- 1: For each of the following sequences of functions $(f_n)_{n\geq 1}$, find the set A of points $x \in \mathbb{R}$ for which the sequence of real numbers $(f_n(x))_{n\geq 1}$ converges, find the pointwise limit $g(x) = \lim_{n\to\infty} f_n(x)$ for all $x \in A$, and determine whether $f_n \to g$ uniformly in A.
	- (a) $f_n(x) = (\sin x)^{1/(2n+1)}$

Solution: If $x = \pi k$ for some $k \in \mathbb{Z}$ then $\sin x = 0$ so $f_n(x) = 0$ and so $\lim_{n \to \infty} f_n(x) = 0$. If $x \in (2\pi k, \pi(2k+1))$ for some $k \in \mathbb{Z}$ then $0 < \sin x \le 1$ and so $\lim_{n \to \infty} f_n(x) = 1$. If $x \in (\pi(2k-1), 2\pi k)$ for some $k \in \mathbb{Z}$ then $-1 \le \sin x < 0$ and so $\lim_{n \to \infty} f_n(x) = -1$. Thus the sequence converges for all $x \in \mathbb{R}$, so $A = \mathbb{R}$, and the limit function $q : \mathbb{R} \to \mathbb{R}$ is given by

$$
g(x) = \begin{cases} 0, \text{ if } x = \pi k \\ 1, \text{ if } x \in (2\pi k, \pi(2k+1)) \\ -1, \text{ if } x \in (\pi(2k-1), 2\pi k) \end{cases}
$$

Since each function f_n is continuous everywhere, but $g(x)$ is not continuous at $x = \pi k$ with $k \in \mathbb{Z}$, the convergence cannot be uniform.

(b)
$$
f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}
$$

Solution: For all $x \in \mathbb{R}$ we have $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \sqrt{x^2 + \frac{1}{n^2}}$ $rac{1}{n^2}$ = √ $x^2 = |x|$. Thus the set of convergence is $A = \mathbb{R}$ and the limit function $g : \mathbb{R} \to \mathbb{R}$ is given by $g(x) = |x|$ for all $x \in \mathbb{R}$. The convergence is uniform because given $\epsilon > 0$ we can choose $m > \frac{1}{\epsilon}$ and then for all $x \in \mathbb{R}$ and for all $n \ge m$ we have

$$
|f_n(x) - g(x)| = \sqrt{x^2 + \frac{1}{n^2}} - \sqrt{x^2} = \frac{\left(x^2 + \frac{1}{n^2}\right) - \left(x^2\right)}{\sqrt{x^2 + \frac{1}{n^2}} + \sqrt{x^2}} = \frac{\frac{1}{n^2}}{\sqrt{x^2 + \frac{1}{n^2}} + \sqrt{x^2}} \le \frac{\frac{1}{n^2}}{\frac{1}{n} + 0} = \frac{1}{n} \le \frac{1}{m} < \epsilon.
$$

(c) $f_n(x) = x^n - x^{2n}$

Solution: Note that $f_n(x) = x^n - x^{2n} = x^n(1 - x^n)$. When $x < -1$, for even values of n we have $x^n \to +\infty$ and $(1-x^n) \to -\infty$ so that $f_n(x) = x^n(1-x^n) \to -\infty$, and for odd values of n we have $x^n \to -\infty$ and $(1-x^2) \to +\infty$ so that $f_n(x) \to -\infty$, and so $\lim_{n\to\infty} f_n(x) = -\infty$. When $x = -1$, for even values of n we have $f_n(x) = x^n - x^{2n} = 1 - 1 = 0$ and for odd values of n we have $f_n(x) = x^n - x^{2n} = -1 - 1 = -2$ and so $\lim_{n\to\infty} f_n(x)$ does not exist. When $-1 < x < 1$ we have $x^n \to 0$ and $x^{2n} \to 0$ and so $\lim_{n\to\infty} f_n(x) = 0$. When $x = 1$ we have $f_n(x) = 0$ for all n so $\lim_{n \to \infty} f_n(x) = 0$ When $x > 1$ we have $x^n \to \infty$ and $(1 - x^n) \to -\infty$ and so $f_n(x) = x^n(1-x^n) \to -\infty$. Thus the set of points $x \in \mathbb{R}$ for which the sequence $(f_n(x))$ converges is $A = (-1, 1]$ and the limit function $g: (-1, 1] \to \mathbb{R}$ is given by $g(x) = 0$ for all $x \in (-1, 1]$. The convergence is not uniform because given any odd $n \in \mathbb{Z}^+$, since f_n is continuous everywhere with $f_n(-1) = -2$ and $f_n(0) = 0$ we can, by the Intermediate Value Theorem, choose $x \in (-1,0)$ such that $f_n(x) = -1$ and then we have $|f_n(x) - g(x)| = 1$. Alternatively, we can see that the convergence is not uniform because for all $n \in \mathbb{Z}^+$ we have $f_n\left(\frac{1}{\sqrt[n]{2}}\right) = \frac{1}{\sqrt{n}}$ $\frac{1}{2} - \frac{1}{2} = \frac{\sqrt{2}-1}{2}$ so that $|f_n(x) - g(x)| = \frac{\sqrt{2}-1}{2}$.

