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Chapter 1. Exponential and Trigonometric Functions

1.1 Definition: Let X and Y be sets and let f : X → Y . We say that f is injective (or
one-to-one, written as 1 : 1) when for every y ∈ Y there exists at most one x ∈ X such
that f(x) = y. Equivalently, f is injective when for all x1, x2 ∈ X, if f(x1) = f(x2) then
x1 = x2. We say that f is surjective (or onto) when for every y ∈ Y there exists at least
one x ∈ X such that f(x) = y. Equivalently, f is surjective when Range(f) = Y . We say
that f is bijective (or invertible) when f is both injective and surjective, that is when
for every y ∈ Y there exists exactly one x ∈ X such that f(x) = y. When f is bijective,
we define the inverse of f to be the function f−1 : Y → X such that for all y ∈ Y , f−1(y)
is equal to the unique element x ∈ X such that f(x) = y. Note that when f is bijective so
is f−1, and in this case we have (f−1)−1 = f .

1.2 Example: Let f(x) = 1
3

√
12x− x2 for 0 ≤ x ≤ 6. Show that f is injective and find

a formula for its inverse function.

Solution: Note that when 0 ≤ x ≤ 6 (indeed when 0 ≤ x ≤ 12) we have 12x − x2 =
x(12− x) ≥ 0, so that 1

3

√
12x− x2 exists, and we have 12x− x2 = 36− (x− 6)2 ≤ 36 so

that 1
3

√
12x− x2 ≤ 1

3

√
36 = 2. Thus if 0 ≤ x ≤ 6 then f(x) = 1

3

√
12x− x2 exists and we

have 0 ≤ f(x) ≤ 2. Let x, y ∈ R with 0 ≤ x ≤ 6 and 0 ≤ y ≤ 2. Then we have

y = f(x) ⇐⇒ y = 1
3

√
12x− x2

⇐⇒ 3y =
√

12x− x2

⇐⇒ 9y2 = 12x− x2 , since y ≥ 0

⇐⇒ x2 − 12x+ 9y2 = 0

⇐⇒ x =
12±

√
144− 36y2

2
= 6± 3

√
4− y2 , by the Quadratic Formula

⇐⇒ x = 6− 3
√

4− y2 since x ≤ 6.

Verify that when 0 ≤ y ≤ 2 we have 0 ≤ 4 − y2 ≤ 4 so that
√

4− y2 exists and we have

0 ≤ 6 − 3
√

4− y2 ≤ 6. Thus when we consider f as a function f : [0, 6] → [0, 2], it is

bijective and its inverse f−1 : [0, 2]→ [0, 6] is given by f−1(y) = 6− 3
√

4− y2.

1.3 Definition: Let f : A ⊆ R → R. We say that f is even when f(−x) = f(x) for all
x ∈ A and we say that f is odd when f(−x) = −f(x) for all x ∈ A.

1.4 Definition: Let f : A ⊆ R→ R. We say that f is increasing (on A) when it has the
property that for all x, y ∈ A, if x < y then f(x) < f(y), and we say f is decreasing (on
A) when for all x, y ∈ A with x < y we have f(x) > f(y). We say that f is monotonic
when f is either increasing or decreasing. Note that every monotonic function is injective.

1.5 Remark: We assume familiarity with exponential, logarithmic, trigonometric and
inverse trigonometric functions. These functions can be defined rigorously. We shall give a
brief description of how one can define the exponential and logarithmic function rigorously,
and we shall provide an informal (non-rigorous) description of the trigonometric and inverse
trigonometric functions, and we shall summarize some of their properties (without giving
rigorous proofs).
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1.6 Definition: Let us outline one possible way to define the value of xy for suitable real
numbers x, y ∈ R. First we define x0 = 1 for all x ∈ R. Then for n ∈ Z with n ≥ 1 we
define xn recursively by xn = x · xn−1 for all x ∈ R. Also, for n ∈ Z with n ≥ 1 we define
x−n = 1

xn for all x 6= 0. At this stage we have defined xy for y ∈ Z.

When 0 < n ∈ Z is odd, for all x ∈ R we define x1/n = y where y is the unique real
number such that yn = x (to be rigorous, one must prove that this number y exists and
is unique). When 0 < n ∈ Z is even, for x ≥ 0 we define x1/n = y where y is the unique
nonnegative real number such that yn = x (again, to be rigorous a proof is required). Also,
for 0 < n ∈ Z we define x−1/n = 1

x1/n , which is defined for x 6= 0 if n is odd, and is defined
for x > 0 when n is even. When n,m ∈ Z with n > 0 and m > 0 and gcd(n,m) = 1, we
define xn/m = (xn)1/m, which is defined for all x ∈ R when m is odd and for x ≥ 0 when
m is even, and we define x−n/m = 1

xn/m
, defined for x 6= 0 when m is odd and for x > 0

when m is even. At this stage, we have defined xy for y ∈ Q.
For y ∈ R, when x > 0 and y ∈ R, we define

xy = lim
t→y,t∈Q

xt

(to be rigorous, one needs to define this limit and prove that it exists and is unique).
Finally, we define 1y = 1 for all y ∈ R and we define 0y = 0 for all y > 0.

1.7 Theorem: (Properties of Exponentials) Let a, b, x, y ∈ R with a, b > 0. Then

(1) a0 = 1,
(2) ax+y = ab ac,
(3) ax−y = ax/ay,
(4) (ax)y = axy,
(5) (ab)x = axbx.

Proof: We omit the proof.

1.8 Theorem: (Properties of Power Functions)

(1) When a > 0, the function f : [0,∞) → [0,∞) given by f(x) = xa is increasing and
bijective and its inverse function is given by f−1(x) = x1/a.
(2) When a < 0, the function f : (0,∞) → (0,∞) given by f(x) = xa is decreasing and
bijective and its inverse is given by f−1(x) = a1/x.

Proof: We omit the proof.

1.9 Definition: A function of the form f(x) = xa is called a power function.

1.10 Theorem: (Properties of Exponential Functions)

(1) When a > 1 the function f : R→ (0,∞) given by f(x) = ax is increasing and bijective.
(2) When 0 < a < 1 the function f : R → (0,∞) given by f(x) = ax is decreasing and
bijective.

Proof: We omit the proof.

1.11 Definition: For a > 0 with a 6= 1, the function f : R→ (0,∞) given by f(x) = ax

is called the base a exponential function, its inverse function f−1 : (0,∞)→ R is called
the base a logarithmic function, and we write f−1(x) = loga x. By the definition of the
inverse function, we have loga(ax) = x for all x ∈ R and aloga y = y for all y > 0, and for
all x, y ∈ R with y > 0 we have y = ax ⇐⇒ x = loga y.
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1.12 Theorem: (Properties of Logarithms) Let a, b, x, y ∈ (0,∞). Then

(1) loga 1 = 0,
(2) loga(xy) = loga x+ loga y,
(3) loga(x/y) = loga x− loga y,
(4) loga(xy) = y loga x, and
(5) logb x = loga x/ loga b,
(6) if a > 1, the function g : (0,∞)→ R given by g(x) = loga x is increasing and bijective.

Proof: We leave it, as an exercise, to show that these properties follow from the properties
of exponentials.

1.13 Definition: There is a number e ∈ R called the natural base, with e ∼= 2.71828,
which can be defined in such a way that the function f(x) = ex is equal to its own
derivative. We define

e = lim
n→∞

(1 + 1
n

)n
(to be rigorous, one must define this limit and prove that it exists and is unique). The
logarithm to the base e is called the natural logarithm, and we write

lnx = loge x for x > 0.

