1: (a) Let $A = \{x \in \mathbb{R}^2 | 0 < |x| \le 1\}$. Prove, from the definition of a compact set, that A is not compact.

Solution: For each $k \in \mathbb{Z}^+$ let U_k be the open set $U_k = \overline{B}(0, \frac{1}{k})^c = \{x \in \mathbb{R}^n | |x| > \frac{1}{k}\}$ and let $S = \{U_k | k \in \mathbb{Z}^+\}$. Note that $\bigcup S = \mathbb{R}^n \setminus \{0\}$ so S is an open cover of A. Let T be any finite subset of S. If $T = \emptyset$ then $\bigcup T = \emptyset$ so $A \not\subseteq \bigcup T$. Suppose that $T \neq \emptyset$, say $T = \{U_{k_1}, U_{k_2}, \cdots, U_{k_m}\}$ with $k_1 < k_2 < \cdots < k_m$. Since $U_{k_1} \subseteq U_{k_2} \subseteq \cdots \subseteq U_{k_m}$ we have $\bigcup T = \bigcup_{i=1}^m U_{k_i} = U_{k_m} = \overline{B}(0, \frac{1}{k_m})^c$ and so $A \not\subseteq \bigcup T$. This shows that the open cover S has no finite subcover T, and so A is not compact.

(b) Let $B = \{(x, y) \in \mathbb{R}^2 \mid y > x^2\}$. Show, from the definition of an open set, that B is open in \mathbb{R}^2 .

Solution: Let $(a,b) \in B$ so we have $b > a^2$ and hence $\sqrt{b} > |a|$. Let $r = \min\left(\frac{b-a^2}{2}, \frac{\sqrt{b}-|a|}{2}\right)$. We claim that $B((a,b),r) \subseteq B$. Let $(x,y) \in B((a,b),r)$. Note that

$$|x-a| \le \sqrt{(x-a)^2 + (y-b)^2} = d((a,b),(x,y)) < r \le \frac{\sqrt{b}-|a|}{2}$$

and similarly

$$|y - b| < r \le \frac{b - a^2}{2}$$

It follows that $|x| - |a| \le |x - a| < \frac{\sqrt{b} - |a|}{2}$ so that $|x| \le \frac{\sqrt{b} + |a|}{2}$ and that $b - y \le |y - b| < \frac{b - a^2}{2}$ so that $y > \frac{b + a^2}{2}$. Note that $0 \le (\sqrt{b} - |a|)^2 = b + a^2 - 2|a|\sqrt{b}$ so we have $2|a|\sqrt{b} \le b + a^2$. It follows that

$$x^{2} < \left(\frac{\sqrt{b}+|a|}{2}\right)^{2} = \frac{b+a^{2}+2|a|\sqrt{b}}{4} \le \frac{b+a^{2}}{2} < y.$$

Since $y > x^2$ we have $(x, y) \in B$. This shows that $B((a, b), r) \subseteq B$, as claimed, and so S is open. (c) For $n \ge 1$, let $s_n = \sum_{k=1}^n \left(\frac{1+i}{3}\right)^k$. Prove, from the definition of a limit, that $\lim_{n \to \infty} s_n = \frac{1+3i}{5}$.

Solution: First note that $\mathbb{C} = \mathbb{R}^2$ (when $x, y \in \mathbb{R}$, the ordered pair $(x, y) \in \mathbb{R}$ is equal to the complex number $z = x + iy \in \mathbb{C}$), and the usual norm in \mathbb{C} is equal to the usual norm in \mathbb{R}^2 : for z = x + iy = (x, y) we have $|z| = \sqrt{x^2 + yy^2} = |(x, y)|$. From the formula for the sum of a geometric series, or by noting that

$$s_n \left(1 - \frac{1+i}{3}\right) = \sum_{k=1}^n \left(\frac{1+i}{3}\right)^k - \sum_{k=2}^{n+1} \left(\frac{1+i}{3}\right)^k = \left(\frac{1+i}{3}\right) - \left(\frac{1+i}{3}\right)^{n+1}$$

