MATH 247 Calculus 3, Solutions to the Exercises for Chapter 5

: (a) Let (u,v) = f(t) = (cost +2,2sint — 1) and let (z,y) = g(u,v) = (E, E). Use the Chain Rule to find the
tangent vector to the curve r(t) = g(f(t)) at the point where t = 7. v
Solution: We express the solution in two ways; with and without matrix notation. First we express the solution
without matrix notation. We use the Chain Rule in the form
dvr  Or du  Ox dv
dt " oudt o dt
dy 0Oy du Oy dv
at " ou dt ov dt
We have
or 1 O0r  uwu Oy v Oy

1 du . dv
-0 B0 2 9w w9 u E:f&nt,andE:Qcost.
When ¢t = 5 we have u = cost +2 =2 and v = 2sint — 1 = 1, and so
Ov _ Ov_ _, Oy _ 1 oy 1 du_ - gdv_
ou " Ov " Qu 47 ov 27 dt ’ dt '
Put all these values into the two formulas given by the Chain Rule to get

de Oxr du Oz dv
T oudt T oo @ (D(=1) +(=2)(0) = -1

dy Oy du Oy dv _ 1 1 g
E—%aﬂL%a—(—z)(—l)Jr(a)(O)—z-

Thus the tangent vector is 7/ (Z) = (2/(%),v'(3)) = (-1, 3).

Here is the same solution in matrix notation. By the Chain Rule, we have r'(¢t) = Dg(f(¢)) f'(t), where

dx du sint 9z Oz 1 —u
dt - %] ov
= (4 ) = (1) = () aapgwo= (5 5)-(5 V)
dt dt Ju v < u?

When ¢ = Z we have (u,v) = f (%) = (2,1), and f'(3) = C&) and Dg(2,1) = <_11 —Z
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(b) Let u = f(z,y,2) = 4xtan! (g) where (z,y,2) = g(s,t) = (53 +t,/st, ;) Use the Chain Rule to find

ou ou
s and s when (s,t) = (1, -2).

Solution: First we give a solution which does not use matrix notation. Note that when (s,t) = (1, —2) we have
(z,y,2) = (—1,—2,—2), and at this point we have
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and so
Ou Oudr  Oudy Oudz o
25— 92 D3 + 3y s + 5% 95 (m)3)+ (1)(-1) + (-1)(2) =37 — 3, and

Ou Oudx Oudy  Oudz B
ot Or ot + dy ot + 9z ot (ML) + 1)1+ (-1)(1) =7

Here is the same solution, using matrix notation. Write u = h(s,t) = f(g(s,t)). By the Chain Rule, we have
Dh(s,t) = Df(g(s,t))Dg(s,t). When (s,t) = (1,—2) we have (z,y,z) = h(s,t) = (—=1,—2,-2), and at this point

ox ox

ou Ou 9s 9t
0 9 2]

(% 20) =Dh(s.t)= Dfe.) - Dols. = (5 55 %) | 2 %
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ds Ot
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3
=(m,1,-1) (—1 ) =(Br-3,m).
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2: (a) Let u = f(z,y,2) = (z +y)e? T2, Find Vf(1,2, —4), then find the equation of the tangent plane at (1,2, —4)
to the surface f(z,y,z) = 3, and find the directional derivative D, f(1,2, —4) where u = %(2, —-3,6).
Solution: We have Vf(z,y,2) = (5£,%,9L) = e (1,1 + (z + 1) (2), (z + 9)), s0 VF(1,2,—4) = (1,13,3).
The gradient (1,13,3) is a normal vector, so the equation is of the form x + 13y + 32 = ¢, and by putting in
(z,y,2) = (1,2,—4), we find that ¢ = 15. Thus the equation is « + 13y + 32z = 15. Finally, the directional
derivative is D, f(1,2,—4) = Vf(1,2,—4) - u = 1 (1,13,3) - (2,-3,6) = — 2.

