
PMATH 333 Real Analysis, Solutions to Assignment 4

1: (a) Find

∫ 1

0

ex dx by evaluating the limit of a sequence of Riemann sums for the function f(x) = ex.

Solution: Let Xn = {x0, x1, · · · , xn} where xi = 1
n i. Then ∆ix = 1

n for all i so ||Xn|| = 1
n and so ||Xn|| → 0

as n→∞. Let Sn =
n∑
i=1

f(ti)∆ix where ti = xi. Then

Sn =

n∑
i=1

f(xi)∆ix

=

n∑
i=1

f
(
1
n i
) (

1
n

)
=

n∑
i=1

e(1/n) i
(
1
n

)
=

1

n

n∑
i=1

(
e1/n

)i

=
1

n

e1/n
((
e1/n

)n − 1
)

e1/n − 1

= e1/n(e− 1)
1/n

e1/n − 1

By l’Hôpital’s Rule we have lim
n→∞

1/n

e1/n − 1
= lim
n→∞

− 1
n2

− 1
n2 e1/n

= lim
n→∞

1

e1/n
= 1 , and so

∫ 1

0

ex dx = lim
n→∞

Sn = lim
n→∞

e1/n(e− 1)
1/n

e1/n − 1
= e− 1 .

(b) Find

∫ 4

1

√
x dx by evaluating the limit of a sequence of Riemann sums for the function f(x) =

√
x.

Solution: Let f(x) =
√
x on [1, 4]. Note that the range of f is [1, 2]. For n ∈ Z+, let Yn = {y0, y1, · · · , yn} be

the partition of the range [1, 2] into n equal sub-intervals, so we have yk = 1 + k
n , let Xn = {x0, x1, · · · , xn}

be the corresponding partition of the domain [1, 4] given by xk = yk
2 = 1 + 2k

n + k2

n2 , and let tk = xk. Note

that ∆kx = (xk − xk−1) =
(
1 + 2k

n + k2

n2

)
−
(
1 + 2k−2

n + k2−2k+1
n2

)
= 2

n + 2k
n2 − 1

n2 , which is increasing with k
so that |Xn| = ∆nx = 4

n −
1
n2 → 0 as n→∞. Thus∫ 4

1

√
x dx = lim

n→∞

n∑
k=1

f(tk)∆kx = lim
n→∞

n∑
k=1

√
xk ∆kx

= lim
n→∞

n∑
k=1

(
1 + k

n

)(
2
n + 2k

n2 − 1
n2

)
= lim
n→∞

n∑
k=1

(
2
n + 2k

n2 − 1
n2 + 2k

n2 + 2k2

n3 − k
n3

)
= lim
n→∞

((
2
n −

1
n2

) n∑
k=1

1 +
(

4
n2 − 1

n3

) n∑
k=1

k + 2
n3

n∑
k=1

k3
)

= lim
n→∞

(
2n−1
n2 · n+ 4n−1

n3 · n(n+1)
2 + 2

n3 · n(n+1)(2n+1)
6

)
= 2 + 2 + 2

3 = 14
3 .



2: (a) Let f be integrable on [a, b]. Show that g is integrable on [a, b], where g(x) =

{
f(x) , if f(x) ≥ 0

0 , if f(x) < 0

}
.

Solution: Let ε > 0. Since f is integrable, we can choose a partition X = (x0, x1, · · · , xn) of [a, b] such that
U(f,X)− L(f,X) < ε. For 1≤k≤n, let Mk(g) = sup

{
g(t)

∣∣ t∈ [xk−1, xk]
}

, mk(g) = inf
{
g(t)

∣∣ t∈ [xk−1, xk]
}

and similarly for Mk(f) and mk(f). We claim that Mk(g)−mk(g) ≤ Mk(f)−mk(f) for all 1 ≤ k ≤ n. Fix
k with 1 ≤ k ≤ n. If f(x) ≤ 0 for all x ∈ [xk−1, xk] then we have g(x) = 0 for all x ∈ [xk−1, xk] so that
Mk(g) = mk(g) = 0, and hence Mk(g)−mk(g) = 0 ≤Mk(f)−mk(f), as claimed. Suppose that f(x) > 0 for
some x ∈ [xk−1, xk]. Since g(x) ≥ f(x) for all x, we have mk(g) ≥ mk(f). Since there exists x ∈ [xk−1, xk]
such that f(x) > 0, it follows that