we have

$$s_n = \frac{\left(\frac{1+i}{3}\right) - \left(\frac{1+i}{3}\right)^{n+1}}{1 - \frac{1+i}{3}} = \frac{\left(\frac{1+i}{3}\right) \left(1 - \left(\frac{1+i}{3}\right)^n\right)}{\frac{2-i}{3}} = \frac{(1+i)(2+i)\left(1 - \left(\frac{1+i}{3}\right)^n\right)}{(2-i)(2+i)} = \frac{1+3i}{5}\left(1 - \left(\frac{1+i}{3}\right)^n\right) = \frac{1+3i}{5} - \frac{1+3i}{5}\left(\frac{1+i}{3}\right)^n$$

and hence

$$\left|s_n - \frac{1+3i}{5}\right| = \left|\frac{1+3i}{5}\left(\frac{1+i}{3}\right)^n\right| = \left|\frac{1+3i}{5}\right| \left|\frac{1+i}{3}\right|^n = \frac{\sqrt{10}}{5} \left(\frac{\sqrt{2}}{3}\right)^n.$$

It follows that $\lim_{n\to\infty} s_n = \frac{1+3i}{5}$: indeed given $\epsilon > 0$, since $\frac{\sqrt{2}}{3} < 1$ we can choose $m \in \mathbb{Z}^+$ so that $\left(\frac{\sqrt{2}}{3}\right)^m < \frac{\epsilon}{\sqrt{10/5}}$, and then when $n \ge m$ we have

$$\left|s_n - \frac{1+3i}{5}\right| = \frac{\sqrt{10}}{5} \left(\frac{\sqrt{2}}{3}\right)^n \le \frac{\sqrt{10}}{5} \left(\frac{\sqrt{3}}{2}\right)^m < \epsilon.$$

2: For each of the following subsets $A \subseteq \mathbb{R}^n$, determine whether A is closed, whether A is compact, and whether A is connected.

(a)
$$A = \{(t^2 - 1, t^3 - t) \in \mathbb{R}^2 \mid t \in \mathbb{R}\}.$$

Solution: Note that $A = f(\mathbb{R})$ where $f : \mathbb{R} \to \mathbb{R}^2$ is given by $(x, y) = f(t) = (t^2 - 1, t^3 - t)$. Since \mathbb{R} is connected and f is continuous, it follows that $A = f(\mathbb{R})$ is connected.

We claim that $A = g^{-1}(0)$ where $g: \mathbb{R}^2 \to \mathbb{R}$ is given by $g(x, y) = x^3 + x^2 - y^2$. Let $(x, y) \in A$, say $(x, y) = (t^2 - 1, t^3 - t)$. Then $x^3 + x^2 = (t^6 - 3t^4 + 3t^2 - 1) + (t^4 - 2t^2 + 1) = t^6 - 2t^4 + t^2 = (t^3 - t)^2 = y^2$ so that g(x, y) = 0. This shows that $A \subseteq g^{-1}(0)$. Now let $(x, y) \in g^{-1}(0)$, so we have $y^2 = x^3 + x^2$. If x = 0 then $y^2 = x^3 + x^2 = 0$ so that y = 0, and in this case we can choose t = 1 to get $t^2 - 1 = 0 = x$ and $t^3 - t = 0 = y$ so that $(x, y) \in A$. If $x \neq 0$ then we can choose $t = \frac{y}{x}$ to get $t^2 - 1 = \frac{y^2 - x^2}{x^2} = \frac{x^3}{x^2} = x$ and $t^3 - t = t(t^2 - 1) = \frac{y}{x} \cdot x = y$ so that again $(x, y) \in A$. This shows that $g^{-1}(0) \subseteq A$, and hence $A = g^{-1}(0)$, as claimed. Since $\{0\}$ is closed and g is continuous, it follows that $A = g^{-1}(\{0\})$ is closed.

Finally, we note that A is not compact because A is not bounded: indeed given any $M \ge 0$ we can choose $t \ge 1$ such that $t^2 > M+1$, and then $(x, y) = (t^2-1, t^3-t) \in A$ with $|(x, y)| = |(t^2-1, t^3-t)| \ge t^2-1 > M$.

(b) $A = \left\{ (0,0) \neq (x,y) \in \mathbb{R}^2 \ \Big| \left| \operatorname{Re}\left(\frac{1}{x+iy}\right) \right| \ge 1 \right\}$ (where $\operatorname{Re}(z)$ denotes the real part of $z \in \mathbb{C}$).