1.14 Note: The properties of exponentials and logarithms in Theorems 1.7 and 1.12 give

e0 = 1 , ax+y = exey , ex−y = ex/ey , (ex)y = exy,

ln 1 = 0 , ln(xy) = lnx+ ln y , ln(x/y) = lnx− ln y , lnxy = y lnx

loga x =
lnx

ln a
and ax = ex ln a.
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1.15 Definition: We define the trigonometric functions informally as follows. For θ ≥ 0,
we define cos θ and sin θ to be the x- and y-coordinates of the point at which we arrive when
we begin at the point (1, 0) and travel for a distance of θ units counterclockwise around the
unit circle x2 + y2 = 1. For θ ≤ 0, cos θ and sin θ are the x and y-coordinates of the point
at which we arrive when we begin at (1, 0) and travel clockwise around the unit circle for a
distance of |θ units. When cos θ 6= 0 we define sec θ = 1/ cos θ and tan θ = sin θ/ cos θ, and
when sin θ 6= 0 we define csc θ = 1/ sin θ and cot θ = cos θ/ sin θ. (This definition is not
rigorous because we did not define what it means to travel around the circle for a given
distance).

(x, y) = (cos θ, sin θ)

θ

(1, 0)

1.16 Definition: We define π, informally, to be the distance along the top half of the
unit circle from (1, 0) to (−1, 0), and so we have cosπ = −1 and sinπ = 0. By symmetry,
the distance from (1, 0) to (0, 1) along the circle is equal to π

2 so we also have cos π2 = 0
and sin π

2 = 1.

1.17 Theorem: (Basic Trigonometric Properties) For θ ∈ R we have

(1) cos2 θ + sin2 θ = 1,
(2) cos(−θ) = cos θ and sin(−θ) = − sin θ,
(3) cos(θ + π) = − cos θ and sin(θ + π) = − sin θ,
(4) cos(θ + 2π) = cos θ and sin(θ + 2π) = sin θ).

Proof: Informally, these properties can all be seen immediately from the above definitions.
We omit a rigorous proof.

1.18 Theorem: (Trigonometric Ratios) Let θ ∈
(
0, π2

)
. For a right angle triangle with

an angle of size θ and with sides of lengths x, y and r as shown, we have

r y

θ
x

cos θ =
x

r
, sin θ =

y

r
and tan θ =

y

x
.

Proof: We can see this informally by scaling the picture in Definition 2.17 by a factor of r.

1.19 Theorem: (Special Trigonometric Values) We have the following exact trigonometric
values.

θ 0 π
6

π
4

π
3

π
2

cos θ 1
√
3
2

√
2
2

1
2 0

sin θ 0 1
2

√
2
2

√
3
2 1

Proof: This follows from the above theorem using certain particular right angled triangles.
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1.20 Theorem: (Trigonometric Sum Formulas) For α, β ∈ R we have

cos(α+ β) = cosα cosβ − sinα sinβ , and

sin(α+ β) = sinα cosβ + cosα sinβ.

Proof: Informally, we can prove this with the help of a picture. The picture below illustrates
the situation when α, β ∈

(
0, π2

)
.

B c F

d

α A

E
b

β
α a

O D C (1,0)

In the picture, O is the origin, A is the point with coordinates (cosα, sinα) and B is the
point (x, y) =

(
cos(α + β), sin(α + β)

)
. In triangle ODE we see that cosα = OD

OE = a
cos β

and sinα = DE
OE = b

cos β , and so a = cosα cosβ , b = sinα cosβ. In triangle EFB, verify

that the angle at E has size α, and so we have cosα = EF
EB = d

sin β and sinα = BF
BE = c

sin β ,
and so c = sinα sinβ , d = cosα sinβ. The x and y-coordinates of the point B are x = a−c
and y = b+ d, and so

cos(α+ β) = x = a− c = cosα cosβ − sinα sinβ , and

sin(α+ β) = y = b+ d = sinα cosβ − cosα sinβ.

This proves the theorem (informally) in the case that α, β ∈
(
0, π2

)
. One can then show

that the theorem holds for all α, β ∈ R by using the Basic Trigonometric Properties (2),
(3) and (4).

1.21 Theorem: (Double Angle Formulas) For all x, y ∈ R we have

(1) sin 2x = 2 sinx cosx and cos 2x = cos2− sin2 x = 2 cos2 x− 1 = 1− 2 sin2 x, and

(2) cos2 x =
1 + cos 2x

2
and sin2 x =

1− cos 2x

2
.

Proof: The proof is left as an exercise.

1.22 Theorem: (Trigonometric Functions)

(1) The function f : [0, π]→ [−1, 1] defined by f(x) = cosx is decreasing and bijective.
(2) The function g :

[
− π

2 ,
π
2

]
→ [−1, 1] given by g(x) = sinx is increasing and bijective.

(3) The function h :
(
− π

2 ,
π
2

)
given by h(x) = tanx is increasing and bijective.

Proof: We omit the proof.

1.23 Definition: The inverses of the functions f , g and h in the above theorem are called
the inverse cosine, the inverse sine, and the inverse tangent functions. We write
f−1(x) = cos−1 x, g−1 = sin−1 x and h−1(x) = tan−1 x. By the definition of the inverse
function, we have
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1.24 Definition: Let A and B be sets and let c ∈ F . Let f : A→ R and g : B → R. We
define the functions cf , f + g , f − g , f · g : A ∩B → R by

(cf)(x) = c f(x)

(f + g)(x) = f(x) + g(x)

(f − g)(x) = f(x)− g(x)

(f · g)(x) = f(x)g(x)

for all x ∈ A ∩B, and for C = {x ∈ A ∩B | g(x) 6= 0} we define f/g : C → R by

(f/g)(x) = f(x)/g(x)

for all x ∈ C.

1.25 Definition: A polynomial function (over R) is a function f : R→ R which can
be obtained from the functions 1 and x using (finitely many applications of) the operations
cf , f + g, f − g, f · g and f ◦ g. In other words, a polynomial is a function of the form

f(x) =
n∑
i=0

cix
i = c0 + c1x+ c2x

2 + · · ·+ cnx
n

for some n ∈ N and some ci ∈ F . The numbers ci are called the coefficients of the
polynomial and when cn 6= 0 the number n is called the degree of the polynomial.

1.26 Definition: A rational function (over R) is a function f : A ⊆ R→ R which can
be obtained from the functions 1 and x using (finitely many applications of) the operations
cf , f + g, f − g, f · g, f/g and f ◦ g. In other words, a rational function is a function of
the form

f(x) = p(x)/q(x)

for some polynomials p and q.

1.27 Definition: The functions 1, x, x1/n with 0 < n ∈ Z, ex, lnx, sinx and sin−1 x,
are called the basic elementary functions. An elementary function is any function
f : A ⊆ R→ R which can be obtained from the basic elementary functions using (finitely
many applications of) the operations cf , f + g, f − g, f · g, f/g and f ◦ g.

1.28 Example: The following functions are elementary

|x| =
√
x2,

cosx = sin
(
x+ π

2

)
,

tan−1 x = sin−1
( x√

1 + x2

)
,

f(x) =
e
√
x+sin x

tan−1(lnx)

We shall see later that every elementary function is continuous in its domain, so any
function which is discontinuos at a point in its domain cannot be elementary.
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Chapter 2. Limits of Sequences

2.1 Notation: We write N = {0, 1, 2, · · ·} for the set of natural numbers (which
we take to include the number 0), Z+ = {1, 2, 3, · · ·} for the set of positive integers,
Z = {0,±1,±2, · · ·} for the set of all integers, Q for the set of rational numbers and
we write R for the set of real numbers. We assume familiarity with the sets N, Z+, Z,
Q and R and with the algebraic operations + , − , × , ÷ and the order relations < , ≤ ,
> , ≥ on these sets.

