
MATH 247 Calculus 3, Solutions to the Midterm Test, Fall 2024

1: Define f : R→ R2 by f(t) =
(
2 sin t , 2 sin t+ 2 cos t

)
and let C = Range(f).

(a) Sketch the curve C and find the coordinates of all x- and y-intercepts and all points where the tangent
line is horizontal or vertical.

Solution: We make a table of values for 0 ≤ t ≤ π and plot points below, noting that f(t + π) = −f(t). For
(x, y) = f(t) = (2 sin t , 2 sin t + 2 cos t), the y-intercepts occur when x = 0, that is when sin t = 0, that is
when t = kπ with k ∈ Z, that is when (x, y) = ±(0, 2). The x-intercepts occur when y = 0, that is when
sin t = − cos t, that is when tan t = −1, that is when t = 3π

4 + kπ, that is when (x, y) = ±(
√

2, 0). Also, we
have (x′, y′) =

(
2 cos t , 2 cos t−2 sin t

)
. The points with vertical tangents occur when x′ = 0, that is cos t = 0,

that is t = π
2 + kπ, that is when (x, y) = ±(2, 2), the points with horizontal tangents occur when y′ = 0, that

is sin t = cos t, that is tan t = 1, that is t = π
4 + kπ, that is whe (x, y) = ±(

√
2, 2
√

2).

t x y

0 0 2 y-intercept
π/6 1 1 +

√
2

π/4
√

2 2
√

2 horizontal point
π/3

√
3 1 +

√
3

π/2 2 2 vertical point
2π/3

√
3
√

3− 1
3π/4

√
2 0 x-intercept

5π/6 1 1−
√

3
π 0 −2 y-intercept

(b) Find (with proof) a polynomial g(x, y) such that C = Null(g).

Solution: We claim that Range(f) = Null(g) where g(x, y) = x2 + (y − x)2 − 4. Let (x, y) ∈ Range(f), say
(x, y) = f(t) =

(
2 sin t , 2 sin t + 2 cos t

)
. Then g(x, y) = x2 + (y − x)2 − 4 = (2 sin t)2 + (2 cos t)2 − 4 = 0

so that (x, y) ∈ Null(g). This shows that Range(f) ⊆ Null(g). Now let (x, y) ∈ Null(g). Then we have

x2 + (y − x)2 = 4, that is
(
x
2

)2
+
(
y−x
2

)2
= 1, and so we can choose t ∈ [0, 2π) such that sin t = x

2 and

cos t = y−x
2 . Then we have x = 2 sin t and y = x + 2 cos t = 2 sin t + 2 cos t so that (x, y) = f(t) ∈ Range(f).

This shows that Null(g) ⊆ Range(f).

2: (a) Find an implicit equation for the tangent plane to the surface given by (x, y, z)=
(√

3 r cos θ , r2+r sin θ , 2r
)

at the point (3, 5, 4).

Solution: Let f(r, θ)=
(√

3 r cos θ, r2+ r sin θ , 2r
)
. To get f(r, θ) = (3, 5, 4) we need 2r = 4 so that r = 2, and

we need cos θ = 3√
3r

=
√
3
2 and we need sin θ = 5−r2

r = 1
2 , so we can take θ = π

6 . We have

Df(r, θ) =

 √3 cos θ −
√

3r sin θ
2r + sin θ r cos θ

2 0

 so that Df
(
2, π6

)
=

 3
2 −
√

3
9
2

√
3

2 0

 .

The columns of Df
(
2, π6

)
are multiples of u = (3, 2, 4) and v = (−1, 1, 0), and u × v = (−4,−4, 12) = −4w

where w = (1, 1,−3). The tangent plane to the surface at (3, 5, 4) is the plane through (3, 5, 4) in the direction
of u and v, with normal vector w = (1, 1,−3), so it has an equation is of the form x+y−3z = c. Since (3, 5, 4)
lies on the plane we have c = 3 + 5− 3 · 4 = −4, so the equation is x+ y − 3z = −4.

(b) Find a parametric equation for the tangent line to the curve of intersection of the two paraboloids given
by 5z = x2 + y2 and y = x2 + z2 at the point (1, 2, 1).

Solution: Let g(x, y, z) =
(
u(x, y, z), v(x, y, z)

)
=
(
x2 +y2−5z , x2−y+z2

)
so the given curve is C = Null(g).

We have

Dg(x, y, z) =

(
2x 2y −5
2x −1 2z

)
so that Dg(1, 2, 1) =

(
2 4 −5
2 −1 2

)
The row vectors are∇u=(2, 4,−5) and∇v=(2,−1, 2). The required tangent line passes through p=(1, 2, 1) in
the direction of w = ∇u×∇v=(3,−14, 10), so it is given parametrically by (x, y, z) = (1, 2, 1)+t (3,−14,−10).
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3: (a) Let f(x, y) = 2x2y + y
x . Find every u ∈ R2 with ‖u‖ = 1 such that Duf(1, 2) = 6.

