PMATH 333 Real Analysis, Solutions to Assignment 4
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1: (a) Find / e” dz by evaluating the limit of a sequence of Riemann sums for the function f(x) = e®.
0

Solution: Let X, = {wo, 21, -+, 2,} where z; = L 4. Then A;z = L for all i so ||X,,|| = % and so || X,|| — 0

n n
asn — oo. Let S, = > f(t;)A;x where t; = 2;. Then
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By I'Hopital’s Rule we have Tim — 2™ — im — 2 — Jmm - — 1 and
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(b) Find / Vz dzx by evaluating the limit of a sequence of Riemann sums for the function f(z) = /z.
1

Solution: Let f(x) = y/z on [1,4]. Note that the range of f is [1,2]. For n € Z*, let Y,, = {yo,v1, -, yn} be
the partition of the range [1,2] into n equal sub-intervals, so we have y, = 1 + %, let X,, = {zo, 21, ", 2n}
be the corresponding partition of the domain [1,4] given by 2y = y;? = 1 + % + %Z, and let t; = x. Note
that Agz = (v — 1) = (1 + 2—: + fl—z) — (1 + %7_2 + %) = % + i—’; — #, which is increasing with &
so that |X,| = A,z =2 — 1 — 0asn— oo. Thus
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2: (a) Let f be integrable on [a,b]. Show that g is integrable on [a,b], where g(x) =

f(@) it f(z) >0

0 ,if f(z) <0
Solution: Let € > 0. Since f is integrable, we can choose a partition X = (zg,x1, -+, 2,) of [a,b] such that
U(f,X)— L(f,X) <e For 1<k<n, let My(g) =sup{g(t) |t € [xx—1,2x]}, mr(g) = inf {g(t) |t€ [Th—1, 2k}
and similarly for My (f) and my(f). We claim that My (g9) — mg(9) < Mp(f) — mi(f) for all 1 < k < n. Fix
Ewithl <k <mn. If f(z) <0 for all z € [zr_1, 2] then we have g(x) = 0 for all x € [xy_1, 2] so that
My (g) = my(g) = 0, and hence M (g) — mi(g) =0 < My(f) — mi(f), as claimed. Suppose that f(z) > 0 for
some z € [Tg_1,2k]. Since g(z) > f(z) for all x, we have my(g) > my(f). Since there exists z € [zr_1, xk]
such that f(x) > 0, it follows that

M (f) =sup {f(t) | t € [xr—1,2x]} =sup { f(t) |t [wp_1,x1], f(£)>0} =sup {g(t) | t € [wp—1, k] } = Mi(g).
Since My(g) = Mg (f) and mg(g) > my(f) we have My(g) — mp(g) < Mi(f) — mi(f), as claimed. Thus

U(g. X) = L(9.X) = 3 (Milg) = mi(9))de € 5 (My(f) — me()) Do = U(£.X) = L(F. X) < e

k=1
It follows that g is integrable, as required (by Part 2 of Theorem 1.16).
(b) Show that f is integrable on [0, 1], where f is defined by

2@ yif x = Z for some positive integers k, ¢ with k odd
fz) = : :
0, otherwise
Solution: Let € > 0. Choose £ > 0 so that 4 < &. Note that there are exactly 2¢ — 1 points z € [0,1] for
which f(z) > 21,, namely the pomts r =g with 1 <j< 2¢ (including even values of j). Choose a partition
X = (zg, 21, -, ®,) with |X| < J; such that each of the 2° — 1 points < lies in the interior (but is not an
endpoint) of one of the subintervals [Tr—1, xk]. Let A C {1,2,---,n} be the set of indices k such that [xg_1, ]
contains one of the points 7, and let B = {1,---,n} \ A be the set of all other indices k. For each k € A we

have M, <1 (mdeed M, < 7) and myg = 0 so that (Mg — my)Agz < Az < and hence

4@7

kgA(Mk —mk)Akx < (26 — 1) . 4le < 2712 < %

For each k € B we have M, < 2—12 and my = 0 so that (Mg — my) Az < %Ak:m and hence

> (M —mp)Apz < & 3 Agz S%Z W = 5 <
keB KEB =l

[Slfe}

Thus
U(h,X) — L(h,X) = Z (Mk - mk)Akx = Z (Mk — mk)AkJJ + Z (Mk - mk)Aka? < % + % = e€.
k=1 keA keB

