1: (a) Let $x_n = \frac{2n+1}{n-1}$ for $n \ge 2$. Use the definition of the limit to show that $\lim_{n \to \infty} x_n = 2$.

Solution: For $n \ge 2$ and $\epsilon > 0$, we have

$$|x_n - 2| = \left|\frac{2n+1}{n-1} - 2\right| = \left|\frac{2n+1-2n+2}{n-1}\right| = \frac{3}{n-1}$$

and

$$\frac{3}{n-1} \le \epsilon \leftrightarrow \frac{n-1}{3} \ge \frac{1}{\epsilon} \leftrightarrow n-1 \ge 3\epsilon \leftrightarrow n \ge 3\epsilon+1.$$

Let $\epsilon > 0$. Choose $m \in \mathbb{Z}$ with $m \ge 3\epsilon + 1$. For $n \in \mathbb{Z}_{\ge 2}$ with $n \ge m$ we have $n \ge m \ge 3\epsilon + 1$ and hence, as shown above, $|x_n - 2| = \frac{3}{n-1} \le \epsilon$.

(b) Let $x_n = \frac{n}{\sqrt{n+3}}$ for $n \ge 0$. Use the definition of the limit to show that $\lim_{n \to \infty} x_n = \infty$.

Solution: First note that for $n \ge 1$ we have $n + 3 \le n + 3n = 4n$ and so

$$x_n = \frac{n}{\sqrt{n+3}} \ge \frac{n}{\sqrt{4n}} = \frac{\sqrt{n}}{2}.$$

Let $r \in \mathbb{R}$. Choose $m \in \mathbb{Z}$ with $m \ge 4r^2$. Then for $n \ge m$ we have $n \ge 4r^2$ and so

$$x_n \ge \frac{\sqrt{n}}{2} \ge \frac{\sqrt{4r^2}}{2} = \frac{2|r|}{2} = |r| \ge r$$

(c) Show that if $x_n \ge 0$ for all $n \ge p$ and $\lim_{n \to \infty} x_n = a \ge 0$ then $\lim_{n \to \infty} \sqrt{x_n} = \sqrt{a}$.

Solution: Consider the case that a = 0. Suppose that $x_n \ge 0$ for all n and that $x_n \to 0$. Let $\epsilon > 0$. Since $x_n \to 0$, we can choose $m \in \mathbb{Z}$ so that $n \ge m \Longrightarrow |x_n - 0| \le \epsilon^2$. Then for $n \ge m$ we have $0 \le x_n \le \epsilon^2$ and so $|\sqrt{x_n} - 0| = \sqrt{x_n} \le \epsilon$. Thus $\sqrt{x_n} \to 0$.

Consider the case that a > 0. Suppose that $x_n \ge 0$ for all k and that $x_n \to a > 0$. Note that, for all n, we have

$$\left|\sqrt{x_n} - \sqrt{a}\right| = \left|\frac{x_n - a}{\sqrt{x_n} + \sqrt{a}}\right| = \frac{|x_n - a|}{\sqrt{x_n} + \sqrt{a}}.$$

Since $x_n \to a$ we can choose $m_1 \in \mathbb{Z}$ so that $n \ge m_1 \Longrightarrow |x_n - a| \le \frac{3a}{4}$. Then for $n \ge m_1$ we have $\frac{a}{4} \le x_n \le \frac{7a}{4}$ so that $\frac{\sqrt{a}}{2} \le \sqrt{x_n}$. Again since $x_n \to a$, we can choose $m_2 \in \mathbb{Z}$ so that $n \ge m_2 \Longrightarrow |x_n - a| \le \frac{3\sqrt{a}}{2}\epsilon$. Let $m = \max\{m_1, m_2\}$. Then for $n \ge m$ we have $\sqrt{x_n} \ge \frac{\sqrt{a}}{2}$ and we have $|x_n - a| \le \frac{3\sqrt{a}}{2}\epsilon$ and so

$$\left|\sqrt{x_n} - \sqrt{a}\right| = \frac{|x_n - a|}{\sqrt{x_n} + \sqrt{a}} \le \frac{\frac{3\sqrt{a}}{2}\epsilon}{\frac{\sqrt{a}}{2} + \sqrt{a}} = \epsilon.$$

Thus $\sqrt{x_n} \to \sqrt{a}$.

2: (a) Show that there exist (at least) 3 distinct values of x such that $8x^3 = 6x + 1$.