2: Let $(a_n)_{n\geq 1}$ be a sequence in \mathbb{R} , let $(f_n)_{n\geq 1}$ be a sequence of functions $f_n: A \subseteq \mathbb{R} \to \mathbb{R}$, let $g: A \subseteq \mathbb{R} \to \mathbb{R}$ and let $h : \mathbb{R} \to \mathbb{R}$.

(a) Suppose that $\sum_{n\geq 1} a_n$ converges and $|f_{n+1}(x) - f_n(x)| \leq a_n$ for all $n \geq 1$ and all $x \in A$. Show that $(f_n)_{n\geq 0}$ converges uniformly on A.

Solution: Let $\epsilon > 0$. Since each $a_n \geq 0$ and $\sum a_n$ converges, by the Cauchy Criterion for Series we can choose $m \in \mathbb{Z}^+$ such that for all $\ell > k \geq m$ we have $\sum_{k=1}^{\ell}$ $\sum_{n=k+1} a_n < \epsilon$. Then for all $\ell > k \geq m$ and all $x \in A$ we have

$$
\begin{aligned} \left| f_{\ell}(x) - f_{k}(x) \right| &= \left| (f_{\ell}(x) - f_{\ell-1}(x)) + (f_{\ell-1}(x) - f_{\ell-2}(x)) + \dots + (f_{k+1}(x) - f_{k}(x)) \right| \\ &\le \left| f_{\ell}(x) - f_{\ell-1}(x) \right| + \left| f_{\ell-1}(x) - f_{\ell-2}(x) \right| + \dots + \left| f_{k+1}(x) - f_{k}(x) \right| \\ &\le a_{\ell} + a_{\ell-1} + \dots + a_{k+1} = \sum_{n=k+1}^{\ell} a_{n} < \epsilon. \end{aligned}
$$

Thus $f_n \to f$ uniformly in A by the Cauchy Criterion for Uniform Convergence of Sequences of Functions. (b) Suppose that $f_n \to g$ uniformly on A and $f_n(x) \ge 0$ for all $n \ge 1$ and all $x \in A$. Show that $\sqrt{f_n} \to \sqrt{g}$ uniformly on A.

Solution: Let $\epsilon > 0$. Since $f_n \to g$ uniformly on A we can choose $m \in \mathbb{Z}^+$ such that for all $n \in \mathbb{Z}^+$, if $n \geq m$ then $|f_n(x) - g(x)| < \epsilon^2$ for all $x \in A$. Let $n \in \mathbb{Z}^+$ with $n \geq m$ and let $x \in A$. If $\sqrt{f_n(x)} + \sqrt{g(x)} < \epsilon$ then (by the Triangle Inequality) $\left|\sqrt{f_n(x)} - \sqrt{g(x)}\right| \leq \sqrt{f_n(x)} + \sqrt{g(x)} < \epsilon$, and if $\sqrt{f_n(x)} + \sqrt{g(x)} \geq \epsilon$ then

$$
\left|\sqrt{f_n(x)}-\sqrt{g(x)}\right|=\frac{\left|\sqrt{f_n(x)}-\sqrt{g(x)}\right|\left|\sqrt{f_n(x)}+\sqrt{g(x)}\right|}{\left|\sqrt{f_n(x)}+\sqrt{g(x)}\right|}=\frac{\left|f_n(x)-g(x)\right|}{\sqrt{f_n(x)}+\sqrt{g(x)}}<\frac{\epsilon^2}{\epsilon}=\epsilon.
$$

Thus $\sqrt{f_n} \to \sqrt{g}$ uniformly on A, as required.

(c) Suppose that $f_n \to g$ uniformly on A, g is bounded, and h is continuous. Prove that $h \circ f_n \to h \circ g$ uniformly on A.