2.2 Definition: For p ∈ Z, let Z≥p = {k ∈ Z|k ≥ p}. A sequence in a set A is a function
of the form x : Z≥p → A for some p ∈ Z. Given a sequence x : Z≥p → A, the kth term of
the sequence is the element xk = x(k) ∈ A, and we denote the sequence x by

(xk)k≥p = (xk|k ≥ p) = (xp, xp+1, xp+2, · · ·).
Note that the range of the sequence (xk)k≥p is the set {xk}k≥p = {xk|k ≥ p}.
2.3 Definition: Let (xk)k≥p be a sequence in R. For a ∈ R we say that the sequence
(xk)k≥p converges to a (or that the limit of (xk)k≥p is equal to a), and we write xk → a
(as k →∞), or we write lim

k→∞
xk = a, when

∀ ε > 0 ∃m ∈ Z≥p ∀ k ∈ Z≥p
(
k ≥ m =⇒ |xk − a| < ε

)
.

We say that the sequence (xk)k≥p converges (in R) when there exists a ∈ R such that
(xk)k≥p converges to a. We say that the sequence (xk)k≥p diverges (in R) when it does
not converge (to any a ∈ R). We say that (xk)k≥p diverges to infinity, or that the
limit of (xk)k≥p is equal to infinity, and we write xk → ∞ (as k → ∞), or we write
lim
k→∞

xk =∞, when

∀ r ∈ R ∃m ∈ Z≥p ∀ k ∈ Z≥p
(
k ≥ m =⇒ xk > r

)
.

Similarly we say that (xk)k≥p diverges to −∞, or that the limit of (xk)k≥p is equal to
negative infinity, and we write xk → −∞ (as k →∞), or we write lim

k→∞
xk = −∞ when

∀ r ∈ R ∃m ∈ Z≥p ∀ k ∈ Z≥p
(
k ≥ m =⇒ xk < r

)
.

2.4 Example: Let (xk)k≥0 be the sequence in R given by xk = (−2)k
k! for k ≥ 0. Show

that lim
k→∞

xk = 0.

Solution: Note that for k ≥ 2 we have |xk| = 2k

k! =
(
2
1

) (
2
2

) (
2
3

)
· · ·
(

2
k−1

) (
2
k

)
≤ 2

1 ·
2
n = 4

n .

Given ε ∈ R with ε > 0, we can choose m ∈ Z≥2 with m > 4
ε (by the Archimedean

Property of Z in R), and then for all k ≥ m we have |xk − 0| = |xk| ≤ 4
k ≤

4
m < ε. Thus

lim
k→∞

xk = 0, by the definition of the limit.

2.5 Example: Let (ak)k≥0 be the Fibonacci sequence in R, which is defined recursively
by a0 = 0, a1 = 1 and by ak = ak−1 + ak−2 for k ≥ 2. Show that lim

k→∞
ak =∞.

Solution: We have a0 = 0, a1 = 1, a2 = 1 and a3 = 2. Note that ak ≥ k − 1 when
k ∈ {0, 1, 2, 3}. Let n ≥ 4 and suppose, inductively, that ak ≥ k − 1 for all k ∈ Z with
0 ≤ k < n. Then an = an−1 +an−2 ≥ (n−2) + (n−3) = n+n−5 ≥ n+ 4−5 = n−1. By
the Strong Principle of Induction, we have an ≥ n− 1 for all n ≥ 0. Given r ∈ R we can
choose m ∈ Z≥0 with m > r+ 1, and then for all k ≥ m we have ak ≥ k − 1 ≥ m− 1 > r.
Thus lim

k→∞
ak =∞ by the definition of the limit.
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2.6 Example: Let xk = (−1)k for k ≥ 0. Show that (xk)k≥0 diverges.

Solution: Suppose, for a contradiction, that (xk)k≥0 converges and let a = lim
k→∞

xk. By

taking ε = 1 in the definition of the limit, we can choose m ∈ Z so the for all k ∈ N,
if k ≥ m then |xk − a| < 1. Choose k ∈ N with 2k ≥ m. Since |x2k − a| < 1 and
x2k = (−1)2k = 1, we have |1 − a| < 1 so that 0 < a < 2. Since |x2k+1 − a| < 1 and
x2k+1 = (−1)2k+1 = −1, we also have | − 1− a| < 1 which implies that −2 < a < 0. But
then we have a < 0 and a > 0, which is not possible.

2.7 Theorem: (Independence of the Limit on the Initial Terms) Let (xk)k≥p be a sequence
in R.

(1) If q ≥ p and yk = xk for all k ≥ q, then (xk)k≥p converges if and only if (yk)k≥q
converges, and in this case lim

k→∞
xk = lim

k→∞
yk.

(2) If l ≥ 0 and yk = xk+l for all k ≥ p, then (xk)k≥p converges if and only if (yk)k≥p
converges, and in this case lim

k→∞
xk = lim

k→∞
yk.

Proof: We prove Part 1 and leave the proof of Part 2 as an exercise. Let q ≥ p and let
yk = xk for k ≥ q. Suppose (xk)k≥p converges and let a = lim

k→∞
xk. Let ε > 0. Choose

m ∈ Z so that for all k ∈ Z≥p, if k ≥ m then |xk − a| < ε. Let k ∈ Z≥q with k ≥ m.
Since q ≥ p we also have k ∈ Z≥p and so |yk − a| = |xk − a| < ε. Thus (yk)k≥q converges
with lim

k→∞
yk = a. Conversely, suppose that (yk)k≥q converges and let a = lim

k→∞
yk. Let

ε > 0. Choose m1 ∈ Z so that for all k ∈ Z≥q, if k ≥ m1 then |yk − a| < ε. Choose
m = max{m1, q}. Let k ∈ Z≥p with k ≥ m. Since k ≥ m, we have k ≥ q and k ≥ m1 and
so |xk − a| = |yk − a| < ε. Thus (xk)k≥p converges with lim

k→∞
xk = a.

2.8 Remark: Because of the above theorem, we often denote the sequence (xk)k≥p simply
as (xk), omitting the initial index p from our notation. Also, in the statements of some
theorems and in some proofs we select a particular starting point, often p = 1, with the
understanding that any other starting value would work just as well.

2.9 Theorem: (Uniqueness of the Limit) Let (xk) be a sequence in R. If (xk) has a limit
(finite or infinite) then the limit is unique.

Proof: Suppose, for a contradiction, that xk → ∞ and xk → −∞. Since xk → ∞ we can
choose m1 ∈ Z so that k ≥ m1 =⇒ xk > 0. Since xk → −∞ we can choose m2 ∈ Z so
that k ≥ m2 =⇒ xk < 0. Choose any k ∈ Z≥p with k ≥ m1 and k ≥ m2. Then xk > 0
and xk < 0, which is not possible.

Suppose, for a contradiction, that xk → ∞ and xk → a ∈ F . Since xk → a we can
choose m1 ∈ Z so that k ≥ m1 =⇒ |xk − a| < 1. Since xk → ∞ we can choose m2 ∈ Z
so that k ≥ m2 =⇒ xk > a + 1. Choose any k ∈ Z≥p with k ≥ m1 and k ≥ m2. Then
we have |xk − a| < 1 so that x < a + 1 and we have xk > a + 1, which is not possible.
Similarly, it is not possible to have xk → −∞ and xk → a ∈ F .

Finally suppose, for a contradiction, that xk → a and xk → b where a, b ∈ F with

a 6= b. Since xk → a we can choose m1 ∈ Z so that k ≥ m1 =⇒ |xk − a| < |a−b|
2 . Since

xk → b we can choose m2 ∈ Z so that k ≥ m2 =⇒ |xk − b| < |a−b|
2 . Choose any k ∈ Z≥p

with k ≥ m1 and k ≥ m2. Then we have |xk − a| < b−a
2 and |xk − b| < b−a

2 and so, using
the Triangle Inequality, we have

|a− b| = |a− xk + xk − b| ≤ |xk − a|+ |xk − b| < |a−b|
2 + |a−b|

2 = |a− b|,
which is not possible.
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2.10 Theorem: (Basic Limits) For a ∈ R we have

lim
k→∞

a = a , lim
k→∞

k =∞ and lim
k→∞

1

k
= 0.