Solution: For $a,b\in\mathbb{R}$ with $(a,b)\neq (0,0)$ we have $\frac{1}{a+ib}=\frac{a-ib}{a^2+b^2}$ so

$$\operatorname{Re}\left(\frac{1}{a+ib}\right) \ge 1 \iff |a| \ge a^2 + b^2 \left(a^2 + b^2 \le a \text{ or } a^2 + b^2 \le -a\right)$$
$$\iff \left(a - \frac{1}{2}\right)^2 + b^2 \le \frac{1}{4} \text{ or } \left(a + \frac{1}{2}\right)^2 + b^2 \le \frac{1}{4}.$$

Thus $A = (B \cup C) \setminus \{(0,0)\}$ where B and C are the closed balls of radius $\frac{1}{2}$ centered at $(\frac{1}{2},0)$ and $(-\frac{1}{2},0)$. This set A is not closed since $(0,0) \notin A$ but (0,0) is a limit point of A (indeed for $x_n = (\frac{1}{n},0)$ we have $x_n \in A$ and $x_n \to (0,0)$). Since A is not closed, it not compact. Also, A is not connected since it can be separated by the disjoint open sets $U = \{(x,y)|x>0\}$ and $V = \{(x,y)|x<0\}$.

(c)
$$A = \left\{ (u, v, w, x, y, z) \in \mathbb{R}^6 \, \middle| \, \operatorname{rank} \begin{pmatrix} u & v & w \\ x & y & z \end{pmatrix} \neq 2 \right\}$$

Solution: Note that we have rank $\begin{pmatrix} u & v & w \\ x & y & z \end{pmatrix} = 2$ if and only if some pair of columns is linearly independent if and only if one of the three 2×2 submatrices $\begin{pmatrix} u & v \\ x & y \end{pmatrix}$, $\begin{pmatrix} u & w \\ x & z \end{pmatrix}$ and $\begin{pmatrix} v & w \\ y & z \end{pmatrix}$ is invertible if and only if one of the three determinants uy - vx, uz - wx and vz - wy is non-zero. Thus we have

$$\operatorname{rank}\begin{pmatrix} u & v & w \\ x & y & z \end{pmatrix} \neq 2 \iff \left(uy - vx = 0 \text{ and } uz - wx = 0 \text{ and } vz - wy = 0 \right)$$

and hence

$$A = f^{-1}(\{0\}) \cap g^{-1}(\{0\}) \cap h^{-1}(\{0\})$$

where $f, g, h : \mathbb{R}^6 \to \mathbb{R}$ are given by

$$\begin{split} f(u,v,w,x,y,z) &= uy - vx\,,\\ g(u,v,w,x,y,z) &= uz - wx\,,\\ h(u,v,w,x,y,z) &= vz - wy\,. \end{split}$$

Since f, g and h are continuous (they are polynomials) and $\{0\}$ is closed in \mathbb{R} , it follows (from Theorem 5.29) that the sets $f^{-1}(\{0\}), g^{-1}(\{0\})$ and $h^{-1}(\{0\})$ are all closed, and hence the set A is closed (by Theorem 4.36). On the other hand, A is not bounded because for $e_1 = (1, 0, 0, 0, 0, 0)$ we have $re_1 \in A$ for all $r \in \mathbb{R}$ and $||re_1|| = |r|$. Since A is not bounded, it is not compact (by Theorem 6.21). Finally, we note that A is path-connected (hence connected), indeed given $a, b \in A$, the map $\alpha : [0, 1] \subseteq \mathbb{R} \to \mathbb{R}^6$ given by

$$\alpha(t) = \left\{ \begin{array}{l} (1-2t)a \text{ for } 0 \le t \le \frac{1}{2} \\ (2t-1)b \text{ for } \frac{1}{2} \le t \le 1 \end{array} \right\}$$

is continuous with $\alpha(0) = a$, $\alpha(\frac{1}{2}) = 0$ and $\alpha(1) = b$, and we have $\alpha(t) \in A$ for all t (because when X is a matrix and $r \in \mathbb{R}$, we have rank $(rX) = \operatorname{rank}(X)$ when $r \neq 0$, and we have rank(rX) = 0 when r = 0).

3: (a) Prove that if the sets $A, B \subseteq \mathbb{R}^n$ are connected and $A \cap B \neq \emptyset$, then $A \cup B$ is connected.