Solution: Let $f(x) = 8x^3 - 6x - 1$. Notice that f(x) is continuous and we have $f(x) = 0 \leftrightarrow 8x^3 = 6x + 1$. By the Intermediate Value Theorem, since f(-1) = -3 < 0 and $f(-\frac{1}{2}) = 1 > 0$, there is a number $x_1 \in (-1, -\frac{1}{2})$ such that $f(x_1) = 0$. Similarly, since $f(-\frac{1}{2}) = 1 > 0$ and f(0) = -1 < 0, there is a number $x_2 \in (-\frac{1}{2}, 0)$ with $f(x_2) = 0$, and since f(0) = -1 < 0 and f(1) = 1 > 0, there is a number $x_3 \in (0, 1)$ with $f(x_3) = 0$. (In fact, the exact values of x_1, x_2 and x_3 are $x_1 = -\cos(40^\circ), x_2 = -\sin(10^\circ)$ and $x_3 = \cos(20^\circ)$).

(b) Let $f: [0,2] \to \mathbb{R}$ be continuous with f(0) = f(2). Show that f(x) = f(x+1) for some $x \in [0,1]$.

Solution: Let g(x) = f(x+1) - f(x). Note that g is continuous and

$$g(1) = f(2) - f(1) = f(0) - f(1) = -(f(1) - f(0)) = -g(0)$$

By the Intermediate Value Theorem, there is a number $x \in [0,1]$ with g(x) = 0 (indeed if $g(0) \neq 0$ then one of the numbers g(0) and g(1) is positive and the other is negative so there is a number $x \in (0,1)$ with g(x) = 0). Then we have 0 = g(x) = f(x+1) - f(x) and so f(x) = f(x+1).

(c) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Suppose that $|f(x) - f(y)| \ge |x - y|$ for all $x, y \in \mathbb{R}$. Show that f is bijective (that is, f is injective and surjective).

Solution: First we note that f is injective since when $x_1 \neq x_2$ we have $|f(x_1) - f(x_2)| \geq |x_1 - x_2| > 0$ so that $f(x_1) \neq f(x_2)$. It remains to show that f is surjective.

We claim that for all r > 0, either $(f(r) \ge f(0) + r$ and $f(-r) \le f(0) - r)$ or $(f(r) \le f(0) - r$ and $f(-r) \ge f(0) + r)$. Let r > 0. Since $|f(r) - f(0)| \ge |r - 0| = r$, it follows that either $f(r) \ge f(0) + r$ or $f(r) \le f(0) - r$. Likewise, since $|f(-r) - f(0)| \ge |-r - 0| = r$, it follows that either $f(-r) \ge f(0) + r$ or $f(-r) \le f(0) - r$. Note that in the case that $f(r) \ge f(0) + r$, we must have $f(-r) \le f(0) - r$ because if we had $f(-r) \ge f(0) + r$ then, by the IVT (applied twice) we could choose $x_1 \in (-r, 0)$ with $f(x_1) = f(0) + \frac{r}{2}$ and we could choose $x_2 \in (0, r)$ with $f(x_2) = f(0) + \frac{r}{2}$ which would give $x_1 \ne x_2$ with $f(x_1) = f(x_2)$ contradicting the fact that f is injective. Similarly, in the case that $f(r) \le f(0) - r$ we must have $f(-r) \ge f(0) + r$ since if we had $f(-r) \le f(0) - r$ we could use the IVT to choose $x_1 \in (-r, 0)$ and $x_2 \in (0, r)$ such that $f(x_1) = f(x_2) = f(0) - \frac{r}{2}$. This proves the claim.

Finally, we use the above claim to prove surjectivity. Let $y \in \mathbb{R}$. Choose r > 0 such that f(0) + r > yand f(0) - r < y. By the claim, either we have $f(-r) \leq f(0) - r < y < f(0) + r \leq f(r)$ or we have $f(r) \leq f(0) - r < y < f(0) + r \leq f(-r)$, and in either case, by the IVT, we can choose $x \in (-r, r)$ such that f(x) = y. Thus f is surjective. **3:** (The Natural Base e) Let $s_n = \sum_{k=0}^n \frac{1}{k!}$ for $n \ge 0$ and let $a_n = \left(1 + \frac{1}{n}\right)^n$ for all $n \ge 1$.

(a) Show that $(s_n)_{n\geq 0}$ is increasing and bounded above by 3, and let $e_1 = \lim_{n \to \infty} s_n$.