Proof: The proof is left as an exercise.

2.11 Theorem: (Operations on Limits) Let (xk) and (yk) be sequences in R and let
c ∈ R. Suppose that (xk) and (yk) both converge with xk → a and yk → b. Then

(1) (c xk) converges with c xk → ca,
(2) (xk + yk) converges with (xk + yk)→ a+ b,
(3) (xk − yk) converges with (xk − yk)→ a− b,
(4) (xkyk) converges with xkyk → ab, and
(5) if b 6= 0 then (xk/yk) converges with xk/yk → a/b.

Proof: We prove Parts 4 and 5 leaving the proofs of the other parts as an exercise. First
we prove Part 4. Note that for all k we have

|xkyk−ab| = |xkyk−xkb+xkb−ab| ≤ |xkyk−xkb|+ |xkb−ab| = |xk| |yk− b|+ |b||xk−a|.
Since xk → a we can choose m1 ∈ Z so that k ≥ m1 =⇒ |xk − a| < 1 and we can choose
m2 ∈ Z so that k ≥ m2 =⇒ |xk − a| < ε

2(1+|b|) . Since yk → b we can choose m3 ∈ Z so

that k ≥ m3 =⇒ |yk − b| < ε
2(1+|a|) . Let m = max{m1,m2,m3} and let k ≥ m. Then we

have |xk − a| < 1, |xk − a| < ε
2(1+|b|) and |xk − b| < ε

2(1+|a|) . Since |xk − a| < 1, we have

|xk| = |xk − a+ a| ≤ |xk − a|+ |a| < 1 + |a|. By our above calculation (where we found a
bound for |xkyk − ab|) we have

|xkyk − ab| ≤ |xk||yk − b|+ |b||xk − a| ≤ (1 + |a|)|yk − b|+ (1 + |b|)|xk − a|
< (1 + |a|) ε

2(1+|a|) + (1 + |b|) ε
2(1+|b|) = ε.

Thus we have xkyk → ab, by the definition of the limit.
To prove Part 5, suppose that b 6= 0. Since yk → b 6= 0, we can choose m1 ∈ Z so that

that k ≥ m1 =⇒ |yk − b| < |b|
2 . Then for k ≥ m1 we have

|b| = |b− yk + yk| ≤ |b− yk|+ |yk| < |b|
2 + |yk|

so that
|yk| > |b| − |b|2 = |b|

2 > 0.

In particular, we remark that when k ≥ m1 we have yk 6= 0 so that 1
yk

is defined. Note
that for all k ≥ m1 we have∣∣∣∣ 1

yk
− 1

b

∣∣∣∣ =
|b− yk|
|yk| |b|

≤ |b− yk||b|
2 · |b|

=
2

|b|2
· |yk − b|.

Let ε > 0. Choose m2 ∈ Z so that k ≥ m2 =⇒ |yk − b| < |b|2ε
2 . Let m = max{m1,m2}.

For k ≥ m we have k ≥ m1 and k ≥ m2 and so |yk| > |b|2
2 and |yk − b| < |b|2ε

2 and so∣∣∣∣ 1

yk
− 1

b

∣∣∣∣ ≤ 2
|b|2 · |yk − b| <

2
|b|2 ·

|b|2ε
2 = ε.

This proves that lim
k→∞

1
yk

= 1
b . Using Part 4, we have lim

k→∞
xk
yk

= lim
k→∞

(
xk · 1

yk

)
= a · 1b = a

b .
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2.12 Example: Let xk = k2+1
2k2+k+3 for k ≥ 0. Find lim

k→∞
xk.

Solution: We have xk = k2+1
2k2+k+2 =

1+( 1
k )

2

2+ 1
k+3·( 1

k )
2 −→ 1+02

2+0+3·02 = 1
2 where we used the Basic

Limits 1→ 1, 2→ 2 and 1
k → 0 together with Operations on Limits.

2.13 Definition: The above theorem can be extended to include many situations involving
infinite limits. To deal with these cases, we define the set of extended real numbers to
be the set

R̂ = R ∪ {−∞,∞}.

We extend the order relation < on R to an order relation on R̂ by defining −∞ <∞ and
−∞ < a and a < ∞ for all a ∈ R. We partially extend the operations + and × to R̂ as
follows: for a ∈ R we define

∞+∞ =∞ , ∞+ a =∞ , (−∞) + (−∞) = −∞ , (−∞) + a ,

∞ ·∞ =∞ , (∞)(−∞) = −∞ , (−∞)(−∞) =∞ ,

∞ · a =

{
∞ if a > 0

−∞ if a < 0
and (−∞)(a) =

{
−∞ if a > 0,

∞ if a < 0,

but other values, including ∞ + (−∞), ∞ · 0 and −∞ · 0 are left undefined in R̂. In a

similar way, we partially extend the inverse operations − and ÷ to R̂. For example, for
a ∈ R we define

∞−(−∞) =∞ ,−∞−∞ = −∞ , ∞−a =∞ ,−∞−a = −∞ , a−∞ = −∞ , a−(−∞) =∞ ,

a

∞
= 0 ,

∞
a

=

{
∞ if a > 0

−∞ if a < 0
and

−∞
a

=

{
−∞ if a > 0

∞ if a < 0

with other values, including ∞−∞, ∞∞ and ∞0 , left undefined. The expressions which are

left undefined in R̂, including

∞−∞ , ∞ · 0 , ∞
∞

,
∞
0
,
a

0
,

are known as indeterminate forms.

2.14 Theorem: (Extended Operations on Limits) Let (xk) and (yk) be sequences in R.

Suppose that lim
k→∞

xk = u and lim
k→∞

yk = v where u, v ∈ R̂.

(1) if u+ v is defined in R̂ then lim
k→∞

(xk + yk) = u+ v,

(2) if u− v is defined in R̂ then lim
k→∞

(xk − yk) = u− v,

(3) if u · v is defined in R̂ then lim
k→∞

(xk · yk) = u · v, and

(4) if u/v is defined in R̂ then lim
k→∞

(xk/yk) = u/v.

Proof: The proof is left as an exercise.
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2.15 Theorem: (Comparison) Let (xk) and (yk) be sequences in R. Suppose that xk ≤ yk
for all k. Then

(1) if xk → a and yk → b then a ≤ b,
(2) if xk →∞ then yk →∞, and
(3) if yk → −∞ then xk → −∞.

Proof: We prove Part 1. Suppose that xk → a and yk → b. Suppose, for a contradiction,
that a > b. Choose m1 ∈ Z so that k ≥ m1 =⇒ |xk − a| < a−b

2 . Choose m2 ∈ Z so

that k ≥ m2 =⇒ |yk − b| < a−b
2 . Let k = max{m1,m2}. Since |xk − a| < a−b

2 , we have

xk > a − a−b
2 = a+b

2 . Since |yk − b| < a−b
2 , we have yk < b + a−b

2 = a+b
2 . This is not

possible since xk ≤ yk.

2.16 Example: Let xk = ( 3
2 + sin k) ln k for k ≥ 1. Find lim

k→∞
xk.

Solution: For all k ≥ 1 we have sin k ≥ −1 so ( 3
2 + sin k) ≥ 1

2 and hence xk ≥ 1
2 ln k.

Since xk ≥ 1
2 ln k for all k ≥ 1 and 1

2 ln k −→ 1
2 · ∞ = ∞, it follows that xk → ∞ by the

Comparison Theorem.

