PMATH 333 Real Analysis, Solutions to Assignment 2

: (a) Let x, = 2L for n > 2. Use the definition of the limit to show that lim z, = 2.
n—oQ

Solution: For n > 2 and € > 0, we have

|, — 2| = |2nEl 9| — |2mblo2ngd) _ 8

and
SGH”T_IZ%HH—123E<—>TLZ3E+1.

n—1

Let € > 0. Choose m € Z with m > 3e 4 1. For n € Z>5 with n > m we have n > m > 3e 4 1 and hence, as
shown above, |z, — 2| =

(b) Let z, = \/7 for n > 0 Use the definition of the limit to show that lim z, = cc.
n—oo
Solution: First note that for n > 1 we have n +3 < n + 3n = 4n and so
— n n — \/’77'
=T 2 Vi 2
Let » € R. Choose m € Z with m > 4r2. Then for n > m we have n > 4r? and so
n = f 2 = 27 |T| >

(c) Show that if x,, > 0 for all n > p and lim x, =a >0 then lim /7, = V/a.
n—0o0 n—oo

Solution: Consider the case that a = 0. Suppose that x, > 0 for all n and that z,, — 0. Let € > 0. Since
x, — 0, we can choose m € Z so that n > m = |z,, — 0| < €2. Then for n > m we have 0 < z,, < €2 and
so |\/Zn, — 0| = /z, <e. Thus \/z,, — 0.

Consider the case that a > 0. Suppose that z,, > 0 for all k£ and that x,, — a > 0. Note that, for all n,

we have
|z, — al

[Vn = f|7‘\ﬁ:r\f‘7\/ﬁ+\/6'

Since xz,, — a we can choose m; € Z so that n > m; = |z, —a| < %T“. Then for n > m; we have § <z, < %“
so that g < /Zn. Again since x,, — a, we can choose mg € Z so that n > my = |z, — a| < % €. Let

m = max{my, ma}. Then for n > m we have \/z,, > @ and we have |z, —a| < 3‘f € and so

|z — al S ¢

n — == < 2 == €.
[van - val NN -

Thus /z, — Va.



2: (a) Show that there exist (at least) 3 distinct values of x such that 823 = 6z + 1.

Solution: Let f(z) = 823 — 6z — 1. Notice that f(x) is continuous and we have f(z) = 0 + 823 = 6x + 1.
By the Intermediate Value Theorem, since f(—1) = —3 < 0 and f( — %) = 1 > 0, there is a number
r1 € (f 1,75) such that f(z1) = 0. Similarly, since f( — %) =1>0and f(0) = —1 < 0, there is a
number zo € (— 1,0) with f(z2) = 0, and since f(0) = —1 < 0 and f(1) = 1 > 0, there is a number
z3 € (0,1) with f(z3) = 0. (In fact, the exact values of x1, 22 and x5 are z; = — cos(40°), 3 = —sin(10°)
and x5 = cos(20°)).

(b) Let f :[0,2] — R be continuous with f(0) = f(2). Show that f(z) = f(z + 1) for some z € [0, 1].
Solution: Let g(z) = f(z + 1) — f(x). Note that g is continuous and

9(1) = f(2) = f(1) = f(0) = f(1) = =(f(1) = £(0)) = —g(0).

By the Intermediate Value Theorem, there is a number x € [0,1] with g(z) = 0 (indeed if g(0) # 0 then
one of the numbers g(0) and g(1) is positive and the other is negative so there is a number = € (0,1) with
g(z) =0). Then we have 0 = g(z) = f(z + 1) — f(z) and so f(z) = f(z + 1).

(¢) Let f : R — R be continuous. Suppose that |f(x) — f(y)| > |« — y| for all z,y € R. Show that f is
bijective (that is, f is injective and surjective).

Solution: First we note that f is injective since when 1 # z9 we have |f(z1) — f(x2)] > |x1 — 22| > 0 so
that f(x1) # f(x2). It remains to show that f is surjective.