Solution: Since $s_{n-1} - s_n = \frac{1}{n!} > 0$, it follows that $\langle s_n \rangle$ is strictly increasing. For $n \ge 3$ we have

$$s_n = \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

= 2 + $\frac{1}{2} \left(1 + \frac{1}{3} + \frac{1}{3\cdot 4} + \frac{1}{3\cdot 4 \cdot 5} + \dots + \frac{1}{3\cdot 4 \cdot \dots n} \right)$
 $\leq 2 + \frac{1}{2} \left(1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^{n-2}} \right)$
= 2 + $\frac{1}{2} \cdot \frac{1 - \frac{1}{3^{n-1}}}{1 - \frac{1}{3}} = 2 + \frac{3}{4} \left(1 - \frac{1}{3^{n-1}} \right) \leq 2 + \frac{3}{4} \leq 3$

Since $(s_n)_{n\geq 0}$ is increasing with $s_n \leq 3$ for all n, it converges by the Monotone Convergence Theorem, and by the Comparison Theorem we have $e_1 = \lim_{n \to \infty} s_n \leq 3$.

(b) Use the Binomial Theorem to show that

$$a_n = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots \left(1 - \frac{n-1}{n} \right).$$

Solution: By the Binomial Theorem, we have

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n} = 1 + {\binom{n}{1}} \cdot \frac{1}{n} + {\binom{n}{2}} \cdot \frac{1}{n^{2}} + {\binom{n}{3}} \cdot \frac{1}{n^{3}} + \dots + {\binom{n}{n}} \cdot \frac{1}{n^{n}}$$

= $1 + 1 + \frac{n(n-1)}{2! n^{2}} + \frac{n(n-1)(n-2)}{3! n^{3}} + \dots + \frac{n(n-1)(n-2)\cdots(1)}{n! n^{n}}$
= $1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{n-1}{n}\right).$

and we remark that the final term is equal to $\frac{1}{n^n}$.

(c) Show that $(a_n)_{n\geq 1}$ is increasing with $a_n \leq s_n$ for all $n\geq 1$, and let $e_2 = \lim_{n\to\infty} a_n$.

Solution: Using the formula in Part (b) we have

$$a_{n+1} = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \frac{1}{3!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n+1} \right) \dots \left(1 - \frac{n-1}{n+1} \right) + \frac{1}{(n+1)^{n+1}}$$

$$\geq 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots \left(1 - \frac{n-1}{n} \right) + \frac{1}{(n+1)^{n+1}}$$

$$= a_n + \frac{1}{(n+1)^{n+1}} > a_n$$

for all n and so $(a_n)_{n\geq 1}$ is strictly increasing. Using the same formula again we have

$$a_n = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots \left(1 - \frac{n-1}{n} \right)$$
$$\leq 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} = s_n.$$

Since $(a_n)_{n\geq 1}$ is increasing with $a_n \leq s_n \leq 3$ for all n, it converges by the Monotone Convergence Theorem, and by the Comparison Theorem we have $e_2 = \lim_{n \to \infty} a_n \leq \lim_{n \to \infty} s_n = e_1$.

(d) Show that $e_2 \ge s_n$ for all $n \ge 0$ and hence $e_2 = e_1$.

Solution: For $k \ge n$ with n fixed, we have (writing the final term in a_k as $\frac{1}{k^k}$)

$$a_{k} = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{k} \right) + \frac{1}{3!} \left(1 - \frac{1}{k} \right) \left(1 - \frac{2}{k} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{k} \right) \left(1 - \frac{2}{k} \right) \dots \left(1 - \frac{n-1}{k} \right) + \dots + \frac{1}{k^{k}}$$

$$\geq 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{k} \right) + \frac{1}{3!} \left(1 - \frac{1}{k} \right) \left(1 - \frac{2}{k} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{k} \right) \left(1 - \frac{2}{k} \right) \dots \left(1 - \frac{n-1}{k} \right)$$

$$\longrightarrow 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} = s_{n} \quad \text{as } k \to \infty.$$

It follows from the Comparison Theorem that $e_2 = \lim_{k \to \infty} a_k \ge s_n$ for all n, and hence, by another application of the Comparison Theorem, we have $e_2 \ge \lim_{n \to \infty} s_n = e_1$.

4: (a) Show that every sequence $(x_n)_{n\geq 1}$ in \mathbb{R} has a monotonic subsequence (that is either $(x_n)_{n\geq 1}$ has an increasing subsequence or $(x_n)_{n\geq 1}$ has a decreasing subsequence). Hint: consider indices n such that $a_n > a_k$ for all k > n.