Solution: Suppose that A and B are connected in \mathbb{R}^n and that $A \cap B \neq \emptyset$. Choose $c \in A \cap B$. Suppose, for a contradiction, that $A \cup B$ is disconnected. Choose open sets U and V in \mathbb{R}^n which separate $A \cup B$ (that is, $U \cap (A \cup B) \neq \emptyset$, $V \cap (A \cup B) \neq \emptyset$, $U \cup V = \emptyset$, and $A \cup B \subseteq U \cup V$). Since $c \in A \cap B \subseteq A \cup B \subseteq U \cup V$, either $c \in U$ or $c \in V$. By interchanging U and V if necessary, we can suppose that $c \in U$. Note that since $c \in A$ and $c \in U$ and A is connected, it follows that $A \subseteq U$ because if we had $A \not\subseteq U$ then (since $A \subseteq U \cup V$) we would have $A \cap V \neq \emptyset$, and then U and V would separate A (since $c \in U \cap A$ so $U \cap A \neq \emptyset$, and $U \cap V = \emptyset$, and $A \subseteq A \cup B \subseteq U \cup V$). Similarly, since $c \in B$ and $c \in U$ and B is connected, it follows that $B \subseteq U$. Since $A \subseteq U$ and $B \subseteq U \cup V$). Similarly, since $c \in B$ and $c \in U$ and $U \cap V = \emptyset$, we must have $V \cap (A \cup B) = \emptyset$, which contradicts the fact that U and V separate $A \cup B \subseteq U$.

(b) Prove that if $A \subseteq \mathbb{R}^n$ and $B \subseteq \mathbb{R}^m$ are both connected then $A \times B \subseteq \mathbb{R}^{n+m}$ is connected.

Solution: Suppose that A and B are connected. Suppose for a contradiction that $A \times B$ is disconnected. Choose open sets U and V in \mathbb{R}^{n+m} which separate U and V. Choose $(a,b) \in U \cap (A \times B)$ and $(b,c) \in V \cap (A \times B)$. Since A is connected and the function $f : A \subseteq \mathbb{R}^n \to \mathbb{R}^{n+m}$ given by f(x) = (x,b) is continuous, it follows that the set $f(A) = A \times \{b\}$ is connected. Since $A \times \{b\}$ is connected and $(a,b) \in U \cap (A \times \{b\})$, it follows that we must have $A \times \{b\} \subseteq U$ (otherwise the sets U and V would separate $A \times \{b\}$). In particular, we have $(c,b) \in A \times \{b\} \subseteq U$. Since B is connected and the map $g : B \subseteq \mathbb{R}^m \to \mathbb{R}^{n+m}$ given by g(y) = (c,y) is continuous, it follows that $\{c\} \times B \subseteq U$ (otherwise the sets U and V would separate $\{c\} \times B$). In particular, we have $(c,d) \in \{c\} \times B \subseteq U$. But this is not possible since $(c,d) \in V$ and $U \cap V = \emptyset$.

(c) Prove that if $A \subseteq \mathbb{R}^n$ and $B \subseteq \mathbb{R}^m$ are both compact then $A \times B \subseteq \mathbb{R}^{n+m}$ is compact.

Solution: We shall use the Sequential Characterization of Cmpactness. Suppose that A and B are compact. Let $(x_n, y_n)_{n\geq 1}$ be a sequence in $A \times B$. Since A is compact, the sequence $(x_n)_{n\geq 1}$ has a subsequence which converges to an element in A. Let $(x_{n_k})_{k\geq 1}$ be a subsequence with $x_{n_k} \to a \in A$. Since B is compact, the sequence $(y_{n_k})_{k\geq 1}$ has a subsequence which converges to an element in B. Let $(y_{n_{k_j}})_{j\geq 1}$ be a subsequence with $y_{n_{k_j}} \to b \in B$. Since $(x_{n_{k_j}})_{j\geq 1}$ is a subsequence of $(x_{n_k})_{k\geq 1}$ and $x_{n_k} \to a \in A$, we also have $x_{n_{k_j}} \to a \in (a, b)$ and so $(x_{n_{k_j}}, y_{n_{k_j}}) \to (a, b)$. This shows that every sequence in $A \times B$ has a subsequence which converges to an element in $A \times B$, and hence $A \times B$ is compact. 4: Let \mathbb{R}^{ω} be the set of all sequences in \mathbb{R} , that is $\mathbb{R}^{\omega} = \{x = (x_j)_{j \ge 1} | \text{ each } x_j \in \mathbb{R}\}$ and let \mathbb{R}^{∞} be the set of eventually zero sequences in \mathbb{R} , that is $\mathbb{R}^{\infty} = \{x = (x_j)_{j \ge 1} \in \mathbb{R}^{\omega} | \exists m \in \mathbb{Z}^+ \forall j \in \mathbb{Z}^+ (j \ge m \Longrightarrow x_j = 0)\}$. For $x, y \in \mathbb{R}^{\infty}$, define $x \cdot y = \sum_{n=1}^{\infty} x_n y_n$ and $|x| = (x \cdot x)^{1/2}$.

