
PMATH 333 Real Analysis, Solutions to Assignment 6

1: (a) Let A =
{
x ∈ R2

∣∣0 < |x| ≤ 1
}

. Prove, from the definition of a compact set, that A is not compact.

Solution: For each k ∈ Z+ let Uk be the open set Uk = B
(
0, 1k

)c
=
{
x ∈ Rn

∣∣|x| > 1
k

}
and let S =

{
Uk
∣∣k ∈ Z+

}
.

Note that
⋃
S = Rn \ {0} so S is an open cover of A. Let T be any finite subset of S. If T = ∅ then⋃

T = ∅ so A 6⊆
⋃
T . Suppose that T 6= ∅, say T =

{
Uk1 , Uk2 , · · · , Ukm

}
with k1 < k2 < · · · < km. Since

Uk1 ⊆ Uk2 ⊆ · · · ⊆ Ukm we have
⋃
T =

⋃m
i=1 Uki = Ukm = B

(
0, 1

km

)c
and so A 6⊆

⋃
T . This shows that the

open cover S has no finite subcover T , and so A is not compact.

(b) Let B =
{

(x, y) ∈ R2
∣∣ y > x2

}
. Show, from the definition of an open set, that B is open in R2.

Solution: Let (a, b) ∈ B so we have b > a2 and hence
√
b > |a|. Let r = min

(
b−a2

2 ,
√
b−|a|
2

)
. We claim that

B
(
(a, b), r

)
⊆ B. Let (x, y) ∈ B

(
(a, b), r

)
. Note that

|x− a| ≤
√

(x− a)2 + (y − b)2 = d
(
(a, b), (x, y)

)
< r ≤

√
b−|a|
2

and similarly

|y − b| < r ≤ b−a2
2 .

It follows that |x|−|a| ≤ |x−a| <
√
b−|a|
2 so that |x| ≤

√
b+|a|
2 and that b−y ≤ |y−b| < b−a2

2 so that y > b+a2

2 .

Note that 0 ≤
(√
b− |a|

)2
= b+ a2 − 2|a|

√
b so we have 2|a|

√
b ≤ b+ a2. It follows that

x2 <
(√

b+|a|
2

)2
= b+a2+2|a|

√
b

4 ≤ b+a2

2 < y.

Since y > x2 we have (x, y) ∈ B. This shows that B
(
(a, b), r

)
⊆ B, as claimed, and so S is open.

(c) For n ≥1, let sn=
n∑
k=1

(
1+i
3

)k
. Prove, from the definition of a limit, that lim

n→∞
sn= 1+3 i

5 .

Solution: First note that C = R2 (when x, y ∈ R, the ordered pair (x, y) ∈ R is equal to the complex number
z = x + iy ∈ C), and the usual norm in C is equal to the usual norm in R2: for z = x + iy = (x, y) we have

|z| =
√
x2 + yy2 =

∣∣(x, y)
∣∣. From the formula for the sum of a geometric series, or by noting that

sn
(
1− 1+i

3

)
=

n∑
k=1

(
1+i
3

)k − n+1∑
k=2

(
1+i
3

)k
=
(
1+i
3

)
−
(
1+i
3

)n+1
,

we have

sn =
( 1+i

3 )−( 1+i
3 )

n+1

1− 1+i
3

=
( 1+i

3 )(1−( 1+i
3 )

n
)

2−i
3

=
(1+i)(2+i)(1−( 1+i

3 )
n
)

(2−i)(2+i) = 1+3i
5

(
1−

(
1+i
3

)n)
= 1+3i

5 − 1+3i
5

(
1+i
3

)n
and hence ∣∣sn − 1+3i

5

∣∣ =
∣∣ 1+3i

5

(
1+i
3

)n∣∣ =
∣∣ 1+3i

5

∣∣ ∣∣ 1+i
3

∣∣n =
√
10
5

(√
2
3

)n
.

It follows that lim
n→∞

sn = 1+3i
5 : indeed given ε > 0, since

√
2
3 < 1 we can choose m ∈ Z+ so that

(√
2
3

)m
< ε√

10/5
,

and then when n ≥ m we have ∣∣sn − 1+3i
5

∣∣ =
√
10
5

(√
2
3

)n ≤ √10
5

(√
3
2

)m
< ε.



2: For each of the following subsets A ⊆ Rn, determine whether A is closed, whether A is compact, and whether
A is connected.

(a) A =
{

(t2−1 , t3−t)∈R2
∣∣ t∈R}.