(b) Let f(z,y) = 2%y — y*. Find Vf(3,—1), then for each of the values m = 0,6,6+v/2 and 10, find a unit vector
u, if one exists, such that D, f(3,—1) = m.
of o
Solution: Vf(z,y) = (8f’ 6f> = (2zy, v* — 3y?) and so Vf(3,—1) = (6,6). For each value of m, we need to
€T oy

find a vector u = (a,b) with a + b = 1 such that m = D, f(3,—1) = Vf(3,—1) - u = (6,6) - (a,b) = 6a + 6b,
thus we need to solve the two equations a? +b* =1 (1) anda+b=tm (2).

When m = 0, equation (2) becomes a + b = 0 so that we have b = —a. Put b = —a into equation (1) to get

A+ (-a)P?=1=2d=1=d’=1=na= :l:g. Since b = —a, we obtain (a,b) = + (?,fg .

When m = 6, equation (2) becomes a + b = 1 so that we have b = 1 — a. Put this into equation (1) to get
a?+(1-a)?=1=a’+1-2a+a’>=1=2a>-2a=0=2a(a—1)=0=a=0ora=1. Sinceb=1—a,
we obtain (a,b) = (0,1) or (1,0).

When m = 62, equation (2) becomes a + b = v/2 so that b = v/2 — a. Put this into equation (1) to get
a2+(\/§—a)2:1:>a2+2—2\/§a+a2:1:2a2—2\/§a+1:0:>2(a—%)2:02>a:%. Since

b= /2 — a, we obtain (a,b) = (%, g)

2072
the maximum possible value for the directional derivative. So the maximum possible value for D, f(3,—1) is
equal to 64/2; there is no unit vector such that D, f(3, —1) = 10.

Finally, note that since the vector (a,b) = (\/5 @> is in the direction of the gradient vector (6,6), it gives



3: A boy is standing at the point (5,10, 2) on a hill in the shape of the surface
B 600
= 100 + 422 + 42

(where z, y and z are in meters).

(a) Sketch the surface.

Solution: The level set z = c is the ellipse 100 + 422 + 32 = @, the level set x = 0 is the curve z = 100+y2 and

600
100+4z2*

The surface is sketched below.

the level set y = 0 is the curve z =

(b) At the point where the boy is standing, in which direction is the slope steepest?

Solution: Write z = f(x,y) = %E and a = (5,10). Then Vf = ((100120%742)2’ (100114295020+yy2)2) and so

Vf(a) = (— 33’888, —égggg) = (—14—57 —%) = %( 2,—1). Thus the slope is the steepest in the direction of the

unit vector \%(—27 —-1).

(c) If the boy walks southeast, then will he be ascending or descending?

2
(-2,-1)-(1,-1) = —% < 0, so the boy would be descending.

Solution: The southeasterly direction is in the direction of the unit vector v = %(1, —1), and the directional
. . . . . . _ 2
derivative in that direction is D, f(a) = CVG
(d) If the boy walks in the direction of steepest slope, then at what angle (from the horizontal) will he be climbing?
Solution: If the boy walks in the direction of the unit vector u = W V f(a), then the slope in that direction

is D, f(a) = |Vf| = &|(-2,-1)| = 15 , so the angle of ascent is § = tan~! 21*5[ =~ 16.6°.



4: For each of the following functions f : R? — R, determine where f is continuous and where f is differentiable.

(a) fa,y) = (z%y)"/?.

