
PMATH 333 Real Analysis, Solutions to Assignment 5

1: For each of the following sequences of functions (fn)n≥1, find the set A of points x ∈ R for which the sequence
of real numbers

(
fn(x)

)
n≥1 converges, find the pointwise limit g(x) = lim

n→∞
fn(x) for all x ∈ A, and determine

whether fn → g uniformly in A.

(a) fn(x) = (sinx)1/(2n+1)

Solution: If x = πk for some k ∈ Z then sinx = 0 so fn(x) = 0 and so lim
n→∞

fn(x) = 0. If x ∈
(
2πk, π(2k+ 1)

)
for some k ∈ Z then 0 < sinx ≤ 1 and so lim

n→∞
fn(x) = 1. If x ∈

(
π(2k − 1), 2πk

)
for some k ∈ Z then

−1 ≤ sinx < 0 and so lim
n→∞

fn(x) = −1. Thus the sequence converges for all x ∈ R, so A = R, and the limit

function g : R→ R is given by

g(x) =


0 , if x = πk

1 , if x ∈
(
2πk, π(2k + 1)

)
−1 , if x ∈

(
π(2k − 1), 2πk

)
Since each function fn is continuous everywhere, but g(x) is not continuous at x = πk with k ∈ Z, the
convergence cannot be uniform.

(b) fn(x) =
√
x2 + 1

n2

Solution: For all x ∈ R we have lim
n→∞

fn(x) = lim
n→∞

√
x2 +

1

n2
=
√
x2 = |x|. Thus the set of convergence is

A = R and the limit function g : R → R is given by g(x) = |x| for all x ∈ R. The convergence is uniform
because given ε > 0 we can choose m > 1

ε and then for all x ∈ R and for all n ≥ m we have

|fn(x)− g(x)| =
√
x2 + 1

n2 −
√
x2 =

(
x2 + 1

n2

)
−
(
x2
)√

x2 + 1
n2 +

√
x2

=
1
n2√

x2 + 1
n2 +

√
x2
≤

1
n2

1
n+0

= 1
n ≤

1
m < ε.

(c) fn(x) = xn − x2n

Solution: Note that fn(x) = xn − x2n = xn(1 − xn). When x < −1, for even values of n we have xn → +∞
and (1 − xn) → −∞ so that fn(x) = xn(1 − xn) → −∞, and for odd values of n we have xn → −∞ and
(1− x2)→ +∞ so that fn(x)→ −∞, and so lim

n→∞
fn(x) = −∞. When x = −1, for even values of n we have

fn(x) = xn − x2n = 1 − 1 = 0 and for odd values of n we have fn(x) = xn − x2n = −1 − 1 = −2 and so
lim
n→∞

fn(x) does not exist. When −1 < x < 1 we have xn → 0 and x2n → 0 and so lim
n→∞

fn(x) = 0. When

x = 1 we have fn(x) = 0 for all n so lim
n→∞

fn(x) = 0 When x > 1 we have xn → ∞ and (1 − xn) → −∞
and so fn(x) = xn(1− xn)→ −∞. Thus the set of points x ∈ R for which the sequence

(
fn(x)

)
converges is

A = (−1, 1] and the limit function g : (−1, 1] → R is given by g(x) = 0 for all x ∈ (−1, 1]. The convergence
is not uniform because given any odd n ∈ Z+, since fn is continuous everywhere with fn(−1) = −2 and
fn(0) = 0 we can, by the Intermediate Value Theorem, choose x ∈ (−1, 0) such that fn(x) = −1 and then we
have |fn(x)− g(x)| = 1. Alternatively, we can see that the convergence is not uniform because for all n ∈ Z+

we have fn
(

1
n√2

)
= 1√

2
− 1

2 =
√
2−1
2 so that |fn(x)− g(x)| =

√
2−1
2 .



2: Let (an)n≥1 be a sequence in R, let (fn)n≥1 be a sequence of functions fn : A ⊆ R → R, let g : A ⊆ R → R
and let h : R→ R.

