
PMATH 333 Real Analysis, Solutions to Assignment 2

1: (a) Let xn = 2n+1
n−1 for n ≥ 2. Use the definition of the limit to show that lim

n→∞
xn = 2.

Solution: For n ≥ 2 and ε > 0, we have

|xn − 2| =
∣∣ 2n+1
n−1 − 2

∣∣ =
∣∣ 2n+1−2n+2

n−1
∣∣ = 3

n−1

and
3

n−1 ≤ ε ↔
n−1
3 ≥ 1

ε ↔ n− 1 ≥ 3ε ↔ n ≥ 3ε+ 1.

Let ε > 0. Choose m ∈ Z with m ≥ 3ε+ 1. For n ∈ Z≥2 with n ≥ m we have n ≥ m ≥ 3ε+ 1 and hence, as
shown above, |xn − 2| = 3

n−1 ≤ ε.
(b) Let xn = n√

n+3
for n ≥ 0. Use the definition of the limit to show that lim

n→∞
xn =∞.

Solution: First note that for n ≥ 1 we have n+ 3 ≤ n+ 3n = 4n and so

xn = n√
n+3
≥ n√

4n
=
√
n
2 .

Let r ∈ R. Choose m ∈ Z with m ≥ 4r2. Then for n ≥ m we have n ≥ 4r2 and so

xn ≥
√
n
2 ≥

√
4r2

2 = 2|r|
2 = |r| ≥ r.

(c) Show that if xn ≥ 0 for all n ≥ p and lim
n→∞

xn = a ≥ 0 then lim
n→∞

√
xn =

√
a.

Solution: Consider the case that a = 0. Suppose that xn ≥ 0 for all n and that xn → 0. Let ε > 0. Since
xn → 0, we can choose m ∈ Z so that n ≥ m =⇒ |xn − 0| ≤ ε2. Then for n ≥ m we have 0 ≤ xn ≤ ε2 and
so |√xn − 0| = √xn ≤ ε. Thus

√
xn → 0.

Consider the case that a > 0. Suppose that xn ≥ 0 for all k and that xn → a > 0. Note that, for all n,
we have ∣∣√xn −√a ∣∣ =

∣∣∣ xn − a√
xn +

√
a

∣∣∣ =
|xn − a|√
xn +

√
a
.

Since xn → a we can choose m1 ∈ Z so that n ≥ m1 =⇒ |xn−a| ≤ 3a
4 . Then for n ≥ m1 we have a

4 ≤ xn ≤
7a
4

so that
√
a
2 ≤

√
xn. Again since xn → a, we can choose m2 ∈ Z so that n ≥ m2 =⇒ |xn − a| ≤ 3

√
a

2 ε. Let

m = max{m1,m2}. Then for n ≥ m we have
√
xn ≥

√
a
2 and we have |xn − a| ≤ 3

√
a

2 ε and so

∣∣√xn −√a ∣∣ =
|xn − a|√
xn +

√
a
≤

3
√
a

2 ε
√
a
2 +

√
a

= ε.

Thus
√
xn →

√
a.



2: (a) Show that there exist (at least) 3 distinct values of x such that 8x3 = 6x+ 1.

Solution: Let f(x) = 8x3 − 6x − 1. Notice that f(x) is continuous and we have f(x) = 0 ↔ 8x3 = 6x + 1.
By the Intermediate Value Theorem, since f(−1) = −3 < 0 and f

(
− 1

2

)
= 1 > 0, there is a number

x1 ∈
(
− 1,− 1

2

)
such that f(x1) = 0. Similarly, since f

(
− 1

2

)
= 1 > 0 and f(0) = −1 < 0, there is a

number x2 ∈
(
− 1

2 , 0
)

with f(x2) = 0, and since f(0) = −1 < 0 and f(1) = 1 > 0, there is a number

x3 ∈ (0, 1) with f(x3) = 0.
(
In fact, the exact values of x1, x2 and x3 are x1 = − cos(40◦), x2 = − sin(10◦)

and x3 = cos(20◦)
)
.

(b) Let f : [0, 2]→ R be continuous with f(0) = f(2). Show that f(x) = f(x+ 1) for some x ∈ [0, 1].

Solution: Let g(x) = f(x+ 1)− f(x). Note that g is continuous and

g(1) = f(2)− f(1) = f(0)− f(1) = −
(
f(1)− f(0)

)
= −g(0).