Solution: For an index $n \ge 1$, let us say that n is a **peak** index of $(x_n)_{n\ge 1}$ when it has the property that $x_n > x_k$ for all k > n. Either (x_n) has infinitely many peak indices, or it does not. If (x_n) has infinitely many peak indices, then we can choose peak indices $n_1 < n_2 < n_3 < \cdots$ and then, by the definition of a peak index, $x_{n_1} > x_{n_2} > x_{n_3} > \cdots$. Suppose that (x_n) has only finitely many peak indices. Choose an index n_1 which is greater than every peak index. Since n_1 is not a peak index, we can choose $n_2 > n_1$ so that $x_{n_2} \ge x_{n_1}$. Since n_2 is greater than n_1 which is greater than every peak index and so we can choose $n_3 > n_2$ so that $x_{n_3} \ge x_{n_2}$. We continue this process to obtain indices $n_1 < n_2 < n_3 < \cdots$ with $x_{n_1} \le x_{n_2} \le x_{n_3} \le \cdots$.

Alternatively, one can ignore the hint and prove 4(a) using the Bolzano-Weierstrass Theorem. To do this, consider several cases. When (x_n) is not bounded above, construct an increasing subsequence of (x_k) . When (x_n) is not bounded below, construct a decreasing subsequence. When (x_n) is bounded, invoke the Bolzano-Weierstrass Theorem to choose a convergent subsequence (x_{n_k}) and say $u_k = x_{n_k} \rightarrow b$. Then consider the following three cases. Either there exist infinitely many indices k with $u_k = b$ (in this case, construct a decreasing subsequence of (u_k)) or there exist infinitely many indices k with $u_k > b$ (in this case, construct a decreasing subsequence of (u_k)) or there exist infinitely many indices k with $u_k < b$ (in this case, construct an increasing subsequence of (u_k)).

We also remark that the fact that every sequence in \mathbb{R} has a monotonic subsequence, together with the Monotone Convergence Theorem, immediately imply the Bolzano-Weierstrass Theorem as a corollary. Thus the first solution to this problem supplies you with an alternate (and perhaps easier) proof of the Bolzano-Weierstrass Theorem than the proof we gave (which used the Nested Interval Property of \mathbb{R}).

(b) Let $x_n = \frac{n}{\sqrt{2}} - \lfloor \frac{n}{\sqrt{2}} \rfloor$ for $n \ge 1$. Show that $(x_n)_{n\ge 1}$ has a decreasing subsequence $(x_{n_k})_{k\ge 1}$ with $\lim_{k\to\infty} x_{n_k} = 0$. Hint: consider $(1 + \sqrt{2})^k$ and $(1 - \sqrt{2})^k$.

Solution: By the Binomial Theorem, we have

$$(1+\sqrt{2})^{k} = 1 + \binom{k}{1}(\sqrt{2}) + \binom{k}{2}(\sqrt{2})^{2} + \binom{k}{3}(\sqrt{2})^{3} + \binom{k}{4}(\sqrt{2})^{4} + \cdots \text{ and } (1-\sqrt{2})^{k} = 1 - \binom{k}{1}(\sqrt{2}) + \binom{k}{2}(\sqrt{2})^{2} - \binom{k}{3}(\sqrt{2})^{3} + \binom{k}{4}(\sqrt{2})^{4} - \cdots$$

hence

$$(1+\sqrt{2})^{k} + (1-\sqrt{2})^{k} = 2\left(1+\binom{k}{2}\cdot 2 + \binom{k}{4}\cdot 2^{2} + \binom{k}{6}\cdot 2^{3} + \cdots\right) \text{ and } (1+\sqrt{2})^{k} - (1-\sqrt{2})^{k} = 2\sqrt{2}\left(\binom{k}{1} + \binom{k}{3}(2) + \binom{k}{5}(2)^{2} + \binom{k}{7}2^{3} + \cdots\right),$$

and so we see that $\frac{1}{2}((1+\sqrt{2})^k + (1-\sqrt{2})^k) \in \mathbb{Z}$ and $\frac{1}{\sqrt{2}}((1+\sqrt{2})^k - (1-\sqrt{2})^k) \in \mathbb{Z}$ for all $n \in \mathbb{N}$. For each $k \in \mathbb{N}$, let