(a) Suppose that
∑
n≥1 an converges and

∣∣fn+1(x) − fn(x)
∣∣ ≤ an for all n ≥ 1 and all x ∈ A. Show that

(fn)n≥0 converges uniformly on A.

Solution: Let ε > 0. Since each an ≥ 0 and
∑
an converges, by the Cauchy Criterion for Series we can choose

m ∈ Z+ such that for all ` > k ≥ m we have
∑̀

n=k+1

an < ε. Then for all ` > k ≥ m and all x ∈ A we have∣∣f`(x)− fk(x)
∣∣ =

∣∣(f`(x)− f`−1(x)) + (f`−1(x)− f`−2(x)) + · · ·+ (fk+1(x)− fk(x))
∣∣

≤
∣∣f`(x)− f`−1(x)

∣∣+
∣∣f`−1(x)− f`−2(x)

∣∣+ · · ·+
∣∣fk+1(x)− fk(x)

∣∣
≤ a` + a`−1 + · · ·+ ak+1 =

∑̀
n=k+1

an < ε.

Thus fn → f uniformly in A by the Cauchy Criterion for Uniform Convergence of Sequences of Functions.

(b) Suppose that fn → g uniformly on A and fn(x) ≥ 0 for all n ≥ 1 and all x ∈ A. Show that
√
fn →

√
g

uniformly on A.

Solution: Let ε > 0. Since fn → g uniformly on A we can choose m ∈ Z+ such that for all n ∈ Z+, if n ≥ m
then |fn(x) − g(x)| < ε2 for all x ∈ A. Let n ∈ Z+ with n ≥ m and let x ∈ A. If

√
fn(x) +

√
g(x) < ε then

(by the Triangle Inequality)
∣∣√fn(x)−

√
g(x)

∣∣ ≤√fn(x) +
√
g(x) < ε, and if

√
fn(x) +

√
g(x) ≥ ε then∣∣√fn(x)−

√
g(x)

∣∣ =

∣∣√fn(x)−√g(x)∣∣ ∣∣√fn(x)+√g(x)∣∣∣∣√fn(x)+√g(x)∣∣ =
|fn(x)−g(x)|√
fn(x)+

√
g(x)

<
ε2

ε = ε.

Thus
√
fn →

√
g uniformly on A, as required.

(c) Suppose that fn → g uniformly on A, g is bounded, and h is continuous. Prove that h ◦ fn → h ◦ g
uniformly on A.

Solution: Since g is bounded we can choose M ≥ 0 so that |g(x)| ≤ M for all x ∈ A. Since fn → g
uniformly on A we can choose m1 ∈ Z+ such that n ≥ m1 =⇒

∣∣fn(x) − g(x)
∣∣ ≤ 1 for all x ∈ A. Then for

n ≥ m1 and x ∈ A we have
∣∣fn(x)

∣∣ ≤ ∣∣fn(x) − g(x)
∣∣ +

∣∣g(x)
∣∣ ≤ 1 + M so that fn(x) ∈

[
− (M+1),M+1

]
.

Let ε > 0. Since h is uniformly continuous on
[
− (M +1),M +1

]
, we can choose δ > 0 so that for all

u, v ∈
[
− (M+1),M+1

]
we have |u − v| < δ =⇒

∣∣h(u) − h(v)
∣∣ < ε. Since fn → g uniformly on A we can

choose m ≥ m1 so that n ≥ m =⇒
∣∣fn(x)− g(x)

∣∣ < δ for all x ∈ A. Let n ≥ m and let x ∈ A. Then we have

fn(x), g(x) ∈
[
− (M+1),M+1

]
with

∣∣fn(x)− g(x)
∣∣ < δ and hence

∣∣h(fn(x)
)
− h
(
g(x)

)∣∣ < ε.



3: (a) Approximate the value of e3/5 so that the absolute error is at most 1
1,000 .

Solution: We have
e3/5 = 1 +

(
3
5

)
+ 1

2!

(
3
5

)2
+ 1

3!

(
3
5

)3
+ 1

4!

(
3
5

)4
+ 1

5!

(
3
5

)5 · · ·
∼= 1 +

(
3
5

)
+ 1

2!

(
3
5

)2
+ 1

3!

