
MATH 247 Calculus 3, Solutions to the Exercises for Chapter 6

1: (a) A function f(x, y) is called harmonic if it is a solution to Laplace’s equation, which is the partial differential

equation ∂2f
∂x2 + ∂2f

∂y2 = 0. Determine which of the following two functions are harmonic.

(i) f(x, y) = ln
√
x2 + y2

Solution: We have f(x, y) = 1
2 ln(x2 + y2), so ∂f

∂x = x
x2+y2 and ∂f

∂y = y
x2+y2 and so ∂2f

∂x2 = −x2+y2

(x2+y2)2 and ∂2f
∂y2 =

x2−y2
(x2+y2)2 . Since ∂2f

∂x2 + ∂2f
∂y2 = 0, f(x, y) is harmonic.

(ii) f(x, y) = tan−1 yx .

Solution: We have ∂f
∂x =

− y
x

1+ y2

x2

= − y
x2+y2 and ∂f

∂y =
1
x

1+ y2

x2

= x
x2+y2 and so we have ∂2f

∂x2 = 2xy
(x2+y2)2 and

∂2f
∂y2 = −2xy

(x2+y2)2 . Since ∂2f
∂x2 + ∂2f

∂y2 = 0, f(x, y) is harmonic.

(b) Find the Taylor polynomial of degree 2, centred at (−2, 1), for f(x, y) = (2− x) ex+2y.

Solution: We have

∂f
∂x = (1− x)ex+2y , ∂f

∂y = 2(2− x)ex+2y , ∂2f
∂x2 = (−x)ex+2y , ∂2f

∂x∂y = 2(1− x)ex+2y , ∂2f
∂y2 = 4(2− x)ex+2y

and so

f(−2, 1) = 4 , ∂f
∂x (−2, 1) = 3 , ∂f

∂y (−2, 1) = 8 , ∂2f
∂x2 (−2, 1) = 2 , ∂2f

∂x∂y (−2, 1) = 6 , ∂2f
∂y2 (−2, 1) = 16.

Thus the second Taylor polynomial is

T2(x, y) = 4 + 3(x+ 2) + 8(y − 1) + (x+ 2) + 6(x+ 2)(y − 1) + 8(y − 1)2.



2: (a) Let z = f(x, y) = x2y + 2x2 + y2. Find and classify all the critical points of f(x, y), then find the maximum
and minimum values of z = f(x, y) in D = {(x, y)|x2 + y2 ≤ 8}.
Solution: We have Df(x, y) =

( ∂f
∂x

∂f
∂y

)
= ( 2xy + 4x x2 + 2y ). Note that

∂f
∂x = 0 ⇐⇒ 2xy + 4x = 0 ⇐⇒ 2x(y + 2) = 0 ⇐⇒ x = 0 or y = −2.

When x = 0 we have x2 + 2y = 0 ⇐⇒ y = 0, and when y = −2 we have x2 + 2y = 0 ⇐⇒ x = ±2. Thus we
have Df(x, y) = 0 at the points (0, 0), (2,−2) and (−2,−2). The Hessian matrix is

Hf(x, y) =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)
=

(
2y + 4 2x

2x 2

)
.

When (x, y) = (0, 0), we have Hf =

(
4 0
0 2

)
, which has eigenvalues 4 and 2, so f has a local minimum at (0, 0).

When (x, y) = (2,−2), we have Hf =

(
0 4
4 2

)
and det

(
Hf − λI

)
= det

(
−λ 4
4 λ

)
= λ2 − 2λ − 16, so Hf has

eigenvalues λ = 2±
√
4+4·16
2 = 1±

√
17, and so f has a saddle point at (−2, 2). When (x, y) = (−2,−2), we have

Hf =

(
−0 −4
−4 2

)
, which also has eigenvalues 1±

√
17, so f also has a saddle point at (−2,−2).

On the boundary, where x2 = 8− y2 with −2
√

2 ≤ y ≤ 2
√

2, we have

f(x, y) = (8− y2)y + 2(8− y2) + y2 = −y3 − y2 + 8y + 16

so we let g(y) = −y3 − y2 + 8y + 16. Then g′(y) = −3y2 − 2y + 8 = −(3y − 4)(y + 2), so g′(y) = 0 when

y = 4
3 and −2. When y = 4

3 we have x = ±
√

8− 16
9 = ± 2

√
14
3 , when y = −2 we have x = ±2, and when

y = ±2
√

2 we have x = 0. Note that f(0, 0) = 0, and f(±2,−2) = g(−2) = 4, and f
(
± 2
√
14
3 , 43

)
= g

(
4
3

)
= 608

27 ,

and f
(
± 2
√

2, 0
)

= g(±2
√

2) = 8, so the minimum value of f is f(0, 0) = 0 and the maximum value of f is

f
(
±
√
14
3 , 43

)
= 608

27 .

(b) Find the maximum possible area for a quadrilateral with vertices at (0, 0), (1− r, 0), (1− r + r cos θ, r sin θ)
and (0, r sin θ), with 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π

2 .

Solution: The area is given by

A(r, θ) = (1− r)(r sin θ) + 1
2 (r sin θ)(r cos θ) = r sin θ − r2 sin θ + 1

2r
2 sin θ cos θ

and we have

DA(r, θ) =
(
∂A
∂r ,

∂A
∂θ

)
=
(

sin θ − 2r sin θ + r sin θ cos θ, r cos θ − r2 cos θ + 1
2r

2 cos2 θ − 1
2r

2 sin2 θ
)
.