Mk(f) = sup
{
f(t)

∣∣ t∈ [xk−1, xk]
}

= sup
{
f(t)

∣∣ t∈ [xk−1, xk], f(t)>0
}

= sup
{
g(t)

∣∣ t∈ [xk−1, xk]
}

= Mk(g).

Since Mk(g) = Mk(f) and mk(g) ≥ mk(f) we have Mk(g)−mk(g) ≤Mk(f)−mk(f), as claimed. Thus

U(g,X)− L(g,X) =
n∑
k=1

(
Mk(g)−mk(g)

)
∆kx ≤

n∑
k=1

(
Mk(f)−mk(f)

)
∆kx = U(f,X)− L(f,X) < ε.

It follows that g is integrable, as required (by Part 2 of Theorem 1.16).

(b) Show that f is integrable on [0, 1], where f is defined by

f(x) =

{
1
2`

, if x = k
2`

for some positive integers k, ` with k odd

0 , otherwise

}
.

Solution: Let ε > 0. Choose ` > 0 so that 1
2`
< ε

2 . Note that there are exactly 2` − 1 points x ∈ [0, 1] for

which f(x) ≥ 1
2`

, namely the points x = j
2`

with 1 ≤ j < 2` (including even values of j). Choose a partition

X = (x0, x1, · · · , xn) with |X| < 1
4`

such that each of the 2` − 1 points j
2`

lies in the interior (but is not an
endpoint) of one of the subintervals [xk−1, xk]. Let A ⊆ {1, 2, · · · , n} be the set of indices k such that [xk−1, xk]
contains one of the points j

2`
, and let B = {1, · · · , n} \ A be the set of all other indices k. For each k ∈ A we

have Mk ≤ 1
(
indeed Mk ≤ 1

2

)
and mk = 0 so that (Mk −mk)∆kx ≤ ∆kx ≤ 1

4`
, and hence∑

k∈A
(Mk −mk)∆kx ≤ (2` − 1) · 1

4`
< 1

2`
< ε

2 .

For each k ∈ B we have Mk ≤ 1
2`

and mk = 0 so that (Mk −mk)∆kx ≤ 1
2`

∆kx, and hence∑
k∈B

(Mk −mk)∆kx ≤ 1
2`

∑
k∈B

∆kx ≤ 1
2`

n∑
k=1

∆kx = 1
2`
< ε

2 .

Thus

U(h,X)− L(h,X) =
n∑
k=1

(Mk −mk)∆kx =
∑
k∈A

(Mk −mk)∆kx+
∑
k∈B

(Mk −mk)∆kx <
ε
2 + ε

2 = ε.

It follows that h is integrable, as required (by Part 2 of Theorem 1.16).



3: Let a, b ∈ R ∪ {±∞} and let f : (a, b) ⊆ R → R be continuous. We say that the improper integral
∫ b
a
f

converges when for some (hence for any) c ∈ (a, b), the limits lim
r→a

∫ c
r
f and lim

s→b

∫ s
c
f both exist and are finite.

(a) Determine whether

∫ ∞
1

sin
(
1
x

)
√

lnx
dx converges.

Solution: For 0 ≤ θ ≤ π
6 , since sin θ is concave down with sin 0 = 0 and sin π

6 = 1
2 we have sin θ ≥ 3

πθ . When
2 ≤ x <∞ we have 0 < 1

x ≤
1
2 <

π
6 so that sin

(
1
x

)
≥ 3

πx . Thus∫ ∞
2

sin( 1
x )

√
lnx

dx ≥
∫ ∞
2

3 dx

πx
√

lnx
=
[
6
π

√
lnx
]∞
2

=∞.

Thus the given integral diverges.