Solution: Since g is bounded we can choose $M \geq 0$ so that $|g(x)| \leq M$ for all $x \in A$. Since $f_n \to g$ uniformly on A we can choose $m_1 \in \mathbb{Z}^+$ such that $n \geq m_1 \Longrightarrow |f_n(x) - g(x)| \leq 1$ for all $x \in A$. Then for $n \geq m_1$ and $x \in A$ we have $|f_n(x)| \leq |f_n(x) - g(x)| + |g(x)| \leq 1 + M$ so that $f_n(x) \in [-(M+1), M+1]$. Let $\epsilon > 0$. Since h is uniformly continuous on $[-(M+1), M+1]$, we can choose $\delta > 0$ so that for all $u, v \in [-(M+1), M+1]$ we have $|u - v| < \delta \implies |h(u) - h(v)| < \epsilon$. Since $f_n \to g$ uniformly on A we can choose $m \geq m_1$ so that $n \geq m \Longrightarrow |f_n(x) - g(x)| < \delta$ for all $x \in A$. Let $n \geq m$ and let $x \in A$. Then we have $f_n(x), g(x) \in \big[-(M+1), M+1\big]$ with $|f_n(x) - g(x)| < \delta$ and hence $|h(f_n(x)) - h(g(x))| < \epsilon$.

3: (a) Approximate the value of $e^{3/5}$ so that the absolute error is at most $\frac{1}{1,000}$. Solution: We have

$$
e^{3/5} = 1 + \left(\frac{3}{5}\right) + \frac{1}{2!} \left(\frac{3}{5}\right)^2 + \frac{1}{3!} \left(\frac{3}{5}\right)^3 + \frac{1}{4!} \left(\frac{3}{5}\right)^4 + \frac{1}{5!} \left(\frac{3}{5}\right)^5 \cdots
$$

\n
$$
\approx 1 + \left(\frac{3}{5}\right) + \frac{1}{2!} \left(\frac{3}{5}\right)^2 + \frac{1}{3!} \left(\frac{3}{5}\right)^3 + \frac{1}{4!} \left(\frac{3}{5}\right)^4
$$

\n
$$
= 1 + \frac{3}{5} + \frac{9}{50} + \frac{9}{250} + \frac{27}{5000} = \frac{9107}{5000} = 1.8214
$$

with error

$$
E = \frac{1}{5!} \left(\frac{3}{5}\right)^5 + \frac{1}{6!} \left(\frac{3}{5}\right)^6 + \frac{1}{7!} \left(\frac{3}{5}\right)^7 + \frac{1}{8!} \left(\frac{3}{5}\right)^8 + \cdots
$$

\n
$$
= \frac{1}{5!} \left(\frac{3}{5}\right)^5 \left(1 + \frac{1}{6} \left(\frac{3}{5}\right) + \frac{1}{6 \cdot 7} \left(\frac{3}{5}\right)^2 + \frac{1}{6 \cdot 7 \cdot 8} \left(\frac{3}{5}\right)^3 + \cdots\right)
$$

\n
$$
\leq \frac{1}{5!} \left(\frac{3}{5}\right)^5 \left(1 + \frac{1}{10} + \frac{1}{10^2} + \frac{1}{10^3} + \cdots\right)
$$

\n
$$
= \frac{\frac{1}{5!} \left(\frac{3}{5}\right)^5}{1 - \frac{1}{10}} = \frac{1}{5!} \cdot \frac{3^5}{5^5} \cdot \frac{10}{9} = \frac{3^2}{2^2 5^5} = \frac{9}{12500} < \frac{1}{1000}
$$

by the Comparison Test and the formula for the sum of a geometric series.

(b) Evaluate $\sum_{n=0}^{\infty}$ $\frac{1}{(n+1)(n+2)2^n}$.

Solution: Starting with a basic geometric series and integrating twice (using Theorem 4.31) then dividing by x^2 , for $0 \neq |x| < 1$ we have

$$
\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots
$$

$$
-\ln(1-x) = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \cdots
$$

$$
(1-x)\ln(1-x) + x = \frac{1}{1\cdot 2}x^2 + \frac{1}{2\cdot 3}x^3 + \frac{1}{3\cdot 4}x^4 + \frac{1}{4\cdot 5}x^5 + \cdots
$$

$$
\frac{(1-x)\ln(1-x) + x}{x^2} = \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3}x + \frac{1}{3\cdot 4}x^2 + \frac{1}{4\cdot 5}x^3 + \cdots = \sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}x^n.
$$

Put in $x = \frac{1}{2}$ to get

$$
\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)2^n} = \frac{\frac{1}{2} \ln \frac{1}{2} + \frac{1}{2}}{\frac{1}{4}} = 2 - 2 \ln 2.
$$

(c) Evaluate $\sum_{n=0}^{\infty}$ $(-1)^n$ $\frac{(-1)^n}{4^n}$ $\binom{2n}{n}$.