2.17 Theorem: (Squeeze) Let (xk), (yk) and (zk) be sequences in R and let a ∈ R.

(1) If xk ≤ yk ≤ zk for all k and xk → a and zk → a then yk → a.
(2) If |xk| ≤ yk for all k and yk → 0 then xk → 0.

Proof: We prove Part 1. Suppose that xk ≤ yk ≤ zk for all k, and suppose that xk → a
and zk → a. Let ε > 0. Choose m1 ∈ Z so that k ≥ m1 =⇒ |xk − a| < ε, choose m2 ∈ Z
so that k ≥ m2 =⇒ |zk − a| < ε and let m = max{m1,m2}. Then for k ≥ m we have
a− ε < xk ≤ yk ≤ zk < a+ ε and so |yk − a| < ε. Thus yk → a, as required.

2.18 Example: Let xk = k+tan−1 k
2k+sin k for k ≥ 1. Find lim

k→∞
xk.

Solution: For all k ≥ 1 we have −π2 < tan−1 k < π
2 and −1 ≤ sin k ≤ 1 and so

k − π
2

2k + 1
≤ k + tan−1 k

2k + sin k
≤

k + π
2

2k − 1
.

As in previous examples, we have
k−π2
2k+1 →

1
2 and

k+π
2

2k−1 →
1
2 , and so xk = k+tan−1 k

2k+sin k →
1
2

by the Squeeze Theorem.

11



2.19 Definition: Let (xk) be a sequence in R. For a, b ∈ R, we say that the sequence
(xk) is bounded above by b when xk ≤ b for all k, and we say that the sequence (xk) is
bounded below by a when a ≤ xk for all k. We say (xk) is bounded above when it
is bounded above by some element b ∈ R, we say that (xk) is bounded below when it
is bounded below by some a ∈ R, and we say that (xk) is bounded when it is bounded
above and bounded below.

2.20 Definition: Let (xk) be a sequence in R. We say that (xk) is increasing (for k ≥ p)
when for all k, l ∈ Z≥p, if k ≤ l then xk ≤ xl. We say that (xk) is strictly increasing
(for k ≥ p) when for all k, l ∈ Z≥p, if k < l then xk < xl. Similarly, we say that (xk) is
decreasing when for all k, l ∈ Z≥p, if k ≤ l the xk ≥ xl and we say that (xk) is strictly
decreasing when for all k, l ∈ Z≥p, if k < l the xk > xl. We say that (xk) is monotonic
when it is either increasing or decreasing.

2.21 Theorem: (Monotonic Convergence) Let (xk) be a sequence in R.

(1) Suppose (xk) is increasing. If (xk) is bounded above then it converges, and if (xk) is
not bounded above then xk →∞.
(2) Suppose (xk) is decreasing. If (xk) is bounded below then it converges, and if (xk) is
not bounded below then xk → −∞.

Proof: The statement of this theorem is intuitively reasonable, but it is quite difficult to
prove. In most calculus courses this theorem is accepted axiomatically, without proof. A
rigorous proof is often provided in analysis courses.

2.22 Example: Let x1 = 4
3 and let xk+1 = 5 − 4

xn
for k ≥ 1. Determine whether (xk)

converges, and if so then find the limit.

Solution: Suppose, for now, that (xk) does converge, say xk → a. By Independence of
Converge on Initial Terms, we also have xk+1 → a. Using Operations on Limits, we have
a = lim

k→∞
xk+1 = lim

k→∞

(
5− 4

xk

)
= 5− 4

a . Since a = 5− 4
a , we have a2 = 5a−4 or equivalently

(a− 1)(a− 4) = 0. We have proven that if the sequence converges then its limit must be
equal to 1 or 4.

The first few terms of the sequence are x1 = 4
3 , x2 = 2 and x3 = 3. Since the terms

appear to be increasing, we shall try to prove that 1 ≤ xn ≤ xn+1 ≤ 4 for all n ≥ 1. This
is true when n = 1. Suppose it is true when n = k. Then we have

1 ≤ xk ≤xk+1 ≤ 4 =⇒ 1 ≥ 1
xk
≥ 1

xk+1
≥ 1

4 =⇒ − 4 ≤ − 4
xk
≤ − 4

xk+1
≤ −1

=⇒ 1 ≤ 5− 4
xk
≤ 5− 4

xk+1
≤ 4 =⇒ 1 ≤ xk+1 ≤ xk+2 ≤ 4.

Thus, by the Principle of Induction, we have 1 ≤ xn ≤ xn+1 ≤ 4 for all n ≥ 1.
Since xn ≤ xn+1 for all n ≥ 1, the sequence is increasing, and since xn ≤ 4 for all

n ≥ 1, the sequence is bounded above by 4. By the Monotone Convergence Theorem, the
sequence does converge. By the first paragraph, we know the limit must be either 1 or 4,
and since the sequence starts at x1 = 2 and increases, the limit must be 4.
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Chapter 3. Limits of Functions and Continuity

3.1 Definition: Let A ⊆ R and let a ∈ R. We say that a is a limit point of A when

∀ δ>0 ∃x∈A 0 < |x− a| < δ.

We say that a is a limit point of A from below (or from the left) when

∀δ > 0 ∃x ∈ A a− δ < x < a .

We say that a is a limit point of A from above (or from the right) when

∀δ > 0 ∃x ∈ A a < x < a+ δ .

We say that A is not bounded above when ∀m∈R ∃x∈A x ≥ m, and we say that A
is not bounded below when ∀m∈R ∃x∈A x ≤ m.

3.2 Example: Let A be a finite union of non-degenerate intervals in R (a non-degenerate
interval is an interval which contains more than one point). The limit points of A are
the points a ∈ R such that either a ∈ A or a is an endpoint of one of the intervals. The
limit points of A from below are the points a ∈ R such that either a ∈ A or a is the right
endpoint of one of the intervals. The set A is not bounded above when one of the intervals
is of one of the forms (a,∞), [a,∞) or (−∞,∞) = R.

3.3 Definition: Let A ⊆ R and let f : A → R. When a ∈ R is a limit point of A, we
make the following definitions.

(1) For b ∈ R, we say that the limit of f(x) as x tends to a is equal to b, and we write
lim
x→a

f(x) = b or we write f(x)→ b as x→ a, when

∀ε>0 ∃δ>0 ∀x∈A
(
0 < |x− a| < δ =⇒ |f(x)− b| < ε

)
.

(2) We say the limit of f(x) as x tends to a is equal to infinity, and we write lim
x→a

f(x) =∞,

or we write f(x)→∞ as x→ a, when

∀r∈R ∃δ>0 ∀x∈A
(
0 < |x− a| < δ =⇒ f(x) > r

)
.

(3) We say that the limit of f(x) as x tends to a is equal to negative infinity, and we
write lim

x→a
f(x) = −∞, or we write f(x)→ −∞ as x→ a, when

∀r∈R ∃δ>0 ∀x∈A
(
0 < |x− a| < δ =⇒ f(x) < r

)
.

When a is a limit point of A from below and b ∈ R, we make the following definitions.

(4) lim
x→a−

f(x) = b ⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A
(
a− δ < x < a =⇒ |f(x)− b| < ε

)
.

(5) lim
x→a−

f(x) =∞ ⇐⇒ ∀r∈R ∃δ>0 ∀x∈A
(
a− δ < x < a =⇒ f(x) > r

)
.

(6) lim
x→a−

f(x) = −∞ ⇐⇒ ∀r∈R ∃δ>0 ∀x∈A
(
a− δ < x < a =⇒ f(x) < r

)
.

When a is a limit point of A from above and b ∈ R, we make the following definitions.

(7) lim
x→a+

f(x) = b ⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A
(
a < x < a+ δ =⇒ |f(x)− b| < ε

)
.

(8) lim
x→a+

f(x) =∞ ⇐⇒ ∀r∈R ∃δ>0 ∀x∈A
(
a < x < a+ δ =⇒ f(x) > r

)
.