When $(x_n)_{n\geq 1}$ is a sequence in \mathbb{R}^{∞} , each $x_n \in \mathbb{R}^{\infty}$, and we can write $x_n = (x_{n,j})_{j\geq 1} = (x_{n,1}, x_{n,2}, x_{n,3}, \cdots)$. For a sequence $(x_n)_{n\geq 1}$ in \mathbb{R}^{∞} and an element $a \in \mathbb{R}^{\infty}$, we say the sequence $(x_n)_{n\geq 1}$ converges to a in \mathbb{R}^{∞} , and we write $x_n \to a$ in \mathbb{R}^{∞} or $\lim_{n\to\infty} x_n = a$ in \mathbb{R}^{∞} , when $\forall \epsilon > 0 \exists m \in \mathbb{Z}^+ \forall n \in \mathbb{Z}^+$ $(n \ge m \Longrightarrow |x_n - a| < \epsilon)$, we say that $(x_n)_{n\geq 1}$ is bounded when $\exists r \ge 0 \forall n \in \mathbb{Z}^+ |x_n| \le r$, and we say that $(x_n)_{n\geq 1}$ is Cauchy when $\forall \epsilon > 0 \exists m \in \mathbb{Z}^+ \forall k, \ell \in \mathbb{Z}^+$ $(k, \ell \ge m \Longrightarrow |x_k - x_\ell| < \epsilon)$.

(a) Prove that for all sequences $(x_n)_{n\geq 1}$ in \mathbb{R}^{∞} , and all $a \in \mathbb{R}^{\infty}$, if $\lim_{n \to \infty} x_n = a$ in \mathbb{R}^{∞} then $\lim_{n \to \infty} x_{n,j} = a_j$ for all $j \in \mathbb{Z}^+$, but that the converse does not hold.

Solution: Let $(x_n)_{n\geq 1}$ be a sequence in \mathbb{R}^{∞} and let $a \in \mathbb{R}^{\infty}$. Suppose that $\lim_{n\to\infty} x_n = a$ in \mathbb{R}^{∞} . We claim that $\lim_{n\to\infty} x_{n,j} = a_j$ for all $j \in \mathbb{Z}^+$. Let $j \in \mathbb{Z}^+$. Note that $|x_{n,j} - a_j|^2 \leq \sum_{i=1}^{\infty} (x_{n,i} - a_i)^2 = |x_n - a|^2$. Since $|x_{n,j} - a_j| \leq |x_n - a|$ and $\lim_{n\to\infty} x_n = a$ in \mathbb{R}^{∞} , it follows that $\lim_{n\to\infty} x_{n,j} = a_k$ in \mathbb{R} : indeed given $\epsilon > 0$, we can choose $m \in \mathbb{Z}^+$ so that $n \geq m \Longrightarrow |x_n - a| < \epsilon$, and then, for $n \geq m$, we have $|x_{n,j} - a_j| \leq |x_n - a| < \epsilon$. To see that the converse does not hold, for each $n \in \mathbb{Z}^+$, let $x_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n e_k = (\frac{1}{\sqrt{n}}, \cdots, \frac{1}{\sqrt{n}}, 0, 0, \cdots)$,

To see that the converse does not hold, for each $n \in \mathbb{Z}^+$, let $x_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n e_k = (\frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}, 0, 0, \dots)$, where $e_k = (0, 0, \dots, 0, 1, 0, 0, \dots)$ is the k^{th} standard basis vector for \mathbb{R}^∞ . For each index $j \in \mathbb{Z}^+$ we have $x_{n,j} = \frac{1}{\sqrt{n}}$ for all $n \ge j$ so that $\lim_{n \to \infty} x_{n,j} = 0$ in \mathbb{R} . But for $a = 0 = (0, 0, 0, \dots)$ we do not have $\lim_{n \to \infty} x_n = a$ in \mathbb{R}^∞ because $|x_n - 0| = |x_n| = 1$ for all $n \in \mathbb{Z}^+$.