(
3
5

)3
+ 1

4!

(
3
5

)4
= 1 + 3

5 + 9
50 + 9

250 + 27
5000 = 9107

5000 = 1.8214

with error
E = 1

5!

(
3
5

)5
+ 1

6!

(
3
5

)6
+ 1

7!

(
3
5

)7
+ 1

8!

(
3
5

)8
+ · · ·

= 1
5!

(
3
5

)5 (
1 + 1

6

(
3
5

)
+ 1

6·7
(
3
5

)2
+ 1

6·7·8
(
3
5

)3
+ · · ·

)
≤ 1

5!

(
3
5

)5 (
1 + 1

10 + 1
102 + 1

103 + · · ·
)

=
1
5!

(
3
5

)5
1− 1

10

= 1
5! ·

35

55 ·
10
9 = 32

22 55 = 9
12500 <

1
1000

by the Comparison Test and the formula for the sum of a geometric series.

(b) Evaluate
∞∑
n=0

1
(n+1)(n+2)2n .

Solution: Starting with a basic geometric series and integrating twice (using Theorem 4.31) then dividing by
x2, for 0 6= |x| < 1 we have

1

1− x
= 1 + x+ x2 + x3 + · · ·

− ln(1− x) = x+ 1
2 x

2 + 1
3 x

3 + 1
4 x

4 + · · ·
(1− x) ln(1− x) + x = 1

1·2 x
2 + 1

2·3 x
3 + 1

3·4 x
4 + 1

4·5 x
5 + · · ·

(1− x) ln(1− x) + x

x2
= 1

1·2 + 1
2·3 x+ 1

3·4 x
2 + 1

4·5 x
3 + · · · =

∞∑
n=1

1
(n+1)(n+2) x

n .

Put in x = 1
2 to get

∞∑
n=0

1
(n+1)(n+2)2n =

1
2 ln 1

2+
1
2

1
4

= 2− 2 ln 2.

(c) Evaluate
∞∑
n=0

(−1)n
4n

(
2n
n

)
.

Solution: Let an = (−1)n
4n

(
2n
n

)
. For n ≥ 1 we have

|an| = 1
4n

(
2n
n

)
= (2n)!

(2nn!)2 = 1·2·3·...·2n
(2·4·6·...·2n)2 = 1·3·5·...·(2n−1)

2·4·6·...·2n .

Since a0 = 1 and |an| = 2n−1
2n |an−1| ≤ |an−1| for n ≥ 1, it follows that the sequence

(
|an|

)
is decreasing. Since

|an|2 = 1
2 ·

1
2 ·

3
4 ·

3
4 ·

5
6 ·

5
6 · . . . ·

2n−1
2n ·

2n−1
2n ≤ 1

2 ·
2
3 ·

3
4 ·

4
5 · . . . ·

2n−1
2n ·

2n
2n+1 = 1

2n+1

we have |an| ≤ 1√
2n+1

−→ 0 as n→∞. Thus
∑
an =

∑
(−1)n|an| converges by the Alternating Series Test.

Note that

(−1)n
4n

(
2n
n

)
= (−1)n

4n · (2n)!(n!)2 = (−1)n 1·2·3···(2n)
(2·4·6···(2n))2 = (−1)n 1·3·5···(2n−1)

2·4·6···(2n) =
(− 1

2 )(−
3
2 )(−

5
2 )···(−

2n−1
2 )

n! =
(−1/2

n

)
so for |x| < 1, by Theorem 4.40 (the sum of the binomial series), we have

(1 + x)−1/2 =
∞∑
n=0

(−1/2
n

)
xn =

n∑
n=0

(−1)n
4n

(
2n
n

)
xn.

Since
∞∑
n=0

(−1)n
4n

(
2n
n

)
converges, it follows from Abel’s Theorem (Part 4 of Theorem 4.23) that

n∑
n=0

(−1)n
4n

(
2n
n

)
xn

converges uniformly on [0, 1] and hence, by Theorem 4.14 (uniform convergence and continuity), its sum

g(x) =
∞∑
n=0

(−1)n
4n

(
2n
n

)
xn is continuous on [0, 1]. Since f(x) = (1 + x)−1/2 is also continuous on [0, 1] with

f(x) = g(x) when x < 1, we have g(1) = f(1), that is

∞∑
n=0

(−1)n
4n

(
2n
n

)
= g(1) = f(1) = (1 + 1)−1/2 = 1√

2
.