$$n_k = \frac{1}{\sqrt{2}} \left((1 + \sqrt{2})^k - (1 - \sqrt{2})^k \right)$$

and note that $n_k \in \mathbb{Z}$. Consider the case that $k \in \mathbb{N}$ is odd. Since $-1 < (1 - \sqrt{2})^k < 0$ and

$$\frac{n_k}{\sqrt{2}} + (1 - \sqrt{2})^k = \frac{1}{2} \left((1 + \sqrt{2})^k - (1 - \sqrt{2})^k \right) + (1 - \sqrt{2})^k = \frac{1}{2} \left((1 + \sqrt{2})^k + (1 - \sqrt{2})^k \right) \in \mathbb{Z},$$

it follows that $\lfloor \frac{n_k}{\sqrt{2}} \rfloor = \frac{1}{2} ((1 + \sqrt{2})^n + (1 - \sqrt{2})^n)$. Thus, when k is odd, we have

$$x_{n_k} = \frac{n_k}{\sqrt{2}} - \left\lfloor \frac{n_k}{\sqrt{2}} \right\rfloor = \frac{1}{2} \left((1 + \sqrt{2})^k - (1 - \sqrt{2})^k \right) - \frac{1}{2} \left((1 + \sqrt{2})^k + (1 - \sqrt{2})^k \right) = -(1 - \sqrt{2})^k = (\sqrt{2} - 1)^k.$$

Thus the subsequence $x_{n_1}, x_{n_3}, x_{n_5}$ of (x_n) is equal to the sequence $(\sqrt{2}-1), (\sqrt{2}-1)^3, (\sqrt{2}-1)^5, \cdots$ which is decreasing with limit 0.

We remark that this is not the only such subsequence. For example, we could have chosen to let $n_k = (1 + \sqrt{2})^k + (1 - \sqrt{2})^k$ in which case, when k is even we would obtain $\frac{n_k}{\sqrt{2}} - \lfloor \frac{n_k}{\sqrt{2}} \rfloor = \sqrt{2}(\sqrt{2} - 1)^k$ giving the subsequence $x_{n_2}, x_{n_4}, x_{n_6}, \cdots$ which would be equal to $\sqrt{2}(\sqrt{2} - 1)^2, \sqrt{2}(\sqrt{2} - 1)^4, \sqrt{2}(\sqrt{2} - 1)^6, \cdots$.

Alternatively, one can ignore the hint and prove the follow more general result. Define $f : \mathbb{R} \to [0, 1)$ by $f(x) = x - \lfloor x \rfloor$ (f(x) is called the **fractional part** of x). Let $\alpha \in \mathbb{R}$. Define $x_k = f(\alpha k)$ for $k \ge 0$. If $\alpha \in \mathbb{Q}$ then the sequence $\langle x_k \rangle$ is periodic. If $\alpha \notin \mathbb{Q}$ then

$$\forall a \in [0,1] \quad \forall \epsilon > 0 \quad \forall m \in \mathbb{Z}^+ \quad \exists k \ge m \quad |x_k - a| \le \epsilon.$$

We sketch a proof below. We leave it as an exercise to show that 4(b) follows as a corollary.

From the definition of the floor function and the fractional part function f(x), verify that

$$f(x+y) = \begin{cases} f(x) + f(y) & \text{if } f(x) + f(y) < 1\\ f(x) + f(y) - 1 & \text{if } f(x) + f(y) \ge 1 \end{cases}$$

and

$$f(x-y) = \begin{cases} f(x) - f(y) & \text{if } f(x) \ge f(y) \\ f(x) - f(y) + 1 & \text{if } f(x) < f(y). \end{cases}$$

Since $x_k = f(\alpha k)$, these formulas imply that

$$x_{k_1+k_2} = \begin{cases} x_{k_1} + x_{k_2} & \text{if } x_{k_1} + x_{k_2} < 1\\ x_{k_1} + x_{k_2} - 1 & \text{if } x_{k_1} + x_{k_2} \ge 1 \end{cases}$$

and

$$x_{k_1-k_2} = \begin{cases} x_{k_2} - x_{k_1} & \text{if } x_{k_2} \ge x_{k_1} \\ x_{k_2} - x_{k_1} + 1 & \text{if } x_{k_2} < x_{k_1}. \end{cases}$$

We wish to prove that when $\alpha \notin \mathbb{Q}$,

$$\forall a \in [0,1] \quad \forall \epsilon > 0 \quad \forall m \in \mathbb{Z}^+ \quad \exists k \ge m \quad |x_k - a| \le \epsilon.$$