By the Intermediate Value Theorem, there is a number x ∈ [0, 1] with g(x) = 0
(
indeed if g(0) 6= 0 then

one of the numbers g(0) and g(1) is positive and the other is negative so there is a number x ∈ (0, 1) with
g(x) = 0

)
. Then we have 0 = g(x) = f(x+ 1)− f(x) and so f(x) = f(x+ 1).

(c) Let f : R → R be continuous. Suppose that |f(x) − f(y)| ≥ |x − y| for all x, y ∈ R. Show that f is
bijective (that is, f is injective and surjective).

Solution: First we note that f is injective since when x1 6= x2 we have |f(x1) − f(x2)| ≥ |x1 − x2| > 0 so
that f(x1) 6= f(x2). It remains to show that f is surjective.

We claim that for all r > 0, either
(
f(r) ≥ f(0) + r and f(−r) ≤ f(0) − r

)
or
(
f(r) ≤ f(0) − r and

f(−r) ≥ f(0) + r
)
. Let r > 0. Since |f(r) − f(0)| ≥ |r − 0| = r, it follows that either f(r) ≥ f(0) + r or

f(r) ≤ f(0) − r. Likewise, since |f(−r) − f(0)| ≥ | − r − 0| = r, it follows that either f(−r) ≥ f(0) + r or
f(−r) ≤ f(0)−r. Note that in the case that f(r) ≥ f(0)+r, we must have f(−r) ≤ f(0)−r because if we had
f(−r) ≥ f(0)+r then, by the IVT (applied twice) we could choose x1 ∈ (−r, 0) with f(x1) = f(0)+ r

2 and we
could choose x2 ∈ (0, r) with f(x2) = f(0) + r

2 which would give x1 6= x2 with f(x1) = f(x2) contradicting
the fact that f is injective. Similarly, in the case that f(r) ≤ f(0) − r we must have f(−r) ≥ f(0) + r
since if we had f(−r) ≤ f(0) − r we could use the IVT to choose x1 ∈ (−r, 0) and x2 ∈ (0, r) such that
f(x1) = f(x2) = f(0)− r

2 . This proves the claim.
Finally, we use the above claim to prove surjectivity. Let y ∈ R. Choose r > 0 such that f(0) + r > y

and f(0) − r < y. By the claim, either we have f(−r) ≤ f(0) − r < y < f(0) + r ≤ f(r) or we have
f(r) ≤ f(0)− r < y < f(0) + r ≤ f(−r), and in either case, by the IVT, we can choose x ∈ (−r, r) such that
f(x) = y. Thus f is surjective.



3: (The Natural Base e) Let sn =
n∑
k=0

1
k! for n ≥ 0 and let an =

(
1 + 1

n

)n
for all n ≥ 1.

(a) Show that (sn)n≥0 is increasing and bounded above by 3, and let e1 = lim
n→∞

sn.

Solution: Since sn−1 − sn = 1
n! > 0, it follows that 〈sn〉 is strictly increasing. For n ≥ 3 we have

sn =
n∑
k=0

1
k! = 1 + 1 + 1

2! + 1
3! + · · ·+ 1

n!

= 2 + 1
2

(
1 + 1

3 + 1
3·4 + 1

3·4·5 + · · ·+ 1
3·4·····n

)
≤ 2 + 1

2

(
1 + 1

3 + 1
32 + 1

33 + · · ·+ 1
3n−2

)
= 2 + 1

2 ·
1− 1

3n−1

1− 1
3

= 2 + 3
4

(
1− 1

3n−1

)
≤ 2 + 3

4 ≤ 3.

Since (sn)n≥0 is increasing with sn ≤ 3 for all n, it converges by the Monotone Convergence Theorem, and
by the Comparison Theorem we have e1 = lim

n→∞
sn ≤ 3.

(b) Use the Binomial Theorem to show that

an = 1 + 1 + 1
2!

(
1− 1

n

)
+ 1

3!

(
1− 1

n

) (
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

) (
1− 2

n

)
· · ·
(
1− n−1

n

)
.