We claim that for all r > 0, either ( f(r) > f(0) +r and f(—r) < f(0) —r) or ( f(r) < f(0) —r and
f(=r) = f(0)+r). Let r > 0. Since |f(r) — f(0)] > |r — 0| = r, it follows that either f(r) > f(0) +r or
f(r) < f(0) — r. Likewise, since |f(—r) — f(0)] > | —r — 0] = r, it follows that either f(—r) > f(0) +r or
f(=r) < f(0)—r. Note that in the case that f(r) > f(0)+r, we must have f(—r) < f(0)—r because if we had

f(=r) > f(0)+r then, by the IVT (applied twice) we could choose z; € (—r,0) with f(z1) = f(0)+ 5 and we
could choose x5 € (0,7) with f(x2) = f(0) + § which would give x1 # 2o with f(z1) = f(x2) contradicting
the fact that f is injective. Similarly, in the case that f(r) < f(0) —r we must have f(—r) > f(0) +r
since if we had f(—r) < f(0) — r we could use the IVT to choose 21 € (—r,0) and z3 € (0,7) such that
f(x1) = f(x2) = f(0) — 5. This proves the claim.

Finally, we use the above claim to prove surjectivity. Let y € R. Choose r > 0 such that f(0) +r >y
and f(0) — r < y. By the claim, either we have f(—r) < f(0) —r < y < f(0) +r < f(r) or we have
f(r) < f(0)—r <y < f(0)+r < f(—r), and in either case, by the IVT, we can choose « € (—r,r) such that
f(x) =y. Thus f is surjective.



n

3: (The Natural Base e) Let s, = > 7; for n >0 and let a, = (1 + %)n for all n > 1.
=0

(a) Show that (s,)n>0 is increasing and bounded above by 3, and let e; = lim s,,.
- n— oo

Solution: Since s,_1 — s, = % > 0, it follows that (s, ) is strictly increasing. For n > 3 we have

Yo =l+l4 g5+t

n!

k=0
_ 1 1 1 1
72+§(1+3+34+3 +.”+3'4 <<<< n)
<2+5(1+3+5 +313+ + 1)
[T
=245 O =2+ (o) <24 853
3

Since (8, )n>0 is increasing with s, < 3 for all n, it converges by the Monotone Convergence Theorem, and
by the Comparison Theorem we have e; = lim s, < 3.
n—oo

(b) Use the Binomial Theorem to show that
=T R (D) (-3 (- e A () (-2 (125,

Solution: By the Binomial Theorem, we have
SR L () () (3) e ()
— 1414+ ngtle) + n(nfl)(;k2) 4t n(nflzL(Innff)m(l)
=ltltg(l-3)+a(l-35) (1—*)+---+%(1—%) (1=3)- (=25

and we remark that the final term is equal to

TL" .

(c) Show that (a,)n>1 is increasing with a, <'s, for all n > 1, and let ea = lim ay,.
- n—oo

Solution: Using the formula in Part (b) we have

o115 () () o) ) e
>S141+ 50—+ 4 (1—*)(1—*)+' +ar(1=3) (0 =2) - (=22 + Gy
1
:an+m>an

for all n and so (an)p>1 is strictly increasing. Using the same formula again we have
on =11 F (1= 1)+ (1= (1 2) oot (1= ) (1= 2) (1 - 252
<141+ g4 3+ + 5 =sn.

Since (an)n>1 is increasing with a,, <'s,, < 3 for all n, it converges by the Monotone Convergence Theorem,

and by the Comparison Theorem we have e; = hm a, < lim s, =e;.
n—oo

(d) Show that es > s, for all n > 0 and hence es = e;.
Solution: For k > n with n fixed, we have (writing the final term in aj, as 7)
=1L+ (D) RO D (=)t b (- -2 (-2 o
21 F - 0= =P e h - ) -5
— It lt gt g+t =s. ask oo
It follows from the Comparison Theorem that e; = khﬁngo ag > sy for all n, and hence, by another application

of the Comparison Theorem, we have e; > lim s, = e;.
n—oo



4: (a) Show that every sequence (z,)p,>1 in R has a monotonic subsequence (that is either (z,),>1 has an
increasing subsequence or (z,,),>1 has a decreasing subsequence). Hint: consider indices n such that a,, > ax
for all k£ > n.

