- 1: Let $f : \mathbb{R} \to \mathbb{R}$. Suppose that $f(x + y) = f(x) + f(y)$ for all $x, y \in \mathbb{R}$.
	- (a) Show that $f(rx) = rf(x)$ for all $r \in \mathbb{Q}$.
	- (b) Show that f is continuous at 0 if and only if f is continuous on \mathbb{R} .
	- (c) Show that if f is continuous at 0 then there exists $m \in \mathbb{R}$ such that $f(x) = mx$ for all $x \in \mathbb{R}$.
- **2:** (a) Define $f, g : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^3$ and $g(x) = \sqrt[3]{x}$. Show that g is uniformly continuous but f is not. (b) Let $f : (a, b) \subseteq \mathbb{R} \to \mathbb{R}$. Show that f is uniformly continuous on (a, b) if and only if there exists a continuous function $g : [a, b] \subseteq \mathbb{R} \to \mathbb{R}$ such that $g(x) = f(x)$ for all $x \in (a, b)$.
- 3: (a) Let $f, g : [a, b] \subseteq \mathbb{R} \to \mathbb{R}$ be integrable and let $c \in \mathbb{R}$. Prove, from Definition 3.3, that the functions $f + g$ and cf are inegrable on [a, b] with $\int_a^b (f+g) = \int_a^b f + \int_a^b g$ and $\int_a^b cf = c \int_a^b f$. (b) Let $f : [a, b] \subseteq \mathbb{R} \to \mathbb{R}$ be any function (not necessarily bounded). Show that if f is integrable (according to Definition 3.3, but without the assumption that f is bounded) then f must be bounded.
- 4: Determine (with proof) which of the following statements are true for all bounded functions $f:[0,1] \to \mathbb{R}$.
	- (a) If $\lim_{n\to\infty}\sum_{k=1}^n$ $k=1$ $\frac{1}{n} f\left(\frac{k}{n}\right)$ exists then f is integrable on [0, 1].

(b) For all $a, b \in [0, 1]$ and $S \in \mathbb{R}$, if $f(a) < S < f(b)$ then there exists a partition $X = \{x_0, x_1, \dots, x_n\}$ of $[0, 1]$ and there exist sample points $t_k \in [x_{k-1}, x_k]$ such that $\sum_{k=1}^n f(t_k) \Delta_k x = S$.