Solution: By the Binomial Theorem, we have

an =
(
1 + 1

n

)n
= 1 +

(
n
1

)
· 1n +

(
n
2

)
· 1
n2 +

(
n
3

)
· 1
n3 + · · ·+

(
n
n

)
· 1
nn

= 1 + 1 + n(n−1)
2!n2 + n(n−1)(n−2)

3!n3 + · · ·+ n(n−1)(n−2)···(1)
n!nn

= 1 + 1 + 1
2!

(
1− 1

n

)
+ 1

3!

(
1− 1

n

) (
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

) (
1− 2

n

)
· · ·
(
1− n−1

n

)
.

and we remark that the final term is equal to 1
nn .

(c) Show that (an)n≥1 is increasing with an ≤ sn for all n ≥ 1, and let e2 = lim
n→∞

an.

Solution: Using the formula in Part (b) we have

an+1 = 1 + 1 + 1
2!

(
1− 1

n+1

)
+ 1

3!

(
1− 1

n+1

)(
1− 2

n+1

)
+ · · ·+ 1

n!

(
1− 1

n+1

)
· · ·
(

1− n−1
n+1

)
+ 1

(n+1)n+1

≥ 1 + 1 + 1
2!

(
1− 1

n

)
+ 1

3!

(
1− 1

n

) (
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

) (
1− 2

n

)
· · ·
(
1− n−1

n

)
+ 1

(n+1)n+1

= an +
1

(n+ 1)n+1
> an

for all n and so (an)n≥1 is strictly increasing. Using the same formula again we have

an = 1 + 1 + 1
2!

(
1− 1

n

)
+ 1

3!

(
1− 1

n

) (
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

) (
1− 2

n

)
· · ·
(
1− n−1

n

)
≤ 1 + 1 + 1

2! + 1
3! + · · ·+ 1

n! = sn.

Since (an)n≥1 is increasing with an ≤ sn ≤ 3 for all n, it converges by the Monotone Convergence Theorem,
and by the Comparison Theorem we have e2 = lim

n→∞
an ≤ lim

n→∞
sn = e1.

(d) Show that e2 ≥ sn for all n ≥ 0 and hence e2 = e1.

Solution: For k ≥ n with n fixed, we have (writing the final term in ak as 1
kk

)

ak = 1 + 1 + 1
2!

(
1− 1

k

)
+ 1

3!

(
1− 1

k

) (
1− 2

k

)
+ · · ·+ 1

n!

(
1− 1

k

) (
1− 2

k

)
· · ·
(
1− n−1

k

)
+ · · ·+ 1

kk

≥ 1 + 1 + 1
2!

(
1− 1

k

)
+ 1

3!

(
1− 1

k

) (
1− 2

k

)
+ · · ·+ 1

n!

(
1− 1

k

) (
1− 2

k

)
· · ·
(
1− n−1

k

)
−→ 1 + 1 + 1

2! + 1
3! + · · ·+ 1

n! = sn as k →∞.

It follows from the Comparison Theorem that e2 = lim
k→∞

ak ≥ sn for all n, and hence, by another application

of the Comparison Theorem, we have e2 ≥ lim
n→∞

sn = e1.



4: (a) Show that every sequence (xn)n≥1 in R has a monotonic subsequence (that is either (xn)n≥1 has an
increasing subsequence or (xn)n≥1 has a decreasing subsequence). Hint: consider indices n such that an > ak
for all k > n.

Solution: For an index n ≥ 1, let us say that n is a peak index of (xn)n≥1 when it has the property that
xn > xk for all k > n. Either (xn) has infinitely many peak indices, or it does not. If (xn) has infinitely
many peak indices, then we can choose peak indices n1 < n2 < n3 < · · · and then, by the definition of a
peak index, xn1

> xn2
> xn3

> · · ·. Suppose that (xn) has only finitely many peak indices. Choose an index
n1 which is greater than every peak index. Since n1 is not a peak index, we can choose n2 > n1 so that
xn2
≥ xn1

. Since n2 is greater than n1 which is greater than every peak index, n2 is not a peak index and
so we can choose n3 > n2 so that xn3 ≥ xn2 . We continue this process to obtain indices n1 < n2 < n3 < · · ·
with xn1 ≤ xn2 ≤ xn3 ≤ · · ·.