Solution: For an index n > 1, let us say that n is a peak index of (zy),>1 when it has the property that
xn > xy for all k > n. Either (x,) has infinitely many peak indices, or it does not. If (z,) has infinitely
many peak indices, then we can choose peak indices n; < ns < ng < --- and then, by the definition of a
peak index, x,, > Xp, > Tpn, > . Suppose that (x,) has only finitely many peak indices. Choose an index
n1 which is greater than every peak index. Since m; is not a peak index, we can choose ny > nj so that
Ty = Ty, . Olnce ng is greater than n; which is greater than every peak index, na is not a peak index and
so we can choose n3 > ng so that z,, > =,,. We continue this process to obtain indices n; < ng <nz < ---
with z,,, <xp, <@y < -1

Alternatively, one can ignore the hint and prove 4(a) using the Bolzano-Weierstrass Theorem. To do
this, consider several cases. When (z,,) is not bounded above, construct an increasing subsequence of (zy).
When (z,,) is not bounded below, construct a decreasing subsequence. When (z,,) is bounded, invoke the
Bolzano-Weierstrass Theorem to choose a convergent subsequence (z,,) and say up = x,, — b. Then
consider the following three cases. FEither there exist infinitely many indices k with ug = b (in this case,
construct a constant subsequence of (uk)) or there exist infinitely many indices k with u; > b (in this case,
construct a decreasing subsequence of (uk)) or there exist infinitely many indices k with ux < b (in this case,
construct an increasing subsequence of (uk))

We also remark that the fact that every sequence in R has a monotonic subsequence, together with
the Monotone Convergence Theorem, immediately imply the Bolzano-Weierstrass Theorem as a corollary.
Thus the first solution to this problem supplies you with an alternate (and perhaps easier) proof of the
Bolzano-Weierstrass Theorem than the proof we gave (which used the Nested Interval Property of R).

(b) Let z,, = % — L%J forn>1. Show that (z,),>1 has a decreasing subsequence (2, )r>1 with klim T, =0.
- - —00

Hint: consider (1 4+ v/2)* and (1 — v/2)*.

Solution: By the Binomial Theorem, we have

L+vV2)F =1+ () (VD) + (5)(vV2)2 + (5)(
(1-v2)F =1-(1)(vV2) + (5)(vV2)?

\
—
w
~—
—

hence
(+VD* + (1= VD =2(1+ (5) -2+ (5) 22+ (§) 2+ ) and

(V2 = (=D = 2va((3) + () + ()22 + ()20 +---).

and so we see that 2 ((1+ v2)F + (1 — V2)*) € Z and %((1 +V2)* — (1= V2)¥) € Z for all n € N. For
each k € N| let
me= (1 VD - (1-V2)F)

and note that nj € Z. Consider the case that k € N is odd. Since —1 < (1 —+/2)¥ < 0 and
e+ (1-vV2) = 5(0+ V2 - (1-V2)") + (1 - V2 =5(1+ V2" +(1-Vv2)") € Z,

it follows that L%J =1((1+v2)"+ (1= v2)"). Thus, when k is odd, we have

Ty = 2% — [ %] = A+ V2)F = (1= V2)F) = 3 (1L +V2)F + (1 - V2)F) = —(1 - v2)F = (V2 - D)%,

2

Thus the subsequence Ty, , Ty, T, of (2,,) is equal to the sequence (v2 —1), (v2—1)3,(v/2—1)°,--- which
is decreasing with limit 0.