Solution: Note that A = f(R) where f : R→ R2 is given by (x, y) = f(t) =
(
t2−1 , t3−t

)
. Since R is connected

and f is continuous, it follows that A = f(R) is connected.
We claim that A = g−1(0) where g : R2 → R is given by g(x, y) = x3 + x2 − y2. Let (x, y) ∈ A, say

(x, y) = (t2−1 , t3−t). Then x3 + x2 = (t6 − 3t4 + 3t2 − 1) + (t4 − 2t2 + 1) = t6 − 2t4 + t2 = (t3 − t)2 = y2

so that g(x, y) = 0. This shows that A ⊆ g−1(0). Now let (x, y) ∈ g−1(0), so we have y2 = x3 + x2. If
x = 0 then y2 = x3 + x2 = 0 so that y = 0, and in this case we can choose t = 1 to get t2 − 1 = 0 = x and

t3 − t = 0 = y so that (x, y) ∈ A. If x 6= 0 then we can choose t = y
x to get t2 − 1 = y2

x2 − 1 = y2−x2

x2 = x3

x2 = x
and t3− t = t(t2−1) = y

x ·x = y so that again (x, y) ∈ A. This shows that g−1(0) ⊆ A, and hence A = g−1(0),
as claimed. Since {0} is closed and g is continuous, it follows that A = g−1({0}) is closed.

Finally, we note that A is not compact because A is not bounded: indeed given any M ≥ 0 we can choose
t ≥ 1 such that t2 > M+1, and then (x, y) = (t2−1 , t3−t) ∈ A with

∣∣(x, y)
∣∣ =

∣∣(t2−1 , t3−t)
∣∣ ≥ t2−1 > M .

(b) A =
{

(0, 0) 6=(x, y) ∈ R2
∣∣∣ ∣∣Re

(
1

x+iy

)∣∣ ≥ 1
}

(where Re(z) denotes the real part of z ∈ C).

Solution: For a, b ∈ R with (a, b) 6= (0, 0) we have 1
a+ib = a−ib

a2+b2 so∣∣Re
(

1
a+ib

)∣∣ ≥ 1 ⇐⇒ |a| ≥ a2 + b2
(
a2 + b2 ≤ a or a2 + b2 ≤ −a

)
⇐⇒

(
a− 1

2

)2
+ b2 ≤ 1

4 or
(
a+ 1

2

)2
+ b2 ≤ 1

4 .

Thus A = (B ∪ C) \ {(0, 0)} where B and C are the closed balls of radius 1
2 centered at

(
1
2 , 0
)

and
(
− 1

2 , 0
)
.

This set A is not closed since (0, 0) /∈ A but (0, 0) is a limit point of A (indeed for xn =
(
1
n , 0
)

we have xn ∈ A
and xn → (0, 0)). Since A is not closed, it not compact. Also, A is not connected since it can be separated by
the disjoint open sets U =

{
(x, y)

∣∣x > 0
}

and V =
{

(x, y)|x < 0
}

.

(c) A =
{

(u, v, w, x, y, z) ∈ R6
∣∣∣ rank

(
u v w
x y z

)
6= 2
}

.

Solution: Note that we have rank

(
u v w
x y z

)
= 2 if and only if some pair of columns is linearly independent

if and only if one of the three 2× 2 submatrices

(
u v
x y

)
,

(
u w
x z

)
and

(
v w
y z

)
is invertible if and only if

one of the three determinants uy − vx, uz − wx and vz − wy is non-zero. Thus we have

rank

(
u v w
x y z

)
6= 2 ⇐⇒

(
uy − vx = 0 and uz − wx = 0 and vz − wy = 0

)
and hence

A = f−1
(
{0}
)
∩ g−1

(
{0}
)
∩ h−1

(
{0}
)

where f, g, h : R6 → R are given by
f(u, v, w, x, y, z) = uy − vx ,
g(u, v, w, x, y, z) = uz − wx ,
h(u, v, w, x, y, z) = vz − wy .

Since f , g and h are continuous (they are polynomials) and {0} is closed in R, it follows (from Theorem 5.29)
that the sets f−1

(
{0}
)
, g−1

(
{0}
)

and h−1
(
{0}
)

are all closed, and hence the set A is closed (by Theorem
4.36). On the other hand, A is not bounded because for e1 = (1, 0, 0, 0, 0, 0) we have re1 ∈ A for all r ∈ R
and ‖re1‖ = |r|. Since A is not bounded, it is not compact (by Theorem 6.21). Finally, we note that A is
path-connected (hence connected), indeed given a, b ∈ A, the map α : [0, 1] ⊆ R→ R6 given by

α(t) =

{
(1− 2t)a for 0 ≤ t ≤ 1

2

(2t− 1)b for 1
2 ≤ t ≤ 1

}
is continuous with α(0) = a, α

(
1
2

)
= 0 and α(1) = b, and we have α(t) ∈ A for all t (because when X is a

matrix and r ∈ R, we have rank(rX) = rank(X) when r 6= 0, and we have rank(rX) = 0 when r = 0).