Let us find the critical points with 0 < r < 1 and 0 < θ < π
2 . We have DA(r, θ) = 0 when

sin θ(1− 2r + r cos θ) = 0 (1) and r cos θ − r2 cos θ + r2 cos2 θ − 1
2r

2 = 0 (2).

For 0 < θ < π
2 we have sin θ 6= 0, so equation (1) gives 1 − 2r + r cos θ = 0, that is cos θ = 2r−1

r . Put this
into equation (2) to get (2r − 1) − r(2r − 1) + (2r − 1)2 − 1

2r
2 = 0, that is 3

2r
2 − r = 0. For r > 0 this gives

r = 2
3 , and since cos θ = 2r−1

r = 1
2 , we have θ = π

3 . Thus the only critical point is at
(
2
3 ,

π
2

)
, and we have

A
(
2
3 ,

π
3

)
=
√
3
9 +

√
3

18 =
√
3
6 .

On the boundary, when r = 0 we have A = 0, when r = 1 we have A = 1
2 sin θ cos θ = 1

4 sin 2θ ≤ 1
4 <

√
3
6 ,

when θ = 0 we have A = 0, and when θ = π
2 we have A = (1− r)r = 1

4 −
(
r− 1

2

)2 ≤ 1
4 <

√
3
6 . Thus the maximum

possible area is A =
√
3
6 , which we obtain when (r, θ) =

(
2
3 ,

π
3

)
.



3: Let u = f(x, y, z) = x2 + xy+ y2 + 3yz2 + 6z2. Find and classify all the critical points of f(x, y, z), then find the
maximum and minimum values of u with −1 ≤ x ≤ 3, −4 ≤ y ≤ 0 and z = 1.

Solution: We have
Df(x, y) =

(
∂u
∂x ,

∂u
∂y ,

∂u
∂z

)
=
(
2x+ y, x+ 2y + 3z2, 6yz + 12z

)
and so Df = 0 when

2x+ y = 0 (1) , x+ 2y + 3z2 = 0 (2) , and 6z(y + 2) = 0 (3).

From (3) we have z = 0 or y = −2. When z = 0, equation (2) becomes x + 2y = 0, and this, together with
equation (1), implies (x, y) = (0, 0). When y = −2, equation (1) gives x = 1, and then equation (2) becomes
1− 4 + 3z2 = 0, so z = ±1. Thus the critical points are (0, 0, 0), (1,−2, 1) and (1,−2,−1).

The Hessian matrix is

Hf =


∂2u
∂x2

∂2u
∂x∂y

∂2u
∂x∂z

∂2u
∂y∂x

∂2u
∂y2

∂2u
∂y∂z

∂2u
∂z∂x

∂2u
∂z∂y

∂2u
∂z2

 =

 2 1 0
1 2 6z
0 6z 12

 .

At (0, 0, 0) we have

Hf =

 2 1 0
1 2 0
0 0 12


and det

(
Hf−λI

)
= ((2−λ)2−1)(12−λ) = (12−λ)(λ2−4λ+3) = −(λ−12)(λ−3)(λ−1) so Hf has eigenvalues

1, 3 and 12, and so u has a local minimum at (0, 0, 0). At (1,−2,±1), we have

Hf =

 2 1 0
1 2 ±6
0 ±6 12


and det

(
Hf−λI

)
= (2−λ)2(12−λ)−72−12 = −λ3+16λ2−52λ−36 = g(λ), say. Note that lim

λ→−∞
g(λ) =∞ > 0,

g(0) = −36 < 0, g(10) = 414 > 0 and lim
λ→∞

g(λ) = −∞ < 0, so by the Intermediate Value Theorem, g(λ) = 0 has

a solution in each of the intervals (−∞, 0), (0, 10), and (10,∞). Thus Hf has one negative eigenvalue and two
positive eigenvalues, so u has a saddle point at (1,−2,±1).

When z = 1 we have u = x2 + xy + y2 + 3y + 6 = h(x, y), say. We have Dh(x, y) =
(
2x+ y, x+ 2y + 3

)
, so

Dh(x, y) = 0 when 2x+ y = 0 and x+ 2y + 3 = 0, that is when (x, y) = (1,−2). The Hessian matrix for h is

Hh =

(
2 1
1 2

)
and det

(
Hh− λI

)
= (2− λ)2 − 1 = λ2 − 4λ+ 3 = (λ− 1)(λ− 3), so Hh has eigenvalues 1 and 3, and so u has a

local minimum at (x, y) = (1,−2) with u(1,−2, 1) = h(1,−2) = 1− 2 + 4− 6 + 6 = 3.
On the edges of the boundary, when x = −1 we have

u = 1− y + y2 + 3y + 6 = y2 + 2y + 7 = (y + 1)2 + 6

which is a parabola with a minimum of 6 when y = −1, and when x = 3 we have

u = 9 + 3y + y2 + 3y + 6 = y2 + 6y + 15 = (y + 3)2 + 6

which is a parabola with a minimum of 6 when y = −3, and when y = −4 we have

u = x2 − 4x+ 16− 12 + 6 = x2 − 4x+ 10 = (x− 2)2 + 6

which is a parabola with a minimum of 6 at x = 2, and when y = 0, we have u = x2 + 6 which is a parabola with
a minimum of 6 at x = 0.

At the corner points of the boundary, we have u(−1,−4, 1) = 15, u(−1, 0, 1) = 7, u(3,−4, 1) = 7 and
u(3, 0, 1) = 15. Thus the maximum value of u is 15, which occurs at the corners (−1, 0, 1) and at (3, 0, 1), and
the minimum value is 3, which occurs at the interior point (1,−2, 1).


