MATH 247 Calculus 3, Solutions to the Exercises for Chapter 6

: (a) A function f(z,y) is called harmonic if it is a solution to Laplace’s equation, which is the partial differential

equation ‘9 f + gy; = 0. Determine which of the following two functions are harmonic.

() f(z,9) = o /T 42

2 2 2
Solution: We have flz,y) = %111(562 +4?), so % = fo_yz and af = 723_1/2 and so % = 7(;§+‘5§’)2 and a f =
2
9> . .
(;Jriyw Slnce L+ 5 2L —0, f(x,y) is harmonic.
(i) f(r.y) = tan~! 2,
Y 1 2
Solution: We have % = = —12+er2 and %J; == 57157 and so we have gIJ; = 4($22f;/2)2 and
=2 el
62f _ —2zy 92 o°f

T = T Since 2 812 + 552 =0, f(z,y) is harmonic.

(b) Find the Taylor polynomial of degree 2, centred at (—2,1), for f(z,y) = (2 — x) e*T2v.
Solution: We have

% =(1—x2)e" 2 | %ch =2(2 —x)e* T 0% _ (—x)e T2y OF 2(1 — z)e* T2 | g—;é =4(2 — x)e* T

and so
N2 92
F-2.1) =4, 8(-21)=3, 9(-21)=8, ZL(-21)=2, 2L (-21)=6, 55(-2,1) =16.
Thus the second Taylor polynomial is

To(z,y) =4+3(x+2)+8(y— 1)+ (x+2)+6(x+2)(y—1)+8(y—1)%



2: (a) Let 2z = f(x,y) = 2%y + 22? + 3%, Find and classify all the critical points of f(x,v), then find the maximum

and minimum values of z = f(x,y) in D = {(x,y)|z% + y? < 8}.
Solution: We have Df(x,y) = (%f %) = (2zy +4x 22+ 2y). Note that

xr

%:0 — 2zy+4dr=0 < 2z2(y+2)=0 < z=0o0ry=—-2.

When z = 0 we have 22 +2y =0 <= y = 0, and when y = —2 we have 22 + 2y = 0 <= 2z = 42. Thus we
have Df(z,y) = 0 at the points (0,0), (2, —2) and (-2, —2). The Hessian matrix is

9%f 0%f
H _ Era Oxdy _ 2y +4 2z
Faw =192 ‘2 | =\ 90 2 )

OyOx oy?

When (z,y) = (0,0), we have Hf = 4 0), which has eigenvalues 4 and 2, so f has a local minimum at (0, 0).

0 2
0 4 -2 4

4 2 4 A
eigenvalues \ = 24410 4+4 16 — 14 /17, and so f has a saddle point at (—2,2). When (z,y) = (-2, —2), we have

Hf = (O 24>, which also has eigenvalues 14 /17, so f also has a saddle point at (—2, —2).

When (z,y) = (2,—2), we have Hf = ( ) and det (Hf — AI) :det< ) = A2 —2)\ — 16, so Hf has

4
On the boundary, where 22 = 8 — y? with —2v/2 < y < 2v/2, we have
fla,y)= 8-y )y +28-y") +y* = —y° —¢y> + 8y + 16
so we let g(y) = —y3 — ¢ —|— 8y + 16. Then ¢'(y) = —3y?> — 2y +8 = —(3y — 4)(y + 2), so ¢'(y) = 0 when

Yy =3 and —2. When y = 5 we have x = £4/8 — m = iQ‘ﬁ, when y = —2 we have x = £2, and when
y = i2f 2 we have = = 0. Note that £(0,0) = 0, and f(42,-2) = g(—2) = 4, and f( £ 2414 1) = (%) = 68

and f( +2v2,0) = g(£2v2) = 8, so the minimum value of f is f(0,0) = 0 and the maximum value of f is
(L) =%

(b) Find the maximum possible area for a quadrilateral with vertices at (0,0), (1 —r,0), (1 —r + rcosé,rsin#)
and (0,7sinf), with0 <r <land 0<6 < 7.

Solution: The area is given by
A(r,0) = (1 —r)(rsin6) + 1(rsin)(rcos) = rsinf — r?sin + r?sind cos 6
and we have
DA(r,0) = (%2, 24) = (sin6 — 2rsin@ + rsinf cos 6,7 cos§ — r? cos § + $r? cos® 0 — 2r?sin’0).
Let us find the critical points with 0 <r <1 and 0 <6 < §. We have DA(r,0) = 0 when

sinf(1 —2r+rcosf) =0 (1) and rcos —r?cos +r?cos?d — 31> =0 (2).