We remark that this is not the only such subsequence. For example, we could have chosen to let
nk = (1++v/2)% 4+ (1 —+/2)* in which case, when & is even we would obtain % - L%J =2(v/2—1)F giving

the subsequence ,,, Ty, , Tny, - - - which would be equal to v2(v/2 — 1)%,v/2(v2 — 1)*,v2(v/2 — 1)5, - - ..



Alternatively, one can ignore the hint and prove the follow more general result. Define f : R — [0,1) by
f(z) =2z — |z] (f(x) is called the fractional part of ). Let « € R. Define 3, = f(ak) for k> 0. fa € Q
then the sequence (xy) is periodic. If a ¢ Q then

Va€[0,1] Ye>0 YmeZ" Fk>m |z —a| <e.
We sketch a proof below. We leave it as an exercise to show that 4(b) follows as a corollary.

From the definition of the floor function and the fractional part function f(x), verify that

fl)+fly)  if flo) + fly) <1

f(x+y):{f(x)+f(y)1iff(x)+f(y)21

and

fo—g) = { f@) = fly) i @)= f)

fl@) = fly) +1if f(z) < f(y).
Since z = f(ak), these formulas imply that

. Ty + Ty if o, +ap, <1
kitks = .
1k Ty +xp, — 1 if xp, + 28, > 1.

and
Ly — Thy lf Ty Z Ty
Lhy—ky = .
Thy — Ty + 1 if zp, < 24,
We wish to prove that when « ¢ Q,
Va€0,1] Ye>0 YmeZt Ik>m |z —a|<e

Let a € [0,1] and let e > 0. Choose n € ZT so that 2 > ¢, then divide the interval [0, 1] into the n subintervals

I = [%, %], and note that each of these intervals is of size 1 — % = % Since a € [0,1] = | I;, we can
j=1
choose an index j € {1,2,---,n} such that a € I;. Since the interval I; is of size % < ¢, it suffices to show

that for all m € Z* we can find k > m so that z; € I (because when z; and a both lie in the same interval
I; we must have |z, —a| < 1 <¢). It remains for us to show that
s
VmeZt 3k>m xp € I; = [L=, 1]
Let m € Z*. Choose an index jo € {1,2,---,n} so that for infinitely many indices k we have zj, € I;,.
Choose two indices ki, ks € ZT with ko > ki + m such that xy,,zx, € I, and let | = ks — k; > m. From
our formula for zy, _x,, we have

1 .
Tky, — Tk, € [0, ﬁ] if xg, > xk,
Tl = Thy—ky =

Ty — Tk, + 1€ [1—%,1] if z, < 2k,

We have found an index [ > m such that z; € [O, %] U [1 — %, 1} . We shall show that there is a multiple k = tl,
where ¢ € ZT, such that z, € I; where I; was the interval that we chose earlier with a € I;. Since a ¢ Q, we
have ko ¢ Q for all k € Z* and hence zj, = f(ak) = ok — |ak] ¢ Q. It follows that z; € (0,2) U (1—1,1).
Suppose first that z; € (O7 %) From our formula for zy, +r, we see that x, = tax; as long as tx; < 1. Since
0<ar < %, we can choose t € Z*1 so that tz; € I; (to be explicit, verify that if we choose ¢t = Ln%ﬂlj then
we have tx; € I; ). Then we let k = tl and we have found an index k > m such that x, € I;. The case that
T € (1 — %, 1) is quite similar. If we write ; = 1 — 6 then we have 0 < § < % From the formula for xy, 4+,
we see that xy =1 — 6 as long as t6 < 1. Since 0 < 0 < %, we can choose ¢ € Z" so that 1 —té € I;. Then
we let k = tl so that z; € I;. This completes the proof that for all m € Z* there exists k > m such that

xy, € I, and the proof of our original claim that

Va €10,1] Ye>0 YmeZt Ik >m |z, —a| <e.