Solution: Note that f is continuous in R? because it is an elementary function, and f is differentiable at all points
in the open set U = {(x,y) € Rﬂmy #* O} because the restriction f : U — R is an open domain elementary
function, given by f =ro (s o(p- q)) where p, ¢, r and s are the differentiable functions given by p(z,y) = z,
q(z,y) =y, s(u) = u? and r(v) = v'/3 for v > 0. It remains to determine whether f is differentiable at points
(a,b) with ab = 0. We claim that f is differentiable at (0,0) but f is not differentiable at points (a,b) # (0,0)
with ab = 0. Let 0 # a € R. If f was differentiable at (a,0) then g—i(a, 0) would exist with g—i(a, 0) = ¢’(0) where
g(t) = f(a,t) = (a®*t?)V/3 = a?/3t?/3 but when g(t) = a*/3t?/? the derivative ¢/(0) does not exist. Thus f is not
differentiable at (a,0) when a # 0. Similarly, f is not differentiable at (0,b) when b # 0 because %(O7 b) does
not exist. We claim that f is differentiable at (0,0) with Df(0,0) = (0,0). Note that |(z,y) — (0,0)| = /2% + y?
and recall that for u,v € R we have |uwv| < F(u® +v?) < (u? + v?). Let € > 0 and choose § = €. When
|(x,y) — (0,0)] <4, that is when /2% + y? < 6, we have

f(x,y) . f(0,0) o (0’0) (95 —0>’ _ ’(x2y2)1/3 00— O| _ |xy|2/3 < (a:2 +y2)2/3 _ (x2 +y2)1/6(x2 +y2)1/2

y—0
— (\/x2 +y2)1/3\/x2 +y2 < 513, /42 +y2=c |($,y) _ (0’0)|
and so f is differentiable at (0,0) with Df(0,0) = (0,0), as claimed.

1.2y2

"9, .4 if z,y 7é 030
) flay) = { eyt OV FO0)
0, if (z,y) =(0,0)
Solution: Note that f is differentiable at all points (z,y) # (0,0) because the restriction of f to R?\ {(0,0)} is
an open-domain elementary function. We claim that f is also differentiable at (0,0) with Df(0,0) = (07 0). Let
€ > 0 and choose § = e. For (z,y) € R? with 0 < |(z,y) — (0,0)| < 4, that is with 0 < \/22 + y? < §, we have

f(@,y) = £(0,0) = (0,0) (5:8)

2,2 2 | 4y, 2

__zy S(l’"'y)y — 2 <2 4P
x2_’_y4 x2+y4

= Va2 + 22 +y? < 6v/a? +y? = e|(z,y) — (0,0)]

so f is indeed differentiable at (0,0). Thus f is differentiable (hence also continuous) at every point (z,y) € R?.

IEy3

(© fay)=d Pyt (z,y) # (0,0)
0, if (z,y) = (0,0)

Solution: The function f is continuous and differentiable at all points (z,y) # (0,0) because it is equal to an

open-domain elementary function on R?\ {(0,0)}. Note that f is continuous at (0,0) because for (z,y) # (0,0)
we have X a2 4y

lzyllyl o 3@ +y7)lyl _

|f<xay)_f(070)’:x2+y4§ :r2+y4 :i

We claim that f is not differentiable at (0,0). For gi(t) = f(¢,0) we have g1(¢t) = 0 for all ¢ (including ¢t = 0)

SO %(0,0) = ¢1(0) = 0. For g2(t) = f(0,t) we have go(t) = 0 for all ¢ so 2—5(0,0) = ¢4(0) = 0. Thus we have

Df(0,0) = (0,0). Let a(t) = (t*,t) and note that o/(t) = (2¢,1) so we have a(0) = (0,0) and /(0) = (0,1).

Let g(t) = f(a(t)) = f(t*,t) and note that g(t) = 4t for all ¢ (including ¢ = 0) so we have ¢'(t) = 4 for

all ¢ so, in particular, ¢’(0) = 3. But if f was differentiable at (0,0) then, by the Chin Rule, we would have

9'(0) = Df (a(0))a’(0) = Df(0,0)(0, 1)* = (0,0)(0,1)" = 0.

yl < 22 +y? = 1|(z,y) — (0,0)].
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5: (a) For z € R3, y € R? and 2z € R?, define f : R® — R?, written as z = f(x,y), by

<Z1>:<f1(ffay)>:< 1Yz — 4w + 2e¥ + 3 >
22 fa2(z,y) 221 — 3 +yacosy; —6yy )
Note that for a = (3,2,7) and b = (0,1) we have f(a,b) = (0,0). Find Df(a,b), explain why near the point (a,b)

the null set Null(f) is locally equal to the graph of a smooth function g : U C R® — R? with g(a) = b, and
calculate Dg(a).

