- 1: (a) Let $A = \{x \in \mathbb{R}^2 | 0 < |x| \le 1\}$. Prove, from the definition of a compact set, that A is not compact.
 - (b) Let $B = \{(x, y) \in \mathbb{R}^2 \mid y > x^2\}$. Prove, from the definition of an open set, that B is open in \mathbb{R}^2 .
 - (c) For $n \ge 1$, let $s_n = \sum_{k=1}^n \left(\frac{1+i}{3}\right)^k$. Prove, from the definition of a limit, that $\lim_{n \to \infty} s_n = \frac{1+3i}{5}$.
- **2:** For each of the following subsets $A \subseteq \mathbb{R}^n$, determine whether A is closed, whether A is compact, and whether A is connected.

(a)
$$A = \{ (t^2 - 1, t^3 - t) \in \mathbb{R}^2 \mid t \in \mathbb{R} \}.$$

- (b) $A = \left\{ (0,0) \neq (x,y) \in \mathbb{R}^2 \left| \left| \operatorname{Re}\left(\frac{1}{x+iy}\right) \right| \ge 1 \right\}$ (where $\operatorname{Re}(z)$ denotes the real part of $z \in \mathbb{C}$). (c) $A = \left\{ (u,v,w,x,y,z) \in \mathbb{R}^6 \left| \operatorname{rank} \begin{pmatrix} u & v & w \\ x & y & z \end{pmatrix} \neq 2 \right\}$.
- **3:** (a) Prove that if the sets $A, B \subseteq \mathbb{R}^n$ are connected and $A \cap B \neq \emptyset$, then $A \cup B$ is connected.
 - (b) Prove that if $A \subseteq \mathbb{R}^n$ and $B \subseteq \mathbb{R}^m$ are both connected then $A \times B \subseteq \mathbb{R}^{n+m}$ is connected.
 - (c) Prove that if $A \subseteq \mathbb{R}^n$ and $B \subseteq \mathbb{R}^m$ are both compact then $A \times B \subseteq \mathbb{R}^{n+m}$ is compact.
- 4: Let \mathbb{R}^{ω} be the set of all sequences in \mathbb{R} , that is $\mathbb{R}^{\omega} = \{x = (x_j)_{j \ge 1} | \operatorname{each} x_j \in \mathbb{R}\}$ and let \mathbb{R}^{∞} be the set of eventually zero sequences in \mathbb{R} , that is $\mathbb{R}^{\infty} = \{x = (x_j)_{j \ge 1} \in \mathbb{R}^{\omega} | \exists m \in \mathbb{Z}^+ \forall j \in \mathbb{Z}^+ (j \ge m \Longrightarrow x_j = 0)\}$. For $x, y \in \mathbb{R}^{\infty}$, define $x \cdot y = \sum_{j=1}^{\infty} x_j y_j$ and $|x| = (x \cdot x)^{1/2}$.

When $(x_n)_{n\geq 1}$ is a sequence in \mathbb{R}^{∞} , each $x_n \in \mathbb{R}^{\infty}$, and we can write $x_n = (x_{n,j})_{j\geq 1} = (x_{n,1}, x_{n,2}, x_{n,3}, \cdots)$. For a sequence $(x_n)_{n\geq 1}$ in \mathbb{R}^{∞} and an element $a \in \mathbb{R}^{\infty}$, we say the sequence $(x_n)_{n\geq 1}$ converges to a in \mathbb{R}^{∞} , and we write $x_n \to a$ in \mathbb{R}^{∞} or $\lim_{n\to\infty} x_n = a$ in \mathbb{R}^{∞} , when $\forall \epsilon > 0 \exists m \in \mathbb{Z}^+ \forall n \in \mathbb{Z}^+$ $(n \geq m \Longrightarrow |x_n - a| < \epsilon)$, we say that $(x_n)_{n\geq 1}$ is bounded when $\exists r \geq 0 \forall n \in \mathbb{Z}^+ |x_n| \leq r$, and we say that $(x_n)_{n\geq 1}$ is Cauchy when $\forall \epsilon > 0 \exists m \in \mathbb{Z}^+ \forall k, \ell \in \mathbb{Z}^+$ $(k, \ell \geq m \Longrightarrow |x_k - x_\ell| < \epsilon)$.

(a) Prove that for all sequences $(x_n)_{n\geq 1}$ in \mathbb{R}^{∞} , and all $a \in \mathbb{R}^{\infty}$, if $\lim_{n \to \infty} x_n = a$ in \mathbb{R}^{∞} then $\lim_{n \to \infty} x_{n,j} = a_j$ for all $j \in \mathbb{Z}^+$, but that the converse does not hold.

(b) Prove that for all sequences $(x_n)_{n\geq 1}$ in \mathbb{R}^{∞} , if the sequence $(x_n)_{n\geq 1}$ converges in \mathbb{R}^{∞} (to some $a \in \mathbb{R}^{\infty}$) then it is Cauchy, but that the converse does not hold.

(c) Determine whether every bounded sequence $(x_n)_{n\geq 1}$ in \mathbb{R}^{∞} has a convergent subsequence $(x_{n_k})_{k\geq 1}$ in \mathbb{R}^{∞} .