(9) lim
x→a+

f(x) = −∞ ⇐⇒ ∀r∈R ∃δ>0 ∀x∈A
(
a < x < a+ δ =⇒ f(x) < r

)
.

13



When A is not bounded above and b ∈ R, we make the following definitions.

(10) lim
x→∞

f(x) = b ⇐⇒ ∀ε>0 ∃m∈R ∀x∈A
(
x ≥ m =⇒ |f(x)− b| < ε

)
.

(11) lim
x→∞

f(x) =∞ ⇐⇒ ∀r∈R ∃m∈R ∀x∈A
(
x ≥ m =⇒ f(x) > r

)
.

(12) lim
x→∞

f(x) = −∞ ⇐⇒ ∀r∈R ∃m∈R ∀x∈A
(
x ≥ m =⇒ f(x) < r

)
.

When A is not bounded below and b ∈ R, we make the following definitions.

(13) lim
x→−∞

f(x) = b ⇐⇒ ∀ε>0 ∃m∈R ∀x∈A
(
x ≤ m =⇒ |f(x)− b| < ε

)
.

(14) lim
x→−∞

f(x) =∞ ⇐⇒ ∀r∈R ∃m∈R ∀x∈A
(
x ≤ m =⇒ f(x) > r

)
.

(15) lim
x→−∞

f(x) = −∞ ⇐⇒ ∀r∈R ∃m∈R ∀x∈A
(
x ≤ m =⇒ f(x) < r

)
.

3.4 Example: Let f(x) =
x2 + 2x− 3

x2 − 1
. Show that lim

x→1
f(x) = 2.

Solution: Note that for x 6= 1 we have

|f(x)− 2| =
∣∣∣x2+2x−3

x2−1 − 2
∣∣∣ =

∣∣∣ (x+3)(x−1)
(x+1)(x−1) − 2

∣∣∣ =
∣∣∣x+3
x+1 − 2

∣∣∣ =
∣∣∣x+3−2x−2

x+1

∣∣∣ =
∣∣∣−x+1
x+1

∣∣∣ = |x−1|
|x+1| .

Let ε > 0. Choose δ = min{1, ε}. Let 0 < |x − 1| < δ. Since 0 < |x − 1| we have x 6= 1

so, as shown above, |f(x) − 2| = |x−1|
|x+1| . Since |x − 1| < δ ≤ 1 we have 0 < x < 3 so that

1 < x + 1, and hence |f(x) − 2| = |x−1|
|x+1| < |x − 1|. Finally, since |x − a| < δ ≤ ε we have

|f(x)− 2| ≤ |x− 1| < ε. Thus lim
x→1

f(x) = 2.

3.5 Theorem: (Two Sided Limits) Let A ⊆ R, let f : A → R and let a ∈ R. Suppose

that a is a limit point of A both from the left and from the right. Then for u ∈ R̂ we have
lim
x→a

f(x) = u if and only if lim
x→a−

f(x) = u = lim
x→a+

f(x).

Proof: We prove the theorem in the case that u = b ∈ R. Suppose that lim
x→a

f(x) = b ∈ R.

Let ε > 0. Choose δ > 0 so that for all x ∈ A, if 0 < |x − a| < δ then |f(x)− b| < ε. For
x ∈ A with a− δ < x < a we have 0 < |x− a| < δ and so |f(x)− b| < ε. This shows that
lim
x→a−

f(x) = b. For x ∈ A with a < x < x+δ we have 0 < |x−a| < δ and so |f(x)−b| < ε.

This show that lim
x→a+

f(x) = b.

Conversely, suppose that lim
x→a−

f(x) = b = lim
x→a+

f(x). Let ε > 0. Since f(x) → b

as x → a−, we can choose δ1 > 0 so that for all x ∈ A with a − δ < a < a we have
|f(x) − b| < ε. Since f(x) → b as x → a+ we can choose δ2 > 0 so that for all x ∈ A
with a < x < a + δ2 we have |f(x) − b| < ε. Let δ = min{δ1, δ2}. Let x ∈ A with
0 < |x − a| < δ. Either we have x < a or we have x > a. In the case that x < a we have
a− δ1 ≤ a− δ < x < a and so |f(x)− b| < ε (by the choice of δ1). In the case that x > a
we have a < x < a+ δ ≤ a+ δ2 and so |f(x)− b| < ε (by the choice of δ2). In either case
we have |f(x)− b| < ε, and so lim

x→a
f(x) = b, as required.
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3.6 Remark: For the sequence (xk)k≥p in R given by xk = f(k) where f : Z≥p → R,
the definitions (10), (11) and (12) agree with our definitions for limits of sequences. Thus
limits of sequences are a special case of limits of functions. The following theorem shows
that limits of functions are determined by limits of sequences.

3.7 Theorem: (The Sequential Characterization of Limits of Functions) Let A ⊆ R, let

f : A→ R, and let u ∈ R̂.

(1) When a ∈ R is a limit point of A, lim
x→a

f(x) = u if and only if for every sequence (xk)

in A \ {a} with xk → a we have f(xk)→ u.

(2) When a is a limit point of A from below, lim
x→a−

f(x) = u if and only if for every sequence

(xk) in {x ∈ A|x < a} with xk → a we have f(xk)→ u.

(3) When a is a limit point of A from above, lim
x→a+

f(x) = u if and only if for every sequence

(xk) in {x ∈ A|x > a} with xk → a we have f(xk)→ u.

(4) When A is not bounded above, lim
x→∞

f(x) = u if and only if for every sequence (xk)

in A with xk →∞ we have f(xk)→ u.

(5) When A is not bounded below, lim
x→−∞

f(x) = u if and only if for every sequence (xk)

in A with xk → −∞ we have f(xk)→ u.

Proof: We prove Part 1 in the case that u = b ∈ R. Let a ∈ R be a limit point of A.
Suppose that lim

x→a
f(x) = b ∈ R. Let (xk) be a sequence in A \ {a} with xk → a. Let

ε > 0. Since lim
x→a

f(x) = b, we can choose δ > 0 so that 0 < |x− a| < δ =⇒ |f(x) = b| < ε.

Since xk → a we can choose m ∈ Z so that k ≥ m =⇒ |xk − a| < δ. Then for k ≥ m, we
have |xk − a| < δ and we have xk 6= a (since the sequence (xk) is in the set A \ {a}) so
that 0 < |x− a| < δ and hence |f(xk)− b| < ε. This shows that f(xk)→ b.

Conversely, suppose that lim
x→a

f(x) 6= b. Choose ε0 > 0 so that for all δ > 0 there

exists x ∈ A with 0 < |x − a| < δ and |f(x) − b| ≥ ε0. For each k ∈ Z+, choose xk ∈ A
with 0 < |xk − a| ≤ 1

k and |f(xk) − b| ≥ ε0. In this way we obtain a sequence (xk)k≥1 in
A \ {a}. Since |xk − a| ≤ 1

k for all k ∈ Z+, it follows that xk → a (indeed, given ε > 0
we can choose m ∈ Z with m > 1

ε and then k ≥ m =⇒ |xk − a| ≤ 1
k ≤

1
m < ε). Since

|f(xk)− b| ≥ ε0 for all k, it follows that f(xk) 6→ b (indeed if we had f(xk)→ b we could
choose m ∈ Z so that k ≥ m =⇒ |f(xk)− b| < ε0 and then we could choose k = m to get
|f(xk)− b| < ε0).

3.8 Remark: It follows from the Sequential Characterization of Limits of Functions that
all of our theorems about limits of sequences imply analogous theorems in the more general
setting of limits of functions. We list several of those theorems and give one sample proof.