Alternatively, one can ignore the hint and prove 4(a) using the Bolzano-Weierstrass Theorem. To do
this, consider several cases. When (xn) is not bounded above, construct an increasing subsequence of (xk).
When (xn) is not bounded below, construct a decreasing subsequence. When (xn) is bounded, invoke the
Bolzano-Weierstrass Theorem to choose a convergent subsequence (xnk

) and say uk = xnk
→ b. Then

consider the following three cases. Either there exist infinitely many indices k with uk = b
(
in this case,

construct a constant subsequence of (uk)
)

or there exist infinitely many indices k with uk > b
(
in this case,

construct a decreasing subsequence of (uk)
)

or there exist infinitely many indices k with uk < b
(
in this case,

construct an increasing subsequence of (uk)
)
.

We also remark that the fact that every sequence in R has a monotonic subsequence, together with
the Monotone Convergence Theorem, immediately imply the Bolzano-Weierstrass Theorem as a corollary.
Thus the first solution to this problem supplies you with an alternate (and perhaps easier) proof of the
Bolzano-Weierstrass Theorem than the proof we gave (which used the Nested Interval Property of R).

(b) Let xn=
n√
2
−
⌊ n√

2

⌋
for n≥1. Show that (xn)n≥1 has a decreasing subsequence (xnk

)k≥1 with lim
k→∞

xnk
=0.

Hint: consider (1 +
√

2)k and (1−
√

2)k.

Solution: By the Binomial Theorem, we have

(1 +
√

2)k = 1 +
(
k
1

)
(
√

2) +
(
k
2

)
(
√

2)2 +
(
k
3

)
(
√

2)3 +
(
k
4

)
(
√

2)4 + · · · and

(1−
√

2)k = 1−
(
k
1

)
(
√

2) +
(
k
2

)
(
√

2)2 −
(
k
3

)
(
√

2)3 +
(
k
4

)
(
√

2)4 − · · ·

hence

(1 +
√

2)k + (1−
√

2)k = 2
(

1 +
(
k
2

)
· 2 +

(
k
4

)
· 22 +

(
k
6

)
· 23 + · · ·

)
and

(1 +
√

2)k − (1−
√

2)k = 2
√

2
((

k
1

)
+
(
k
3

)
(2) +

(
k
5

)
(2)2 +

(
k
7

)
23 + · · ·

)
,

and so we see that 1
2

(
(1 +

√
2)k + (1 −

√
2)k
)
∈ Z and 1√

2

(
(1 +

√
2)k − (1 −

√
2)k
)
∈ Z for all n ∈ N. For

each k ∈ N, let
nk = 1√

2

(
(1 +

√
2)k − (1−

√
2)k
)

and note that nk ∈ Z. Consider the case that k ∈ N is odd. Since −1 < (1−
√

2)k < 0 and

nk√
2

+ (1−
√

2)k = 1
2

(
(1 +

√
2)k − (1−

√
2)k
)

+ (1−
√

2)k = 1
2

(
(1 +

√
2)k + (1−

√
2)k
)
∈ Z,

it follows that
⌊
nk√
2

⌋
= 1

2

(
(1 +

√
2)n + (1−

√
2)n
)
. Thus, when k is odd, we have

xnk
= nk√

2
−
⌊
nk√
2

⌋
= 1

2

(
(1 +

√
2)k − (1−

√
2)k
)
− 1

2

(
(1 +

√
2)k + (1−

√
2)k
)

= −(1−
√

2)k = (
√

2− 1)k.

Thus the subsequence xn1 , xn3 , xn5 of (xn) is equal to the sequence (
√

2− 1), (
√

2− 1)3, (
√

2− 1)5, · · · which
is decreasing with limit 0.

We remark that this is not the only such subsequence. For example, we could have chosen to let
nk = (1 +

√
2)k + (1−

√
2)k in which case, when k is even we would obtain nk√

2
−b nk√

2
c =
√

2(
√

2− 1)k giving

the subsequence xn2
, xn4

, xn6
, · · · which would be equal to

√
2(
√

2− 1)2,
√

2(
√

2− 1)4,
√

2(
√

2− 1)6, · · ·.



Alternatively, one can ignore the hint and prove the follow more general result. Define f : R→ [0, 1) by
f(x) = x− bxc (f(x) is called the fractional part of x). Let α ∈ R. Define xk = f(αk) for k ≥ 0. If α ∈ Q
then the sequence 〈xk〉 is periodic. If α /∈ Q then

∀a ∈ [0, 1] ∀ε > 0 ∀m ∈ Z+ ∃k ≥ m |xk − a| ≤ ε .