Solution: Let $a_n = \frac{(-1)^n}{4^n}$ $\frac{(-1)^n}{4^n} \binom{2n}{n}$. For $n \geq 1$ we have

$$
|a_n| = \frac{1}{4^n} {2n \choose n} = \frac{(2n)!}{(2^n n!)^2} = \frac{1 \cdot 2 \cdot 3 \cdot \ldots \cdot 2n}{(2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2n)^2} = \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2n}.
$$

Since $a_0 = 1$ and $|a_n| = \frac{2n-1}{2n} |a_{n-1}| \leq |a_{n-1}|$ for $n \geq 1$, it follows that the sequence $(|a_n|)$ is decreasing. Since

$$
|a_n|^2 = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} \cdot \frac{2n-1}{2n} \le \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5} \cdot \dots \cdot \frac{2n-1}{2n} \cdot \frac{2n}{2n+1} = \frac{1}{2n+1}
$$

we have $|a_n| \leq \frac{1}{\sqrt{2n+1}} \longrightarrow 0$ as $n \to \infty$. Thus $\sum a_n = \sum (-1)^n |a_n|$ converges by the Alternating Series Test. Note that

$$
\frac{(-1)^n}{4^n} \binom{2n}{n} = \frac{(-1)^n}{4^n} \cdot \frac{(2n)!}{(n!)^2} = (-1)^n \frac{1 \cdot 2 \cdot 3 \cdots (2n)}{(2 \cdot 4 \cdot 6 \cdots (2n))^2} = (-1)^n \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} = \frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2}) \cdots (-\frac{2n-1}{2})}{n!} = {\binom{-1/2}{n}}
$$

so for $|x| < 1$, by Theorem 4.40 (the sum of the binomial series), we have

$$
(1+x)^{-1/2} = \sum_{n=0}^{\infty} {\binom{-1/2}{n}} x^n = \sum_{n=0}^{n} \frac{(-1)^n}{4^n} {\binom{2n}{n}} x^n.
$$

Since $\sum_{n=0}^{\infty}$ $(-1)^n$ $\frac{(-1)^n}{4^n}$ $\binom{2n}{n}$ converges, it follows from Abel's Theorem (Part 4 of Theorem 4.23) that $\sum_{n=0}^n$ $(-1)^n$ $\frac{(-1)^n}{4^n} \binom{2n}{n} x^n$ converges uniformly on $[0, 1]$ and hence, by Theorem 4.14 (uniform convergence and continuity), its sum $g(x) = \sum_{n=0}^{\infty}$ $(-1)^n$ $\frac{(-1)^n}{4^n}$ $\binom{2n}{n}$ x^n is continuous on [0, 1]. Since $f(x) = (1+x)^{-1/2}$ is also continuous on [0, 1] with $f(x) = g(x)$ when $x < 1$, we have $g(1) = f(1)$, that is

$$
\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n} \binom{2n}{n} = g(1) = f(1) = (1+1)^{-1/2} = \frac{1}{\sqrt{2}}.
$$

4: (a) Show that for $n, m \in \mathbb{Z}$ with $n, m \geq 1$ we have

$$
\int_{-\pi}^{\pi} \cos(nx) \cos(mx) \, dx = \begin{cases} 0 \text{ if } n \neq m \\ \pi \text{ if } n = m \end{cases} \text{ and } \int_{-\pi}^{\pi} x^2 \cos(mx) \, dx = \frac{4(-1)^m}{m^2} \pi \, .
$$

Solution: When $n = m$, the first integral becomes

$$
\int_{-\pi}^{\pi} \cos^2(nx) \, dx = \int_{-\pi}^{\pi} \frac{1}{2} + \frac{1}{2} \cos(2nx) \, dx = \left[\frac{1}{2} \theta + \frac{1}{4n} \sin(2nx) \right]_{-\pi}^{\pi} = \pi.
$$

When $n \neq m$, using the trigonometric identity $cos(a) cos(b) = \frac{1}{2} (cos(a+b) + cos(a-b))$, the first integral becomes

$$
\int_{-\pi}^{\pi} \cos(nx)\cos(mx) dx = \int_{-\pi}^{\pi} \frac{1}{2} \cos((n+m)x) + \frac{1}{2} \cos((n-m)x) dx
$$