The solution is complete, but we remark that for 1 ≤ x we have 0 < 1
x ≤ 1 ≤ π

3 so that 0 < sin
(
1
x

)
≤
√
3
2

and, for 1 ≤ x ≤ 2, since lnx is concave down, we have lnx ≥ ln 2(x− 1), and so∫ 2

1

sin( 1
x )

√
lnx

dx ≤
∫ 2

1

√
3 dx

2
√

lnx
≤
∫ 2

1

√
3 dx

2
√

ln 2(x− 1)
=
[ √

3√
ln 2

√
x− 1

]2
1+

=
√
3√

ln 2
<∞.



(b) Determine whether

∫ ∞
2

ln
(
sec π

x

)
dx converges.

Solution: For π
3 ≤ θ ≤ π

2 , since cos θ is concave down with cos π3 = 1
2 and cos π2 = 0, it follows that

cos θ ≥ 3
π

(
π
2 − θ

)
= 3

2 −
3
π θ. When 2 ≤ x ≤ 3 we have π

3 ≤
π
x ≤

π
2 so that cos πx ≥

3
2 −

3
x = 3(x−2)

2x , and hence

− ln
(

cos πx
)
≤ − ln 3(x−2)

2x = ln 2x
3(x−2) . Thus, by integrating by parts using u = ln 2x

3(x−2) and v = x, noting

that du = 3(x−2)
2x · 23 ·

(x−2)−x
(x−2)2 dx = −2

x(x−2) dx, we have∫
ln
(

sec π
x

)
dx ≤

∫
ln 2x

3(x−2) dx = x ln 2x
3(x−2) +

∫
2

x−2 dx = x ln 2x
3(x−2) + 2 ln(x− 2)∫ 3

2

ln
(

sec π
x

)
dx =

[
x ln 2x

3 − (x− 2) ln(x− 2)
]3
2+

= 3 ln 2− 2 ln 4
3 = 2 ln 3− ln 2 = ln 9

2 ,

where we used the fact that, by l’Hôpital’s Rule, we have

lim
x→2+

(x− 2) ln
(
3(x− 2)

)
= lim
u→0+

u ln 3u = lim
u→0+

ln 3u
1
u

= lim
u→0+

1
u

− 1
u2

= lim
u→0+

(−u) = 0.

For g(θ) = θ − sin θ we gave g(0) = 0 and g′(θ) = 1 − cos θ ≥ 0 for all θ so we have g(θ) ≥ 0 for all θ ≥ 0.
For f(θ) = cos θ − 1 + 1

2θ
2 we have f(0) = 0 and f ′(θ) = θ − cos θ = g(θ) ≥ 0 for all θ ≥ 0, and hence

f(θ) ≥ 0, that is cos θ ≥ 1 − 1
2θ

2 for all θ ≥ 0. For 3 ≤ x < ∞ we have 0 < π
x ≤

π
3 . Since 0 < π

x we have

cos πx ≥ 1− 1
2

(
π
x

)2
= 2x2−π2

2x2 and hence ln
(

sec π
x

)
= − ln

(
cos πx

)
≤ − ln 2x2−π2

2x2 = ln 2x2

2x2−π2 so that∫ ∞
3

ln
(

sec π
x

)
dx ≤

∫ ∞
3

ln
(

2x2

2x2−π2

)
dx.

We can evaluate this integral by integrating by parts, using u = ln 2x2

2x2−π2 and dv = dx. Note that we have
du
dx = 2x2−π2

2x2 · (4x)(2x
2−π2)−(2x2)(4x)
(2x2−π2)2 = −π2 dx

x(2x2−π2) . Also note that by l’Hôpital’s Rule we have

lim
x→∞

x ln 2x2

2x2−π2 = lim
x→∞

ln 2x2

2x2−π2

1
x

= lim
x→∞

−π2

x(2x2−π2)

− 1
x2

= lim
x→∞

π2x
2x2−π2 = 0,

and so ∫ ∞
3

ln
(

sec π
x

)
dx ≤

∫ ∞
3

ln
(

2x2

2x2−π2

)
dx =

[
x ln 2x2

2x2−π2

]∞
3

+

∫ ∞
3

π2 dx

2x2 − π2

= lim
x→∞

x ln 2x2

2x2−π2 − 3 ln 18
18−π2 +

∫ ∞
3

π√
2x− π

− π√
2 + π

dx

= 3 ln 18−π2

18 +
[
π√
2

ln
√
2x−π√
2x+π

]∞
3

= 3 ln 18−π2

18 + π√
2

ln 3
√
2+π

3
√
2−π <∞.

