- **1:** Let $f : \mathbb{R} \to \mathbb{R}$. Suppose that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.
 - (a) Show that f(rx) = rf(x) for all $r \in \mathbb{Q}$.
 - (b) Show that f is continuous at 0 if and only if f is continuous on \mathbb{R} .
 - (c) Show that if f is continuous at 0 then there exists $m \in \mathbb{R}$ such that f(x) = mx for all $x \in \mathbb{R}$.
- 2: (a) Define f,g: R→ R by f(x) = x³ and g(x) = ³√x. Show that g is uniformly continuous but f is not.
 (b) Let f : (a,b) ⊆ R → R. Show that f is uniformly continuous on (a,b) if and only if there exists a continuous function g: [a,b] ⊆ R → R such that g(x) = f(x) for all x ∈ (a,b).
- 3: (a) Let f, g: [a, b] ⊆ ℝ → ℝ be integrable and let c ∈ ℝ. Prove, from Definition 3.3, that the functions f + g and cf are inegrable on [a, b] with ∫_a^b(f + g) = ∫_a^b f + ∫_a^b g and ∫_a^b cf = c ∫_a^b f.
 (b) Let f: [a, b] ⊆ ℝ → ℝ be any function (not necessarily bounded). Show that if f is integrable (according to Definition 3.3, but without the assumption that f is bounded) then f must be bounded.
- **4:** Determine (with proof) which of the following statements are true for all bounded functions $f:[0,1] \to \mathbb{R}$.
 - (a) If $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n} f(\frac{k}{n})$ exists then f is integrable on [0, 1].
 - (b) For all $a, b \in [0, 1]$ and $S \in \mathbb{R}$, if f(a) < S < f(b) then there exists a partition $X = \{x_0, x_1, \dots, x_n\}$ of [0, 1] and there exist sample points $t_k \in [x_{k-1}, x_k]$ such that $\sum_{k=1}^n f(t_k)\Delta_k x = S$.