We sketch a proof below. We leave it as an exercise to show that 4(b) follows as a corollary.

From the definition of the floor function and the fractional part function f(x), verify that

f(x+ y) =

{
f(x) + f(y) if f(x) + f(y) < 1

f(x) + f(y)− 1 if f(x) + f(y) ≥ 1

and

f(x− y) =

{
f(x)− f(y) if f(x) ≥ f(y)

f(x)− f(y) + 1 if f(x) < f(y).

Since xk = f(αk), these formulas imply that

xk1+k2 =

{
xk1 + xk2 if xk1 + xk2 < 1

xk1 + xk2 − 1 if xk1 + xk2 ≥ 1.

and

xk1−k2 =

{
xk2 − xk1 if xk2 ≥ xk1
xk2 − xk1 + 1 if xk2 < xk1 .

We wish to prove that when α /∈ Q,

∀a ∈ [0, 1] ∀ε > 0 ∀m ∈ Z+ ∃k ≥ m |xk − a| ≤ ε.

Let a ∈ [0, 1] and let ε > 0. Choose n ∈ Z+ so that 1
n ≥ ε, then divide the interval [0, 1] into the n subintervals

Ij =
[
j−1
n , jn

]
, and note that each of these intervals is of size j

n −
j−1
n = 1

n . Since a ∈ [0, 1] =
n⋃
j=1

Ij , we can

choose an index j ∈ {1, 2, · · · , n} such that a ∈ Ij . Since the interval Ij is of size 1
n ≤ ε, it suffices to show

that for all m ∈ Z+ we can find k ≥ m so that xk ∈ Ij (because when xk and a both lie in the same interval
Ij we must have |xk − a| ≤ 1

n ≤ ε). It remains for us to show that

∀m ∈ Z+ ∃k ≥ m xk ∈ Ij =
[
j−1
n , jn

]
.

Let m ∈ Z+. Choose an index j0 ∈ {1, 2, · · · , n} so that for infinitely many indices k we have xk ∈ Ij0 .
Choose two indices k1, k2 ∈ Z+ with k2 ≥ k1 + m such that xk1 , xk2 ∈ Ij0 , and let l = k2 − k1 ≥ m. From
our formula for xk1−k2 , we have

xl = xk1−k2 =

{
xk2 − xk1 ∈

[
0, 1

n

]
if xk2 ≥ xk1

xk2 − xk1 + 1 ∈
[
1− 1

n , 1
]

if xk2 < xk1 .

We have found an index l ≥ m such that xl ∈
[
0, 1

n

]
∪
[
1− 1

n , 1
]
. We shall show that there is a multiple k = tl,

where t ∈ Z+, such that xk ∈ Ij where Ij was the interval that we chose earlier with a ∈ Ij . Since α /∈ Q, we
have kα /∈ Q for all k ∈ Z+ and hence xk = f(αk) = αk− bαkc /∈ Q. It follows that xl ∈

(
0, 1

n

)
∪
(
1− 1

n , 1
)
.

Suppose first that xl ∈
(
0, 1

n

)
. From our formula for xk1+k2 we see that xtl = t xl as long as t xl < 1. Since

0 < xk <
1
n , we can choose t ∈ Z+ so that t xl ∈ Ij (to be explicit, verify that if we choose t =

⌊
j
n xl

⌋
then

we have t xl ∈ Ij ). Then we let k = tl and we have found an index k ≥ m such that xk ∈ Ij . The case that
xl ∈

(
1− 1

n , 1
)

is quite similar. If we write xl = 1− δ then we have 0 < δ < 1
n . From the formula for xk1+k2

we see that xtl = 1− tδ as long as tδ ≤ 1. Since 0 < δ < 1
n , we can choose t ∈ Z+ so that 1− tδ ∈ Ij . Then

we let k = tl so that xk ∈ Ij . This completes the proof that for all m ∈ Z+ there exists k ≥ m such that
xk ∈ Ij , and the proof of our original claim that

∀a ∈ [0, 1] ∀ε > 0 ∀m ∈ Z+ ∃k ≥ m |xk − a| ≤ ε .