(b) Prove that for all sequences $(x_n)_{n\geq 1}$ in \mathbb{R}^{∞} , if the sequence $(x_n)_{n\geq 1}$ converges in \mathbb{R}^{∞} (to some $a \in \mathbb{R}^{\infty}$) then it is Cauchy, but that the converse does not hold.

Solution: Let $(x_n)_{n\geq 1}$ be a sequence in \mathbb{R}^{∞} . Suppose that $(x_n)_{n\geq 1}$ converges in \mathbb{R}^{∞} and let $a = \lim_{n\to\infty} x_n$ in \mathbb{R}^{∞} . Let $\epsilon > 0$. Choose $m \in \mathbb{Z}^+$ so that $n \ge m \Longrightarrow |x_n - a| < \frac{\epsilon}{2}$. Then when $k, \ell \ge m$ we have $|x_k - x_\ell| = |(x_k - a) - (x_\ell - a)| \le |x_k - a| + |x_\ell - a| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. Thus $(x_n)_{n\geq 1}$ is Cauchy.

To see that the converse does not hold, for each $n \in \mathbb{Z}^+$ let $x_n = \sum_{k=1}^n \frac{1}{2^k} e_k = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots, \frac{1}{2^n}, 0, 0, \cdots\right)$. We claim that $(x_n)_{n\geq 1}$ is Cauchy. Let $\epsilon > 0$. Choose $m \in \mathbb{Z}^+$ so that $\frac{1}{2^m} < \epsilon$. Let $k, \ell \in \mathbb{Z}^+$ with $m \leq k < \ell$. Then we have $|x_k - x_\ell|^2 = \left|\sum_{j=k+1}^{\ell} \frac{1}{2^j} e_j\right|^2 = \sum_{j=k+1}^{\ell} \frac{1}{4^j} \leq \sum_{j=k+1}^{\infty} \frac{1}{4^j} = \frac{1}{4^k}$ so that $|x_k - x_\ell| \leq \frac{1}{2^k} \leq \frac{1}{2^m} < \epsilon$. Thus $(x_n)_{n\geq 1}$ is Cauchy, as claimed. Suppose, for a contradiction, that $(x_n)_{n\geq 1}$ converges in \mathbb{R}^{∞} and let $a = \lim_{n \to \infty} x_n \in \mathbb{R}^{\infty}$. Note that for each $j \in \mathbb{Z}^+$, we have $x_{n,j} = \frac{1}{2^j}$ for all $n \geq j$ so that $\lim_{n \to \infty} x_{n,j} = \frac{1}{2^j}$. By Part (a), for each $j \in \mathbb{Z}^+$ we must have $a_j = \lim_{n \to \infty} x_{n,j} = \frac{1}{2^j}$ so that $a = \sum_{j=1}^{\infty} \frac{1}{2^j} e_j = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots\right)$. But then $a \notin \mathbb{R}^{\infty}$, which gives the desired contradiction.

(c) Determine whether every bounded sequence $(x_n)_{n\geq 1}$ in \mathbb{R}^{∞} has a convergent subsequence $(x_{n_k})_{k\geq 1}$ in \mathbb{R}^{∞} . Solution: This is not true. For example, consider the sequence $x_n = e_n = (0, \dots, 0, 1, 0, \dots)$ for $n \in \mathbb{Z}^+$. Note that $(x_n)_{n\geq 1}$ is bounded since $|x_n| = 1$ for all $n \in \mathbb{Z}^+$. Let $(x_{n_k})_{k\geq 1}$ be any subsequence. Note that for $k, \ell \in \mathbb{Z}^+$ with $k \neq \ell$ we have $|x_{n_k} - x_{n_\ell}| = |e_{n_k} - e_{n_\ell}| = \sqrt{2}$, and so the sequence $(x_{n_k})_{k\geq 1}$ is not Cauchy (if it was Cauchy, then we would be able to choose $k, \ell \in \mathbb{Z}^+$ with $k < \ell$ such that $|x_{n_k} - x_{n_\ell}| < \sqrt{2}$). Since $(x_{n_k})_{k\geq 1}$ is not Cauchy, it does not converge, by Part (b).