3: (a) Prove that if the sets A,B ⊆ Rn are connected and A ∩B 6= ∅, then A ∪B is connected.

Solution: Suppose that A and B are connected in Rn and that A ∩ B 6= ∅. Choose c ∈ A ∩ B. Suppose, for
a contradiction, that A ∪B is disconnected. Choose open sets U and V in Rn which separate A ∪B (that is,
U ∩ (A∪B) 6= ∅, V ∩ (A∪B) 6= ∅, U ∪ V = ∅, and A∪B ⊆ U ∪ V ). Since c ∈ A∩B ⊆ A∪B ⊆ U ∪ V , either
c ∈ U or c ∈ V . By interchanging U and V if necessary, we can suppose that c ∈ U . Note that since c ∈ A
and c ∈ U and A is connected, it follows that A ⊆ U because if we had A 6⊆ U then (since A ⊆ U ∪ V ) we
would have A ∩ V 6= ∅, and then U and V would separate A (since c ∈ U ∩ A so U ∩ A 6= ∅, and U ∩ V = ∅,
and A ⊆ A ∪B ⊆ U ∪ V ). Similarly, since c ∈ B and c ∈ U and B is connected, it follows that B ⊆ U . Since
A ⊆ U and B ⊆ U , we have A ∪ B ⊆ U . Since A ∪ B ⊆ U and U ∩ V = ∅, we must have V ∩ (A ∪ B) = ∅,
which contradicts the fact that U and V separate A ∪B.

(b) Prove that if A ⊆ Rn and B ⊆ Rm are both connected then A×B ⊆ Rn+m is connected.

Solution: Suppose that A and B are connected. Suppose for a contradiction that A×B is disconnected. Choose
open sets U and V in Rn+m which separate U and V . Choose (a, b) ∈ U∩(A×B) and (b, c) ∈ V ∩(A×B). Since
A is connected and the function f : A ⊆ Rn → Rn+m given by f(x) = (x, b) is continuous, it follows that the set
f(A) = A×{b} is connected. Since A×{b} is connected and (a, b) ∈ U ∩(A×{b}, it follows that we must have
A×{b} ⊆ U (otherwise the sets U and V would separate A×{b}). In particular, we have (c, b) ∈ A×{b} ⊆ U .
Since B is connected and the map g : B ⊆ Rm → Rn+m given by g(y) = (c, y) is continuous, it follows that
the set f(B) = {c} × B is connected. Since {c} × B is connected and (c, b) ∈ U ∩ ({c} × B), it follows that
{c}×B ⊆ U (otherwise the sets U and V would separate {c}×B). In particular, we have (c, d) ∈ {c}×B ⊆ U .
But this is not possible since (c, d) ∈ V and U ∩ V = ∅.
(c) Prove that if A ⊆ Rn and B ⊆ Rm are both compact then A×B ⊆ Rn+m is compact.

Solution: We shall use the Sequential Characterization of Cmpactness. Suppose that A and B are compact.
Let (xn, yn)n≥1 be a sequence in A× B. Since A is compact, the sequence (xn)n≥1 has a subsequence which
converges to an element in A. Let (xnk

)k≥1 be a subsequence with xnk
→ a ∈ A. Since B is compact, the

sequence (ynk
)k≥1 has a subsequence which converges to an element in B. Let (ynkj

)j≥1 be a subsequence with

ynkj
→ b ∈ B. Since (xnkj

)j≥1 is a subsequence of (xnk
)k≥1 and xnk

→ a ∈ A, we also have xnkj
→ a ∈ (a, b)

and so (xnkj
, ynkj

)→ (a, b). This shows that every sequence in A× B has a subsequence which converges to

an element in A×B, and hence A×B is compact.



4: Let Rω be the set of all sequences in R, that is Rω =
{
x = (xj)j≥1

∣∣ each xj ∈ R
}

and let R∞ be the set of

eventually zero sequences in R, that is R∞ =
{
x = (xj)j≥1 ∈ Rω

∣∣∃m∈Z+ ∀ j∈Z+ (j≥m =⇒ xj = 0)
}

. For

x, y ∈ R∞, define x.y =
∑∞
n=1 xnyn and |x| =

(
x.x)1/2.

When (xn)n≥1 is a sequence in R∞, each xn ∈ R∞, and we can write xn = (xn,j)j≥1 = (xn,1, xn,2, xn,3, · · ·).
For a sequence (xn)n≥1 in R∞ and an element a ∈ R∞, we say the sequence (xn)n≥1 converges to a in R∞,
and we write xn → a in R∞ or lim

n→∞
xn = a in R∞, when ∀ ε>0 ∃m∈Z+ ∀n∈Z+ (n≥m =⇒ |xn − a| < ε),

we say that (xn)n≥1 is bounded when ∃ r ≥ 0 ∀n ∈ Z+ |xn| ≤ r, and we say that (xn)n≥1 is Cauchy when
∀ ε>0 ∃m∈Z+ ∀ k, `∈Z+ (k, `≥m =⇒ |xk − x`| < ε).