4: (a) Show that for n,m ∈ Z with n,m ≥ 1 we have∫ π

−π
cos(nx) cos(mx) dx =

{
0 if n 6= m

π if n = m
and

∫ π

−π
x2 cos(mx) dx = 4(−1)m

m2 π .

Solution: When n = m, the first integral becomes∫ π

−π
cos2(nx) dx =

∫ π

−π

1
2 + 1

2 cos(2nx) dx =
[
1
2θ + 1

4n sin(2nx)
]π
−π

= π.

When n 6= m, using the trigonometric identity cos(a) cos(b) = 1
2

(
cos(a + b) + cos(a − b)

)
, the first integral

becomes ∫ π

−π
cos(nx) cos(mx) dx =

∫ π

−π

1
2 cos((n+m)x) + 1

2 cos((n−m)x) dx

=
[

1
2(n+m) sin((n+m)x) + 1

2(n−m) sin((n−m)x)
]π
−π

= 0.

Integrating by parts twice, first using u = x2, du = 2x dx, v = 1
m sinmx and dv = cosmx dx, then using

u = 2
mx, du = 2

m dx, v = − 1
m cosmx and dv = sinmx dx, the second integral becomes∫ π

−π
x2 cos(mx) dx =

[
1
m x2 sin(mx)−

∫
2
m x sin(mx) dx

]π
−π

=

[
1
m x2 sin(mx) + 2

m2 x cos(mx)−
∫

2
m2 cos(mx) dx

]π
−π

=
[

1
m x2 sin(mx) + 2

m2 x cos(mx)− 2
m2 sin(mx)

]π
−π

=
(

2
m2 π cos(mx)

)
−
(

2
m2 (−π) cos(−πx)

)
= 4π

m2 cos(mx) = 4π(−1)m
m2 .

(b) Suppose that there exists a sequence {an} such that
∑
|an| converges which has the property that

∞∑
n=1

an cos(nx) = x2 + c for all x ∈ [−π, π] and for some c ∈ R .

Evaluate the constant c and all of the terms an, then evaluate the sums
∞∑
n=1

1
n2 and

∞∑
n=1

(−1)n+1

n2 .

Solution: Note that since
∑
|an| converges, the series

∑
an cos(nx) and

∑
an cos(nx) cos(mx) both converge

uniformly by the Weirstrass M-Test.

We have

∫ π

−π
x2 + c dx =

[
1
3 x

3 + cx
]π
−π

= 2
3π

3 + 2πc, and from uniform convergence we also have

∫ π

−π
x2 + c dx =

∫ π

−π

∞∑
n=1

an cos(nx) dx =

∞∑
n=1

an

∫ π

−π
cos(nx) dx = 0.

Thus 2
3π

3 + 2πc = 0 and so c = −π
2

3 .

Also, for each m we have

∫ π

−π
(x2 + c) cos(mx) dx = 4(−1)m

m2 π by part (a), since

∫ π

−π
cos(mx) dx = 0, and

from uniform convergence, we also have∫ π

−π
(x2 + c) cos(mx) dx =

∫ π

−π

∞∑
n=1

an cos(nx) cos(mx) dx =

∞∑
n=1

an

∫ π

−π
cos(nx) cos(mx) dx = am π .

Thus 4(−1)m
m2 π = am π and so am = 4(−1)m

m2 .

For all x ∈ [−π, π], we have x2− π2

3 =

∞∑
n=1

4(−1)n
n2 cos(nx). Put in x = π to get π2− π2

3 =
∞∑
n=1

4(−1)n
n2 (−1)n

and so
∞∑
n=1

1
n2 = π2

6 . Put in x = 0 to get −π
2

3 =
∞∑
n=1

4(−1)n
n2 and so

∞∑
n=1

(−1)2
22 = π2

12 .