Solution: We have f(1, 2) = 6 and we have Df(x, y) =
(
4xy − y

x2 , 2x2 + 1
x

)
so that Df(1, 2) = (6, 3). For

u = (a, b) we have Duf(1, 2) = Df(1, 2)
(
a
b

)
= 6a + 3b. To get D − f(1, 2) = 6 we need 6a + 3b = 6, that is

2a+ b = 3 (1), and to get ‖u‖ = 1 we need a2 + b2 = 1 (2). From (1) we get b = 3− 2a, and putting this into
(2) gives a2 + (3 − 2a)2 = 1, that is 5a2 − 8a + 3 = 0 so that (a − 1)(5a − 3) = 0. Thus a = 1 or a = 3

5 and
hence, since b = 3− 2a, we have u = (a, b) = (1, 0) or

(
3
5 ,

4
5

)
.

(b) Define f : R2 → R2 by f(x, y) =
(
x2 + xy , y2 − 2xy

)
. Find α : R → R2 such that for β(t) = f

(
α(t)

)
we

have α(0) = (2, 1), α(1) = (0, 0) and β′(0) = (−1, 4).

Solution: We have f(2, 1) = (5, 0) and

Df(x, y) =

(
2x+ y x
−2y 2y − 2x

)
so that Df(2, 1) =

(
5 2
−2 −2

)
.

By the Chain Rule, we have β′(0) = Df(α(0))α′(0), so, to get α(0) = (2, 1) and β′(0) = (−1, 4) we need

α′(0) = Df(1, 2)−1β′(0) = − 1
6

(
2 −2
2 5

)(
−1

4

)
= − 1

6

(
−6
18

)
=

(
1
−3

)
.

Thus we need to find a function α = α(t) such α(0) = (2, 1), α′(0) = (1,−3) and α(1) = (0, 0). Writing
α(t) = (x(t), y(t)), we need x(0) = 2, x′(0) = 1 and x(1) = 0, and we need y(0) = 1, y′(0) = −3 and y(1) = 0.
There are many such functions x(t) and y(t) but we can, for example, choose to have x and y be quadratic
polynomials. For x(t) = at2 + bt+ c, to get x(0) = 2 we need c = 2, and to get x′(0) = 1 we need b = 1, and
then to get x(1) = 0 we need a+ b+ c = 0 so a = −b− c = −3, so we can choose x(t) = −3t2 + t+ 2. Similarly
we can choose y(t) = 2t2 − 3t+ 1. Thus one possible choice for α is α(t) =

(
− 3t2+t+2 , 2t2−3t+1

)
.

4: (a) Find the mass of the triangle in R2 with vertices at (1, 1), (3, 2) and (0, 2) with planar density given by
ρ(x, y) = 2x

y2 .

Solution: Note that the given triangle is the set T =
{

(x, y)∈R2
∣∣ 0≤y≤2 , 2−y≤x ≤ 2y− 1

}
, so the mass is

M =

∫
T

ρ =

∫ 2

y=1

∫ 2y−1

x=2−y

2x
y2 dx dy =

∫ 2

y=1

[
x2

y2

]2y−1
x=2−y

dy =

∫ 2

y=1

(2y−1)2−(2−y)2
y2 dy

=

∫ 2

y=1

3y2−3
y2 dy =

∫ 2

y=1

3− 3
y2 dy =

[
3y − 3

y

]2
y=1

=
(
6 + 3

2

)
−
(
3 + 3

)
= 3

2 .

(b) Find the volume of the region in R3 which lies above 2z = x2 + y2 and below z = x.

Solution: First let us find the intersection of the paraboloid 2z = x2 + y2 with the plane z = x. Put z = x
into the equation of the paraboloid to get 2x = x2 + y2, that is (x− 1)2 + y2 = 1, which is the circle of radius
1 centred at (1, 0). It follows that the given region is the given region is the set

D =
{

(x, y, z)∈R3
∣∣ (x− 1)2+y2 ≤ 1 , x

2+y2

2 ≤ z ≤ x
}

=
{

(x, y, z)∈R3
∣∣ 0 ≤ x ≤ 2 , −

√
2x− x2 ≤ y ≤

√
2x− x2 , x

2+y2

2 ≤ z ≤ x
}
.

Using symmetry, and then using the substitution sin θ = x − 1 so that cos θ =
√

2x− x2 and cos θ dθ = dx,
the volume is

V = 2

∫ 2

x=0

∫ √2x−x2

y=0

x− x2+y2

2 dy dx =

∫ 2

x=0

∫ √2x−x2

y=0

2x−x2−y2 dx

=

∫ 2

x=0

[
(2x− x2)y − 1

3y
3
]√2x−x2

y=0
dx =

∫ 2

x=0

2
3 (2x− x2)3/2 dx

=

∫ π/2

θ=−π/2

2
3 cos4 θ dθ = 1

6

∫ π/2

θ=−π/2
(1 + cos 2θ)2 dθ

= 1
6

∫ π/2

θ=−π/2
1 + 2 cos θ + cos2 θ dθ = 1

6

(
π + 0 + π

2

)
= π

4 .

We remark that an alternate solution is obtained using the cylindrical coordinates map g noting that g(C) = D
for the set C =

{
(r, θ, z)∈R3

∣∣ − π
2 ≤ θ ≤

π
2 , 0 ≤ r ≤ 2 cos θ , 1

2r
2 ≤ z ≤ r cos θ

}
.
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