Alternatively, we can argue as follows. As noted above we have cos πx ≥ 1 − 1
2

(
π
x

)2
= 1 − π2

2x2 . Since lnu is

concave down with ln 1
3 = − ln 3 and ln 1 = 0, the graph of lnu lies above the line through

(
1
3 ,− ln 3

)
and

(1, 0) so we have lnu ≥ 2
3 ln 3 (u− 1) and hence − lnu ≤ 2

3 ln 3 (1− u). When 3 ≤ x <∞ we have 0 < π2

2x2 ≤ π2

18

so that 1
3 < 1− π2

18 ≤ 1− π2

2x2 < 1 hence
(

by taking u = 1− π2

2x2

)
we have − ln

(
1− π2

2x2

)
≤ 2

3 ln 3
π2

2x2 = π2

3 ln 3 ·
1
x2 .

Thus

∫ ∞
3

ln
(

sec π
x

)
dx =

∫ ∞
3

− ln
(

cos πx
)
dx ≤

∫ ∞
3

− ln
(
1− π2

2x2

)
dx ≤

∫ ∞
3

π2

3 ln 3 ·
1
x2 dx =

[
π2

3 ln 3 ·
1
x

]∞
3

= π2

9 ln 3 .



4: (a) Let f : [a, b]→ [c, d] be bijective and decreasing with f(a) = d and f(b) = c. Let g = f−1 : [c, d]→ [a, b].
Suppose f and g are continuous and consider the area of the region a ≤ x ≤ b, c ≤ y ≤ f(x). Prove that∫ b

x=a

(
f(x)− c

)
dx =

∫ d

y=c

(
g(y)− a

)
dy

.

Solution: We need to show that∫ b

x=a

f(x) dx−
∫ d

y=c

g(y) dy =

∫ b

x=a

c dx−
∫ d

y=c

a dy = c(b− a)− a(d− c) = bc− ad.

Let ε > 0 be arbitrary. Choose δ1 > 0 so that for every partition X of [a, b] with |X| < δ1 we have∣∣S − ∫ b
a
f
∣∣ < 1

2 ε for every Riemann sum S for f on X, and choose δ2 > 0 such that for every partition Y

of [c, d] with |Y | < δ2 we have
∣∣S − ∫ d

c
g
∣∣ < 1

2 ε for every Riemann sum S for g on Y . Choose a partition
X0 of [a, b] with |X0| < δ1 and choose a partition Y0 of [c, d] with |Y0| < δ2. Let X = X0 ∪ g(Y0) and let
Y =Y0 ∪ f(X0). Then we have |X|<δ1 and |Y |<δ2. Write X= {x0, x1, · · · , xn}, whith the xk in increasing
order as usual, and note that, since f is decreasing, we have Y ={y0, y1, · · · , yn} where y`=f(xn−`) for all `.
Since f and g are decreasing, the lower Riemann sums are equal to the sums using the right endpoints. Making
the substitution k = n− ` in one of the sums below and k = n− `+ 1 in another, we have

L(f,X)− L(g, Y ) =
n∑
k=1

f(xk)(xk − xk−1 −
n∑̀
=1

g(y`)(y` − y`−1)

=
n∑
k=1

f(xk)(xk − xk−1)−
n∑̀
=1

xn−`
(
f(xn−`)− f(xn−`+1)

)
=

n∑
k=1

xkf(xk)−
n∑
k=1

xk−1f(xk)−
n∑̀
=1

xn−`f(xn−`) +
n∑̀
=1

xn−`f(xn−`+1)

=
n∑
k=1

xkf(xk)−
n∑
k=1

xk−1f(xk)−
n−1∑
k=0

xkf(xk) +
n∑
k=1

xk−1f(xk)

= xnf(xn)− x0f(x0)x0 = bc− ad.

