- 1: (a) Let $x_n = \frac{2n+1}{n-1}$ for $n \ge 2$. Use the definition of the limit to show that $\lim_{n \to \infty} x_n = 2$.
 - (b) Let $x_n = \frac{n}{\sqrt{n+3}}$ for $n \ge 0$. Use the definition of the limit to show that $\lim_{n \to \infty} x_n = \infty$.
 - (c) Show, from the definition of the limit, that if $x_n \ge 0$ for all $n \ge 1$ and $\lim_{n \to \infty} x_n = a$ then $\lim_{n \to \infty} \sqrt{x_n} = \sqrt{a}$.
- (a) Prove that there exist (at least) 3 distinct values of x such that 8x³ = 6x + 1.
 (b) Let f: [0,2] → ℝ be continuous with f(0) = f(2). Prove that f(x) = f(x + 1) for some x ∈ [0,1].
 (c) Let f: ℝ → ℝ be continuous. Suppose that |f(x) f(y)| ≥ |x y| for all x, y ∈ ℝ. Prove that f is bijective (that is, f is injective and surjective).
- **3:** (The Natural Base e) Let $s_n = \sum_{k=0}^n \frac{1}{k!}$ for $n \ge 0$ and let $a_n = \left(1 + \frac{1}{n}\right)^n$ for $n \ge 1$.
 - (a) Show that $(s_n)_{n\geq 0}$ is increasing and bounded above by 3, and let $e_1 = \lim_{n\to\infty} s_n$.
 - (b) Use the Binomial Theorem to show that

$$a_n = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \cdots \left(1 - \frac{n-1}{n} \right).$$

- (c) Show that $(a_n)_{n\geq 1}$ is increasing with $a_n \leq s_n$ for all $n\geq 1$, and let $e_2 = \lim_{n\to\infty} a_n$.
- (d) Show that $e_2 \ge s_n$ for all $n \ge 0$ and hence $e_2 = e_1$.
- 4: (a) Show that every sequence $(x_n)_{n\geq 1}$ in \mathbb{R} has a monotonic subsequence (that is either $(x_n)_{n\geq 1}$ has an increasing subsequence or $(x_n)_{n\geq 1}$ has a decreasing subsequence). Hint: consider indices n such that $a_n > a_k$ for all k > n.

(b) Let $x_n = \frac{n}{\sqrt{2}} - \lfloor \frac{n}{\sqrt{2}} \rfloor$ for $n \ge 1$. Show that $(x_n)_{n\ge 1}$ has a decreasing subsequence $(x_{n_k})_{k\ge 1}$ with $\lim_{k\to\infty} x_{n_k} = 0$. Hint: consider $(1+\sqrt{2})^k$ and $(1-\sqrt{2})^k$.