3.9 Theorem: (Local Determination of Limits) Let A ⊆ B ⊆ R, let a be a limit point of
A (hence also of B) and let f : A → R and g : B → R with f(x) = g(x) for all x ∈ A.

Then if lim
x→a

g(x) = u ∈ R̂ then lim
x→a

f(x) = u.

Similar results holds for limits x→ a± and x→ ±∞.

3.10 Theorem: (Uniqueness of Limits) Let A ⊆ R, let a be a limit point of A, and let

f : A → R. For u, v ∈ R̂, if lim
x→a

f(x) = u and lim
x→a

f(x) = v then u = v. Similar results

hold for limits x→ a± and x→ ±∞.
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3.11 Theorem: (Basic Limits) Let F be a subfield of R, and let A ⊆ F . For the constant
function f : A→ F given by f(x) = b for all x ∈ A, we have

lim
x→a

f(x) = b , lim
x→a+

f(x) = b , lim
x→a−

f(x) = b , lim
x→∞

f(x) = b and lim
x→−∞

f(x) = b,

and for the identity function f : A→ F given by f(x) = x for all x ∈ A we have

lim
x→a

f(x) = a , lim
x→a+

f(x) = a , lim
x→a−

f(x) = a , lim
x→∞

f(x) =∞ and lim
x→−∞

f(x) = −∞

whenever the limits are defined.

3.12 Theorem: (Extended Operations on Limits) Let A ⊆ R, let f, g : A → R and let

a be a limit point of A. Let u, v ∈ R̂ and suppose that lim
x→a

f(x) = u and lim
x→a

g(x) = v.

Then

(1) if u+ v is defined in R̂ then lim
x→a

(f + g)(x) = u+ v,

(2) if u− v is defined in R̂ then lim
x→a

(f − g)(x) = u− v,

(3) if u · v is defined in R̂ then lim
x→a

(fg)(x) = u · v, and

(4) if u/v is defined in R̂ then lim
x→a

(f/g)(x) = u/v.

Similar results hold for limits x→ a± and x→ ±∞.

Proof: We prove Part 4. Suppose that u/v is defined in R̂. Let (xk) be any sequence in
A \ {a} with xk → a. By the Sequential Characterization of Limits, since lim

x→a
f(x) = u we

have f(xk)→ u, and since lim
x→a

g(x) = v we have f(xk)→ v. By Extended Operations on

Limits of Sequences (Theorem 1.14), since f(xk) → u and g(xk) → v and u/v is defined

in R̂, we have (f/g)(xk) = f(xk)
g(xk)

→ u/v. Thus (f/g)(xk) → u/v for every sequence (xk)

in A \ {a} with xk → a. By the Sequential Characterization of Limits, it follows that
lim
x→a

(f/g)(x) = u/v.

3.13 Theorem: (The Comparison Theorem) Let A ⊆ F , let f, g : A→ R and let a ∈ R
be a limit point of A. Suppose that f(x) ≤ g(x) for all x ∈ A. Then

(1) if lim
x→a

f(x) = u and lim
x→a

f(x) = v with u, v ∈ R̂, then u ≤ v,

(2) if lim
x→a

f(x) =∞ then lim
x→a

g(x) =∞, and

(3) if lim
x→a

g(x) = −∞ then lim
x→a

g(x) = −∞.

Similar results hold for limits x→ a± and x→ ±∞.

3.14 Theorem: (The Squeeze Theorem) Let A ⊆ R, let f, g, h : A → R, and let a ∈ R
be a limit point of A.

(1) If f(x) ≤ g(x) ≤ h(x) for all x ∈ A and lim
x→a

f(x) = b = lim
x→a

h(x), then lim
x→a

g(x) = b.

(2) If |f(x)| ≤ g(x) for all x ∈ A and lim
x→a

g(x) = 0 then lim
x→a

f(x) = 0.

Similar results hold for limits x→ a± and x→ ±∞.
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3.15 Definition: Let A ⊆ R, and let f : A→ R. For a ∈ A, we say that f is continuous
at a when

∀ε > 0 ∃δ > 0 ∀x ∈ A
(
|x− a| < δ =⇒ |f(x)− f(a)| < ε

)
.

We say that f is continuous (on A) when f is continuous at every point a ∈ A.

3.16 Theorem: Let A ⊆ R, let f : A→ R and let a ∈ A. Then

(1) if a is not a limit point of A then f is continuous at a, and
(2) if a is a limit point of A then f is continuous at a if and only if lim

x→a
f(x) = f(a).

Proof: The proof is left as an exercise.

3.17 Theorem: (The Sequential Characterization of Continuity) Let A ⊆ R, let a ∈ A,
and let f : A → R. Then f is continuous at a if and only if for every sequence (xk) in A
with xk → a we have f(xk)→ f(a).

Proof: Suppose that f is continuous at a. Let (xk) be a sequence in A with xk → a. Let
ε > 0. Choose δ > 0 so that for all x ∈ A we have |x − a| < δ =⇒ |f(x) − f(a)| < ε.
Choose m ∈ Z so that for all indices k we have k ≥ m =⇒ |xk−a| < δ. Then when k ≥ m
we have |xk − a| < δ and hence |f(xk)− f(a)| < ε. Thus we have f(xk)→ f(a).

Conversely, suppose that f is not continuous at a. Choose ε0 > 0 so that for all δ > 0
there exists x ∈ A with |x − a| < δ and |f(x) − f(a)| ≥ ε0. For each k ∈ Z+, choose
xk ∈ A with |xk − a| ≤ 1

k and |f(xk)− f(a)| ≥ ε0. Consider the sequence (xk) in A. Since
|xk − a| ≤ 1

k for all k ∈ Z+, it follows that xk → a. Since |f(xk) − f(a)| ≥ ε0 for all
k ∈ Z+, it follows that f(xk) 6→ f(a).

3.18 Theorem: (Operations on Continuous Functions) Let A ⊆ R, let f, g : A → R,
let a ∈ A and let c ∈ R. Suppose that f and g are continuous at a. Then the functions
cf , f + g, f − g and fg are all continuous at a, and if g(a) 6= 0 then the function f/g is
continuous at a.

Proof: The proof is left as an exercise.

3.19 Theorem: (Composition of Continuous Functions) Let A,B ⊆ R, let f : A → R
and g : B → R, and let h = g ◦ f : C → R where C = A ∩ f−1(B).

(1) If f is continuous at a ∈ C and g is continuous at f(a), then h is continuous at a.
(2) If f is continuous (on A) and g is continuous (on B) then h is continuous (on C).

Proof: Note that Part 2 follows immediately from Part 1, so it suffices to prove Part 1.
Suppose that f is continuous at a ∈ A and g is continuous at b = f(a) ∈ B. Let (xk)
be a sequence in C with xk → a. Since f is continuous at a, we have f(xk) → f(a) = b
by the Sequential Characterization of Continuity. Since

(
f(xk)

)
is a sequence in B with

f(xk) → b and since g is continuous at b, we have g(f(xk)) → g(b) by the Sequential
Characterization of Continuity. Thus we have h(xk) = g

(
f(xk)

)
→ g(b) = g

(
f(a)

)
= h(a).

We have shown that for every sequence (xk) in C with xk → a we have h(xk) → h(a).
Thus h is continuous at a by the Sequential Characterization of Continuity.
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3.20 Theorem: (Functions Acting on Limits) Let A,B ⊆ R, let f : A→ R, let g : B → R
and let h = g ◦ f : C → F where C = A ∩ f−1(B). Let a be a limit point of C (hence
also of A) and let b be a limit point of B. Suppose that lim

x→a
f(x) = a and lim

y→b
g(y) = c.

Suppose either that f(x) 6= b for all x ∈ C \ {a} or that g is continuous at b ∈ B. Then
lim
x→a

h(x) = c.

Analogous results hold, dealing with limits x→ a±, x→ ±∞, y → b± and y → ±∞.