Let $a \in [0, 1]$ and let $\epsilon > 0$. Choose $n \in \mathbb{Z}^+$ so that $\frac{1}{n} \ge \epsilon$, then divide the interval [0, 1] into the *n* subintervals $I_j = \left[\frac{j-1}{n}, \frac{j}{n}\right]$, and note that each of these intervals is of size $\frac{j}{n} - \frac{j-1}{n} = \frac{1}{n}$. Since $a \in [0, 1] = \bigcup_{j=1}^{n} I_j$, we can choose an index $j \in \{1, 2, \dots, n\}$ such that $a \in I_j$. Since the interval I_j is of size $\frac{1}{n} \le \epsilon$, it suffices to show that for all $m \in \mathbb{Z}^+$ we can find $k \ge m$ so that $x_k \in I_j$ (because when x_k and a both lie in the same interval I_j we must have $|x_k - a| \le \frac{1}{n} \le \epsilon$). It remains for us to show that

$$\forall m \in \mathbb{Z}^+ \; \exists k \ge m \; x_k \in I_j = \left[\frac{j-1}{n}, \frac{j}{n}\right]$$

Let $m \in \mathbb{Z}^+$. Choose an index $j_0 \in \{1, 2, \dots, n\}$ so that for infinitely many indices k we have $x_k \in I_{j_0}$. Choose two indices $k_1, k_2 \in \mathbb{Z}^+$ with $k_2 \ge k_1 + m$ such that $x_{k_1}, x_{k_2} \in I_{j_0}$, and let $l = k_2 - k_1 \ge m$. From our formula for $x_{k_1-k_2}$, we have

$$x_{l} = x_{k_{1}-k_{2}} = \begin{cases} x_{k_{2}} - x_{k_{1}} \in \left[0, \frac{1}{n}\right] & \text{if } x_{k_{2}} \ge x_{k_{1}} \\ x_{k_{2}} - x_{k_{1}} + 1 \in \left[1 - \frac{1}{n}, 1\right] & \text{if } x_{k_{2}} < x_{k_{1}} \end{cases}$$

We have found an index $l \ge m$ such that $x_l \in [0, \frac{1}{n}] \cup [1 - \frac{1}{n}, 1]$. We shall show that there is a multiple k = tl, where $t \in \mathbb{Z}^+$, such that $x_k \in I_j$ where I_j was the interval that we chose earlier with $a \in I_j$. Since $a \notin \mathbb{Q}$, we have $ka \notin \mathbb{Q}$ for all $k \in \mathbb{Z}^+$ and hence $x_k = f(\alpha k) = \alpha k - \lfloor \alpha k \rfloor \notin \mathbb{Q}$. It follows that $x_l \in (0, \frac{1}{n}) \cup (1 - \frac{1}{n}, 1)$. Suppose first that $x_l \in (0, \frac{1}{n})$. From our formula for $x_{k_1+k_2}$ we see that $x_{tl} = t x_l$ as long as $t x_l < 1$. Since $0 < x_k < \frac{1}{n}$, we can choose $t \in \mathbb{Z}^+$ so that $t x_l \in I_j$ (to be explicit, verify that if we choose $t = \lfloor \frac{j}{n x_l} \rfloor$ then we have $t x_l \in I_j$). Then we let k = tl and we have found an index $k \ge m$ such that $x_k \in I_j$. The case that $x_l \in (1 - \frac{1}{n}, 1)$ is quite similar. If we write $x_l = 1 - \delta$ then we have $0 < \delta < \frac{1}{n}$. From the formula for $x_{k_1+k_2}$ we see that $x_{tl} = 1 - t\delta$ as long as $t\delta \le 1$. Since $0 < \delta < \frac{1}{n}$, we can choose $t \in I_j$. Then $x_k \in I_j$. Then $x_k \in I_j$ are that $x_k \in I_j$. Then $x_k \in I_j$ is that $x_k \in I_j$. The case that $x_l \in 1 - \frac{1}{n} = 1 - t\delta$ as long as $t\delta \le 1$. Since $0 < \delta < \frac{1}{n}$, we can choose $t \in \mathbb{Z}^+$ so that $1 - t\delta \in I_j$. Then $x_k \in I_j$ and the proof of our original claim that

$$\forall a \in [0,1] \ \forall \epsilon > 0 \ \forall m \in \mathbb{Z}^+ \ \exists k \ge m \ |x_k - a| \le \epsilon$$