Solution: We have

Jz Oz Oz 9z 92
Df(x,y) = (@ Q) _ <6zi ows  Oms Oyt 6y;) _ <y2 -4 0 %Y1 o )

9z Oy ng gii gii gﬁ gﬁ 2 0 —1 —yosiny; —6 cosyy
and so
_ ( Oz oz 1 -4 0 2 3
Df(a7b) - (%(aﬂb) %(a’b)) - <2 0 71 76 1 .
Since the matrix g—;(a,b) = —26 i’) is invertible, the Implicit Function Theorem shows that near the point

(a,b), the null set Null(f) is locally equal to the graph of a smooth function g : U C R®* — R?. We have

Dg(a)(ggm,b))_l(gﬁa,b))zlo(é 5’) (i i -01> - (i 1:6)

_1
2
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(b) Let X be the set of all (a,b,c) € R? such that the polynomial f(t) = t3 + at? + bt + ¢ has a triple root
and let Y be the set of (a,b,c) € R3 such that f(t) = ¢3 + at? + bt + ¢ has a multiple root (that is a double
or triple root). Find a parametric equation for X and a parametric equation for Y and show that near every
point (a,b,c) € Y \ X, the set Y is locally equal to the graph of a smooth function z = z(x,y). As an optional
additional exercise, use a computer to sketch the sets X and Y.

Solution: The monic polynomial with a triple root at t = u is f(t) = (t — u)® = t3 — 3ut® + 3u?t? — u?, so X is
given parametrically by

(z,y,2) = a(u) = (=3u, 3u?, —u?).
The monic polynomial with double root u and additional root v (possibly with u = v) is the polynomial f(t) =
(t—u)?(t —v) = (t? — 2ut + u?)(t —v) =3 — (2u + v)t? + (2uv + u?) — u?v, so Y is given parametrically by

(z,y,2) = o(u,v) = (—2u — v, 2uv + u?, —u?v).

By the Parametric Function Theorem, we know that Range(o) is locally equal to the graph of a smooth function

Oz Oz
z = z(x,y) when the top 2x 2 submatrix ( g; g; of Do is invertible. We have
ou v
e RN
u v — — — _
det <gz gg> = det <2v+2u 2u> = —4du+2v+ 2u = 2(v — u)

so the matrix is invertible as long as u # v. But notice that u = v precisely when o(u,v) = a(u), that is when
o(u,v) lies on X.

Let us calculate the function z = z(z,y) explicitly. From z = —2u — v we get v = —(x + 2u) then from
y = 2uv + u? we get y = —2u(x + 2u) + u? = —3u? — 2zu so that 3u? + 22u +y = 0. The Quadratic Formula

gives u = 72”ivﬁ4m712y — = V3x2_3y hence v = —(z + 2u) = —x + ijFQ‘ém = ¥F2 V33”2_3y (

the plus sign for v we must use the minus sign for v and vice versa). Thus the surface is given by

o u2v . (7z:i: x273y)2<7z:|:2\/1273y) _ ((21273y)q:293\/1273y) (z:I:Z\/zzfi’:y)
- - 3 - 9

3 3

when we use

(22 —3zy) (422 —6y—222) /22 —3y—dx(x? —3y)
27

= 2%((93:3/ —223) & (222 — 6y) /22 — Sy).

Here is a plot which shows that Y is a surface which has a cusp along the twisted cubic curve X.