For 0 < § < % we have sinf # 0, so equation (1) gives 1 — 2r + rcosf = 0, that is cos§ = 2-=1. Put this
into equation (2) to get (2r — 1) — r(2r — 1) + (2r — 1)> — 192 = 0, that is 57'2 r = 0. For r > 0 this gives

r = %, and since cosf = QTT_ = %, we have § = Z. Thus the only critical point is at (%, g), and we have
A5 =¥+8=%

On the boundary, When r =0 we have A = 0, when r = 1 we have A = % sm@cosﬂ =z sm 20 < 3 < f
when 6 = 0 we have A =0, and when § = § we have A= (1—r)r = — (r— 7) <ic ‘f ThUb the maximum
possible area is A = ‘[ , which we obtain when (r,0) = (2, ).



3: Let u= f(z,y,2) = 22 + 2y + % + 3y2? + 622. Find and classify all the critical points of f(z,y, z), then find the
maximum and minimum values of u with —1 <z <3, -4<y<0and z=1.

Solution: We have
Df (z,y) = (g—;, g—;, %) = (22 4+ y,z + 2y + 32%,6yz + 122)

and so Df = 0 when
20 +y=0 (1), x+2y+322=0 (2), and 62(y+2)=0 (3).

From (3) we have z = 0 or y = —2. When z = 0, equation (2) becomes x + 2y = 0, and this, together with
equation (1), implies (z,y) = (0,0). When y = —2, equation (1) gives z = 1, and then equation (2) becomes
1—4+322=0,s0 z==£1. Thus the critical points are (0,0,0), (1,—2,1) and (1, -2, —1).

The Hessian matrix is ) , )
o“u O“u O“u

Ere Oxdy dxdz 2 1 0

_ 3*u 3*u 3*u _
Hf - Oyox y? Oydz - 1 2 62
8%u 8%u 8%u 0 6z 12

020x 020y 022
At (0,0,0) we have
2 1 0
Hf=[1 2 o
0 0 12
and det (Hf —AI) = ((2—=A)2—=1)(12—=X) = (12— A) (A2 —4X+3) = —(A—12)(A—3)(A—1) so Hf has eigenvalues
1, 3 and 12, and so u has a local minimum at (0,0,0). At (1,—2,+1), we have

2 1 0
Hf =1 2 46
0 +6 12

and det (Hf —AI) = (2—X)?(12—X)—72—12 = —A3+16A* —52A—36 = g()\), say. Note that Jim g(A\) =0 >0,
——o0
g(0) = =36 < 0, g(10) = 414 > 0 and )\lim g(\) = —00 < 0, so by the Intermediate Value Theorem, g(A) = 0 has
—00
a solution in each of the intervals (—oo,0), (0,10), and (10,00). Thus Hf has one negative eigenvalue and two

positive eigenvalues, so u has a saddle point at (1, —2,+1).

When z = 1 we have u = % + 2y + y*> 4+ 3y + 6 = h(z,y), say. We have Dh(z,y) = (22 + y,z + 2y + 3), so
Dh(z,y) = 0 when 2z +y = 0 and x 4 2y + 3 = 0, that is when (x,y) = (1, —2). The Hessian matrix for h is

(2 )
and det (Hh — M) = (2—A)? =1 =A% —4A+3 = (A= 1)(A — 3), so Hh has eigenvalues 1 and 3, and so u has a
local minimum at (z,y) = (1, —2) with «(1,-2,1) =h(1,-2)=1-244—-6+6 = 3.
On the edges of the boundary, when x = —1 we have
u=1-y+y*+3y+6=9y"+2y+7=(y+1)>+6
which is a parabola with a minimum of 6 when y = —1, and when z = 3 we have
u=9+3y+1y +3y+6=9>+6y+15=(y+3)>+6
which is a parabola with a minimum of 6 when y = —3, and when y = —4 we have
u=1a>—4r+16—-12+6=2> —4do+10= (z —2)* + 6

which is a parabola with a minimum of 6 at © = 2, and when y = 0, we have u = x? 4+ 6 which is a parabola with
a minimum of 6 at x = 0.

At the corner points of the boundary, we have u(—1,—4,1) = 15, u(—1,0,1) = 7, u(3,—-4,1) = 7 and
u(3,0,1) = 15. Thus the maximum value of u is 15, which occurs at the corners (—1,0,1) and at (3,0,1), and
the minimum value is 3, which occurs at the interior point (1,—2,1).