It follows that h is integrable, as required (by Part 2 of Theorem 1.16).
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3: Let a,b € RU {£o0} and let f : (a,b) € R — R be continuous. We say that the improper integral fa I

(& S
converges when for some (hence for any) ¢ € (a,b), the limits lim f f and lim f f both exist and are finite.
r—avr s—bYcC

sin (3)
Determine whether / dx converges.
(a) T g

Solution: For 0 < 6 <3 smce sin @ is concave down with sin0 = 0 and sin 5= 5 we have sinf) > 5. When
2<x<oowehave0< <1 <fsothatsm( )27% Thus

> sin(2) / >~ 3dx o0
Lo dx > —_— = [Q\/lnx} = 0.
/2 Vinz o mzvinzx T 2
Thus the given integral diverges.
The solution is complete, but we remark that for 1 < z we have 0 < + < 1 < T so that 0 < sin ( ) <

3
and, for 1 <z < 2, since Inz is concave down, we have Inz > In2(zx — 1), and SO
2 a1 2 2
/ sin() dxﬁ/ V3dx < V3dx _ [ V3
1 Vinz 1 2vInz 1 2¢/In2(x —1) Vin2
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erl} :m<oo.
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(b) Determine whether In (sec Z) dx converges.

ﬂ\w IA o

Solution: For 3 < 6 5, since cos® is concave down with cos § = % and cosg = 0, it follows that
cosf > %(g 70) = % 0. When 2 <z <3 wehave § <2 < 7 sothat cos - > 3 E = 3(2;2), and hence
—In (cos g) < —In 3(”;;2) In 3(1, 5y Thus, by 1ntegrat1ng by parts using v = ln 3(9}72) and v = x, noting

that du = 3(2;2) . % (g(; 2%)296 dr = z(;EQ) dx, we have

/ln(secg)dxg/lns(i dm—xlnﬂ—i—/ de =xln ( )—1—21n(x—2)
3 3
/21n(sec )dac—{xln——(m—Z)ln(;v—?)}w:3ln2—2ln§:2ln3—ln2:ln%,

where we used the fact that, by ’'Hopital’s Rule, we have

1 1
lim (z —2)In (3(z —2)) = lim uln3u= lim n3u = lim —%- = lim (—u)=0.

z—2t u—0+ u—0Tt u—0t — o u—0Tt

1
u

For g(f) = 6 — sinf we gave g(0) = 0 and ¢'(f) = 1 — cosf > 0 for all § so we have g() > 0 for all § > 0.

For f(0) = cosf — 1+ $6% we have f(0) = 0 and f'(6) = 6 — cosf = g(f) > 0 for all # > 0, and hence
f(0) > 0, that is cos > 1 — %02 for all # > 0. For 3 <z < co we have 0 < 7 < %. Since 0 < 7 we have
cos% >1- %(5)2 = 2“322;2“2 and hence In (sec %) =—1In (cos g) —In “”2’2”2 =In 233””_12 so that

o e} 2
/ In (sec ) dacg/ In (53~ da.
3 3

We can evaluate this integral by integrating by parts, using v = In % and dv = dz. Note that we have
du _ 202 — 72 (4w)(2m2—7r2)—(2x2)(4w) _ —rn?dx

=5 @2=r2)2 = TETr?) Also note that by 'Hopital’s Rule we have
In 212 —?
22272 . z (202 —72 2
S gt = Jimy T < iy SR =l e =0
and so x @2
> e o0 *  r2dx
/3 ln(secg)dxg-/B 1n(2m2 ﬂz)dx—[mlnﬁ]g —1—/3 2 2
2 o ™ T
= lim z In 52— —3In + — dx
700 2x2—m2 18 7'r2 3 \/71,77‘_ \/§+7T
_ 18 71' T f:c s 18 7T 3\/§+7T
=3I +[Zm MM] =3I —|—fln3\/§_w<oo.
Alternatively, we can argue as follows. As noted above we have cos 7 > 1 — 5 (7) =1- Since Inwu is
concave down with ln 7 = —In3 and In1 = 0, the graph of Inu hes above the line through ( —In 3) and

(1,0) so we have lnu> 75 (u—1) and hence —Inu < 5= 3(1 u). When 3 < 2 < oo we have 0 < 55 i s < 7 ”2

sothat% 1—1—8§1 2;2<1hence(bytakmgu—l sz)wehave—ln( %)gﬁ%:ﬁjg-%.
2

Thus/ 1n(secg)dx=/ —1n(cosg)dxg/ ~In (1 2”—)dx</ o b du= [ 1] T = g
3 3 3




4: (a) Let f : [a,b] — [c,d] be bijective and decreasing with f(a) = d and f(b) =c. Let g = f~!: [c,d] — [a,b].