(a) Prove that for all sequences (xn)n≥1 in R∞, and all a ∈ R∞, if lim
n→∞

xn = a in R∞ then lim
n→∞

xn,j = aj

for all j ∈ Z+, but that the converse does not hold.

Solution: Let (xn)n≥1 be a sequence in R∞ and let a ∈ R∞. Suppose that lim
n→∞

xn = a in R∞. We claim

that lim
n→∞

xn,j = aj for all j ∈ Z+. Let j ∈ Z+. Note that |xn,j − aj |2 ≤
∑∞
i=1(xn,i − ai)2 = |xn − a|2. Since

|xn,j − aj | ≤ |xn − a| and lim
n→∞

xn = a in R∞, it follows that lim
n→∞

xn,j = ak in R: indeed given ε > 0, we can

choose m ∈ Z+ so that n ≥ m =⇒ |xn − a| < ε, and then, for n ≥ m, we have |xn,j − aj | ≤ |xn − a| < ε.
To see that the converse does not hold, for each n ∈ Z+, let xn = 1√

n

∑n
k=1 ek =

(
1√
n
, · · · , 1√

n
, 0, 0, · · ·

)
,

where ek = (0, 0, · · · , 0, 1, 0, 0, · · ·) is the kth standard basis vector for R∞. For each index j ∈ Z+ we have
xn,j = 1√

n
for all n ≥ j so that lim

n→∞
xn,j = 0 in R. But for a = 0 = (0, 0, 0, · · ·) we do not have lim

n→∞
xn = a

in R∞ because |xn − 0| = |xn| = 1 for all n ∈ Z+.

(b) Prove that for all sequences (xn)n≥1 in R∞, if the sequence (xn)n≥1 converges in R∞ (to some a ∈ R∞)
then it is Cauchy, but that the converse does not hold.

Solution: Let (xn)n≥1 be a sequence in R∞. Suppose that (xn)n≥1 converges in R∞ and let a = lim
n→∞

xn

in R∞. Let ε > 0. Choose m ∈ Z+ so that n ≥ m =⇒ |xn − a| < ε
2 . Then when k, ` ≥ m we have

|xk − x`| =
∣∣(xk − a)− (x` − a)

∣∣ ≤ |xk − a|+ |x` − a| < ε
2 + ε

2 = ε. Thus (xn)n≥1 is Cauchy.

To see that the converse does not hold, for each n ∈ Z+ let xn =
∑n
k=1

1
2k
ek =

(
1
2 ,

1
4 ,

1
8 , · · · ,

1
2n , 0, 0, · · ·

)
.

We claim that (xn)n≥1 is Cauchy. Let ε > 0. Choose m ∈ Z+ so that 1
2m < ε. Let k, ` ∈ Z+ with m ≤ k < `.

Then we have |xk − x`|2 =
∣∣∑`

j=k+1
1
2j ej

∣∣2 =
∑`
j=k+1

1
4j ≤

∑∞
j=k+1

1
4j = 1

4k
so that |xk − x`| ≤ 1

2k
≤ 1

2m < ε.
Thus (xn)n≥1 is Cauchy, as claimed. Suppose, for a contradiction, that (xn)n≥1 converges in R∞ and let
a = lim

n→∞
xn ∈ R∞. Note that for each j ∈ Z+, we have xn,j = 1

2j for all n ≥ j so that lim
n→∞

xn,j = 1
2j . By

Part (a), for each j ∈ Z+ we must have aj = lim
n→∞

xn,j = 1
2j so that a =

∑∞
j=1

1
2j ej =

(
1
2 ,

1
4 ,

1
8 , · · ·

)
. But then

a /∈ R∞, which gives the desired contradiction.

(c) Determine whether every bounded sequence (xn)n≥1 in R∞ has a convergent subsequence (xnk
)k≥1 in R∞.

Solution: This is not true. For example, consider the sequence xn = en = (0, · · · , 0, 1, 0, · · ·) for n ∈ Z+. Note
that (xn)n≥1 is bounded since |xn| = 1 for all n ∈ Z+. Let (xnk

)k≥1 be any subsequence. Note that for
k, ` ∈ Z+ with k 6= ` we have |xnk

− xn`
| = |enk

− en`
| =
√

2, and so the sequence (xnk
)k≥1 is not Cauchy

(if it was Cauchy, then we would be able to choose k, ` ∈ Z+ with k < ` such that |xnk
− xn`

| <
√

2). Since
(xnk

)k≥1 is not Cauchy, it does not converge, by Part (b).