=
$$
\left[\frac{1}{2(n+m)} \sin((n+m)x) + \frac{1}{2(n-m)} \sin((n-m)x) \right]_{-\pi}^{\pi} = 0.
$$

Integrating by parts twice, first using $u = x^2$, $du = 2x dx$, $v = \frac{1}{m} \sin mx$ and $dv = \cos mx dx$, then using $u = \frac{2}{m}x$, $du = \frac{2}{m} dx$, $v = -\frac{1}{m}\cos mx$ and $dv = \sin mx dx$, the second integral becomes

$$
\int_{-\pi}^{\pi} x^2 \cos(mx) \, dx = \left[\frac{1}{m} x^2 \sin(mx) - \int \frac{2}{m} x \sin(mx) \, dx \right]_{-\pi}^{\pi}
$$

$$
= \left[\frac{1}{m} x^2 \sin(mx) + \frac{2}{m^2} x \cos(mx) - \int \frac{2}{m^2} \cos(mx) \, dx \right]_{-\pi}^{\pi}
$$

$$
= \left[\frac{1}{m} x^2 \sin(mx) + \frac{2}{m^2} x \cos(mx) - \frac{2}{m^2} \sin(mx) \right]_{-\pi}^{\pi}
$$

$$
= \left(\frac{2}{m^2} \pi \cos(mx) \right) - \left(\frac{2}{m^2} (-\pi) \cos(-\pi x) \right) = \frac{4\pi}{m^2} \cos(mx) = \frac{4\pi(-1)^m}{m^2}.
$$

(b) Suppose that there exists a sequence $\{a_n\}$ such that $\sum |a_n|$ converges which has the property that

$$
\sum_{n=1}^{\infty} a_n \cos(nx) = x^2 + c
$$
 for all $x \in [-\pi, \pi]$ and for some $c \in \mathbb{R}$.

Evaluate the constant c and all of the terms a_n , then evaluate the sums $\sum_{n=1}^{\infty}$ $\frac{1}{n^2}$ and $\sum_{n=1}^{\infty}$ $\frac{(-1)^{n+1}}{n^2}$.

Solution: Note that since $\sum |a_n|$ converges, the series $\sum a_n \cos(nx)$ and $\sum a_n \cos(nx) \cos(mx)$ both converge uniformly by the Weirstrass M-Test.

We have
$$
\int_{-\pi}^{\pi} x^2 + c \, dx = \left[\frac{1}{3} x^3 + cx \right]_{-\pi}^{\pi} = \frac{2}{3} \pi^3 + 2 \pi c,
$$
 and from uniform convergence we also have

$$
\int_{-\pi}^{\pi} x^2 + c \, dx = \int_{-\pi}^{\pi} \sum_{n=1}^{\infty} a_n \cos(nx) \, dx = \sum_{n=1}^{\infty} a_n \int_{-\pi}^{\pi} \cos(nx) \, dx = 0.
$$

Thus $\frac{2}{3}\pi^3 + 2\pi c = 0$ and so $c = -\frac{\pi^2}{3}$.

 3^{n} + 2 $n e = 0$ and so $e = \frac{3}{\pi}$
Also, for each m we have \int_{0}^{π} (*s*) $-\pi$ $(x^2 + c) \cos(mx) dx = \frac{4(-1)^m}{m^2} \pi$ by part (a), since $\int_{-\pi}^{\pi}$ $cos(mx) dx = 0$, and from uniform convergence, we also have

$$
\int_{-\pi}^{\pi} (x^2 + c) \cos(mx) dx = \int_{-\pi}^{\pi} \sum_{n=1}^{\infty} a_n \cos(nx) \cos(mx) dx = \sum_{n=1}^{\infty} a_n \int_{-\pi}^{\pi} \cos(nx) \cos(mx) dx = a_m \pi.
$$

Thus $\frac{4(-1)^m}{m^2} \pi = a_m \pi$ and so $a_m = \frac{4(-1)^m}{m^2}$.

For all
$$
x \in [-\pi, \pi]
$$
, we have $x^2 - \frac{\pi^2}{3} = \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} \cos(nx)$. Put in $x = \pi$ to get $\pi^2 - \frac{\pi^2}{3} = \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} (-1)^n$
and so $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Put in $x = 0$ to get $-\frac{\pi^2}{3} = \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2}$ and so $\sum_{n=1}^{\infty} \frac{(-1)^2}{2^2} = \frac{\pi^2}{12}$.