Suppose f and g are continuous and consider the area of the region a <z <b, ¢ <y < f(z). Prove that
b d
/ (f(z) = c)da = / (9(y) —a) dy
r=a y=c

Solution: We need to show that

/:—af(m)dx/y:g(y)dy/EiaCdz/yicadyC(ba)a(dC)bcad.

Let € > 0 be arbitrary. Choose d; > 0 so that for every partition X of [a,b] with |X| < d; we have
|S — fab f| < %e for every Riemann sum S for f on X, and choose do > 0 such that for every partition Y
of [¢,d] with |Y| < d2 we have |S — fcdg| < %e for every Riemann sum S for g on Y. Choose a partition
Xo of [a,b] with |Xo| < d; and choose a partition Yy of [c,d] with |Yp| < d2. Let X = Xy U g(Yp) and let
Y=Y, U f(Xp). Then we have |X|<é; and |Y|<dy. Write X ={zg, 21, -, 2}, whith the z; in increasing
order as usual, and note that, since f is decreasing, we have Y ={yo,y1, -, Yyn} where ys= f(x,_,) for all £.
Since f and g are decreasing, the lower Riemann sums are equal to the sums using the right endpoints. Making
the substitution £k = n — £ in one of the sums below and k¥ =n — £ + 1 in another, we have

L(f, X) = L(g,Y) = i f(en)(wp — 2x1 — glg@e)(ye )
f (k) (e — 1) — i Tt (F(@nt) = F(@nt11))
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nf(zn) — zof(zo)xzo = bc— ad.
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By the Triangle Inequality

(/abf(w)dx—/cg(y)dy> —<bc—ad>\ _ ]/bf<x>dx—/bcg<y>dy—L<f,X>+L<g,Y>

‘/f Ydx — L(f, X ‘ ’/ y) dy — Lg,Y)’ 5+s5=e¢

Since € > 0 was arbitrary, it follows that / f(z)dx — / 9(y) dy = be — ad, as required.

c



(b) Let f : [a,b] CR — R. For a partition X = {xg,z1,--,x,} of [a,b], define
Length(f. X) = 3= /(e =51 + () — J@e)?
)

then define the length of the graph y = f(x

on [a,b] to be
Length(f) = sup {Length(f, X) ‘ X is a partition for [a, b]}

(the above supremum can be finite or infinite). We say that f is rectifiable on [a, b] when Length(f) is finite.
Show that if f is rectifiable on [a, b] then f is integrable on [a, b].

Solution: Suppose that f is rectifiable on [a,b] and let L = Length(f, [a,b]). Suppose, for a contradiction, that
f is not integrable on [a,b]. Choose € > 0 so that for every partition X of [a,b] we have U(f, X)— L(f,X) > ¢
Let X = {xg,---,2,} be a partition of [a,b] into equal-sized subintervals of size Ayz = 22 < 57+ Choose
te € [zr—1 2] s0 U(f, X) =>4 f(te)Agz < § and choose s; € [zr—1, 2] 50 D), f(sk)Akx L(f,X) <.
Then

3 (Ft) = £() A = (U(F.X) = LU X)) = (U X) = 3 f(t) ) = (32 fls)dua — L(F, X))
ze-g-§-4
Now, let Y be the partition X U {s1,--+,8,} U {t1, -, tn}. Let up = min{sg,tx} and vy = max{sg,t;} so
that 21 <wup <wvp <z and Y = {xg, u1, v1, T1, U2, V2, Ta,** +y Up, Up, T }. For 1 < k < mn, let
L= \/(ukka—l)2 + (f(uk)*f(l’k—ﬁ)Z + \/(vk*wc)2 + (f(ve)—f(ur)) “ ¥ \/ () —vg)? (Ik)*f(vk))2
so that Length(f,Y) = >.p_; Lg. Since Ly > /(f(vg)—f(ug))? = |f tr) — f( sk)| > f(tx) — f(sk), and

Apx = b’Ta, and - > 3L , and Zk (f(tr) — f(s))Arz > 5, we have

M=

Length(f,Y) = é i (f(te)—f(s1) = 524

k=1 k

(f(tk) - f(sk))Ak:L‘ > % . % - I

1

which is impossible (smce L =sup {Length f, X |X isa partltlon})