By the Triangle Inequality∣∣∣∣( ∫ b

a

f(x) dx−
∫ c

b

g(y) dy

)
− (bc− ad)

∣∣∣∣ =

∣∣∣∣ ∫ b

a

f(x) dx−
∫ c

b

g(y) dy − L(f,X) + L(g, Y )

∣∣∣∣
≤
∣∣∣∣ ∫ b

a

f(x) dx− L(f,X)

∣∣∣∣+

∣∣∣∣ ∫ c

b

g(y) dy − L(g, Y )

∣∣∣∣ < ε
2 + ε

2 = ε.

Since ε > 0 was arbitrary, it follows that

∫ b

a

f(x) dx−
∫ d

c

g(y) dy = bc− ad, as required.



(b) Let f : [a, b] ⊆ R→ R. For a partition X = {x0, x1, · · · , xn} of [a, b], define

Length(f,X) =
n∑
k=1

√
(xk − xk−1)2 + (f(xk)− f(xk−1))2

then define the length of the graph y = f(x) on [a, b] to be

Length(f) = sup
{

Length(f,X)
∣∣∣X is a partition for [a, b]

}
(the above supremum can be finite or infinite). We say that f is rectifiable on [a, b] when Length(f) is finite.
Show that if f is rectifiable on [a, b] then f is integrable on [a, b].

Solution: Suppose that f is rectifiable on [a, b] and let L = Length(f, [a, b]). Suppose, for a contradiction, that
f is not integrable on [a, b]. Choose ε > 0 so that for every partition X of [a, b] we have U(f,X)−L(f,X) ≥ ε.
Let X = {x0, · · · , xn} be a partition of [a, b] into equal-sized subintervals of size ∆kx = b−a

n ≤ ε
3L . Choose

tk ∈ [xk−1, xk] so U(f,X)−
∑n
k=1 f(tk)∆kx ≤ ε

3 and choose sk ∈ [xk−1, xk] so
∑n
k=1 f(sk)∆kx−L(f,X) ≤ ε

3 .
Then

n∑
k=1

(
f(tk)− f(sk)

)
∆kx =

(
U(f,X)− L(f,X)

)
−
(
U(f,X)−

n∑
k=1

f(tk)∆kx
)
−
( n∑
k=1

f(sk)∆kx− L(f,X)
)

≥ ε− ε
3 −

ε
3 = ε

3 .

Now, let Y be the partition X ∪ {s1, · · · , sn} ∪ {t1, · · · , tn}. Let uk = min{sk, tk} and vk = max{sk, tk} so
that xk−1 ≤ uk ≤ vk ≤ xk and Y = {x0, u1, v1, x1, u2, v2, x2, · · · , un, vn, xn}. For 1 ≤ k ≤ n, let

Lk =

√
(uk−xk−1)2 +

(
f(uk)−f(xk−1)

)2
+

√
(vk−uk)2 +

(
f(vk)−f(uk)

)2
+

√
(xk−vk)2 +

(
f(xk)−f(vk)

)2
so that Length(f, Y ) =

∑n
k=1 Lk. Since Lk ≥

√
(f(vk)−f(uk))2 =

∣∣f(tk)− f(sk)
∣∣ ≥ f(tk)− f(sk), and

∆kx = b−a
n , and n

b−a ≥
3L
ε , and

∑n
k=1(f(tk)− f(sk))∆kx ≥ ε

3 , we have

Length(f, Y ) =
n∑
k=1

Lk ≥
n∑
k=1

(
f(tk)−f(sk)

)
= n

b−a

n∑
k=1

(
f(tk)− f(sk)

)
∆kx ≥ 3L

ε ·
ε
3 = L

which is impossible
(
since L = sup

{
Length(f,X)

∣∣X is a partition
})

.


