a triple root
and let Y be the set of (a, b, c) ∈ R3 such that f(t) = t3 + at2 + bt + c has a multiple root (that is a double
or triple root). Find a parametric equation for X and a parametric equation for Y and show that near every
point (a, b, c) ∈ Y \X, the set Y is locally equal to the graph of a smooth function z = z(x, y). As an optional
additional exercise, use a computer to sketch the sets X and Y .

Solution: The monic polynomial with a triple root at t = u is f(t) = (t − u)3 = t3 − 3ut2 + 3u2t2 − u3, so X is
given parametrically by

(x, y, z) = α(u) = (−3u, 3u2,−u3).

The monic polynomial with double root u and additional root v (possibly with u = v) is the polynomial f(t) =
(t− u)2(t− v) = (t2 − 2ut+ u2)(t− v) = t3 − (2u+ v)t2 + (2uv + u2)− u2v, so Y is given parametrically by

(x, y, z) = σ(u, v) = (−2u− v , 2uv + u2,−u2v) .

By the Parametric Function Theorem, we know that Range(σ) is locally equal to the graph of a smooth function

z = z(x, y) when the top 2×2 submatrix

( ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
of Dσ is invertible. We have

det

( ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
= det

(
−2 −1

2v + 2u 2u

)
= −4u+ 2v + 2u = 2(v − u)

so the matrix is invertible as long as u 6= v. But notice that u = v precisely when σ(u, v) = α(u), that is when
σ(u, v) lies on X.

Let us calculate the function z = z(x, y) explicitly. From x = −2u − v we get v = −(x + 2u) then from
y = 2uv + u2 we get y = −2u(x + 2u) + u2 = −3u2 − 2xu so that 3u2 + 2xu + y = 0. The Quadratic Formula

gives u = −2x±
√
4x−12y
6 =

−x±
√
x2−3y
3 hence v = −(x + 2u) = −x +

2x∓2
√
x2−3y

3 =
−x∓2

√
x2−3y

3 (when we use
the plus sign for u we must use the minus sign for v and vice versa). Thus the surface is given by

z = −u2v = −
(
−x±
√
x2−3y
3

)2(−x∓2√x2−3y
3

)
=
(

(2x2−3y)∓2x
√
x2−3y

9

)(
x±2
√
x2−3y
3

)
=

(2x3−3xy)±(4x2−6y−2x2)
√
x2−3y−4x(x2−3y)

27

= 1
27

(
(9xy − 2x3)± (2x2 − 6y)

√
x2 − 3y

)
.

Here is a plot which shows that Y is a surface which has a cusp along the twisted cubic curve X.