Proof: The proof is left as an exercise. It is similar to the proof of the Composition of
Continuous Functions Theorem.

3.21 Definition: The functions 1, x, n
√
x with n ∈ Z+, ex, lnx, sinx and sin−1 x,

are called the basic elementary functions. An elementary function is any function
f : A ⊆ R→ R which can be obtained from the basic elementary functions using (finitely
many applications of) the operations cf , f + g, f − g, f · g, f/g and f ◦ g.

3.22 Example: Each of the following functions f(x) is elementary: f(x) = |x| =
√
x2,

f(x) = cosx = sin
(
x + π

2

)
, f(x) = tanx = sin x

cos x , f(x) = tan−1 x = sin−1
(

x√
1+x2

)
,

f(x) = xa = ea ln x where a ∈ R, f(x) = ax = ex ln a where a > 0, and f(x) = e

√
x+sin x

tan−1(ln x) .

3.23 Note: We shall assume familiarity with exponential, logarithmic, trigonometric and
inverse trigonometric functions. In particular, we shall assume that they are known to be
continuous in their domains, (and it follows that every elementary function is continuous
in its domain). We shall also assume that their asymptotic behaviour, the intervals on
which they are increasing and decreasing, and all of their usual algebraic identities are
known. A review of this material can be found in Chapter 1.

A rigorous proof that these basic elementary functions are continuous, and that they
satisfy their usual well-known properties, is quite long and difficult (and we shall not
give a proof in this course). The main difficulty lies in giving a rigorous definition for
each of the basic elementary functions. In most calculus courses, we define exponential
and trigonometric functions informally. We might define the function f(x) = ex to be
the function with f(0) = 1 which is equal to its own derivative, but we do not ever
prove rigorously that such a function actually exists. We might define the sine and cosine
functions by saying that for θ > 0, when we start at (1, 0) and travel a distance θ units
counterclockwise around the unit circle x2 + y2 = 1, the point at which we arrive is (by
definition) the point (x, y) = (cos θ, sin θ), but we have not yet rigorously defined the
meaning of distance along a curve. We use these informal definitions to argue, informally,
that d

dx sinx = cosx and d
dx cosx = − sinx and then we argue that because ex, sinx and

cosx are differentiable, therefore they must be continuous.
There are various possible ways to define exponential and trigonometric functions

rigorously. One way is to wait until one has rigorously defined power series and then
define

ex =
∞∑
n=0

1
n! x

n , sinx =
∞∑
n=0

(−1)n
(2n+1)! x

n , cosx =
∞∑
n=0

(−1)n
(2n)! x

n.

If we define ex, sinx and cosx using these formulas, then one can prove (rigorously) that
they are differential and continuous, and one can verify (although it is quite time consuming
to do so) that they satisfy all of their usual well-known properties.
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3.24 Example: For each of the following sequences (xk)k≥0, evaluate lim
k→∞

xk if it exists.

(a) xk =
√
3k2+1
k+2 (b) xk = 1+3k

3√2+k−k2 (c) xk = sin−1
(
k −
√
k2 + k

)
Solution: For Part (a), we have xk =

√
3k2+1
k+2 =

√
3+ 1

k2

1+2· 1k
−→

√
3+0

1+2·0 =
√

3 where we used

Basic Limits, Extended Operations on Limits, the fact that
√
x is continuous, and the

Sequential Characterization of Limits
(
since

√
x is continuous at 3 we have lim

x→3

√
x =
√

3,

and since 3 + 1
k2 → 3 we have lim

k→∞

√
3 + 1

k2 = lim
x→3

√
x =

√
3 by the Sequential Charac-

terization of Limits
)
.

For Part (b), xk = 1+3k
3√2+k−k2 =

1
k+3

3
√

2
k2

+ 1
k−1
· k1/3 −→ 0+3

3
√
0+0−1 · ∞ = −1 · ∞ = −∞ where

we used Basic Limits, Extended Operations, the continuity of 3
√
x, and the Sequential

Characterization of Limits

For Part (c), note that k−
√
k2 + k = k2−(k2+k)

k+
√
k2+k

= −k
k+
√
k2+k

= −1
1+
√

1+ 1
k

−→ −1
1+
√
1+0

= − 1
2 ,

and so xk = sin−1
(
k −
√
k2 − k

)
−→ sin−1

(
− 1

2

)
= −π6 .

3.25 Exercise: Evaluate each of the following limits, if they exist.

(a) lim
x→3

√
x+ 1− 2

3− x
(b) lim

x→1
sin−1

( 2

x− 1
− x+ 3

x2 − 1

)
(c) lim

x→0
e−1/x

2

(d) lim
x→∞

(3x+ 1)
√
x√

4x3 − 2x+ 1
(e) lim

x→1−

√
x3 − 2x2 + x

x2 + 2x− 3
(f) lim

x→−1+
x2 − 2x− 3

x3 + 4x2 + 5x+ 2

3.26 Theorem: (Intermediate Value Theorem) Let I be an interval in R and let f : I → R
be continuous. Let a, b ∈ I with a ≤ b and let y ∈ R. Suppose that either f(a) ≤ y ≤ f(b)
or f(b) ≤ y ≤ f(a). Then there exists x ∈ [a, b] with f(x) = y.

Proof: Like the Monotone Convergence Theorem, the statement of this theorem is in-
tuitively reasonable, but it is quite difficult to prove, and in most calculus courses this
theorem is accepted axiomatically, without proof.

3.27 Example: Prove that there exists x ∈ [0, 1] such that 3x− x3 = 1.

Solution: Let f(x) = 3x−x3. Note that f is continuous (it is an elementary function) with
f(0) = 0 and f(1) = 2 and so, by the Intermediate Value Theorem, there exists x ∈ [0, 1]
such that f(x) = 1. We remark that in fact f(x) = 1 when x = 2 cos

(
2π
9

)
.

3.28 Definition: Let A ⊆ R, and let f : A → R. For a ∈ A, if f(a) ≥ f(x) for every
x ∈ A, then we say that f(a) is the maximum value of f and that f attains its maximum
value at a. Similarly for b ∈ A, if f(b) ≤ f(x) for every x ∈ A then we say that f(b) is the
minimum value of f (in A) and that f attains its minimum value at b. We say that f
attains its extreme values in A when f attains its maximum value at some point a ∈ A
and f attains its minimum value at some point b ∈ A.

3.29 Theorem: (Extreme Value Theorem) Let a, b ∈ R with a < b, and let f : [a, b]→ R
be continuous. Then f attains its extreme values in [a, b].

Proof: Like the Monotone Convergence Theorem and the Intermediate Value Theorem,
the statement of this theorem seems reasonable, but it is difficult to prove.
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Chapter 4. Differentiation

4.1 Definition: For a subset A ⊆ R, we say that A is open when it is a union of open
intervals. Let A ⊆ R be open, let f : A→ R. For a ∈ A, we say that f is differentiable
at a when the limit

lim
x→a

f(x)− f(a)

x− a
exists in R. In this case we call the limit the derivative of f at a, and we denote to by
f ′(a), so we have

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

We say that f is differentiable (on A) when f is differentiable at every point a ∈ A. In
this case, the derivative of f is the function f ′ : A→ R defined by

f ′(x) = lim
u→x

f(u)− f(x)

u− x
.

When f ′ is differentiable at a, denote the derivative of f ′ at a by f ′′(a), and we call
f ′′(a) the second derivative of f at a. When f ′′(a) exists for every a ∈ A, we say that
f is twice differentiable (on A), and the function f ′′ : A → R is called the second
derivative of f . Similarly, f ′′′(a) is the derivative of f ′′ at a and so on. More generally,
for any function f : A → R, we define its derivative to be the function f ′ : B → R
where B =

{
a ∈ A

∣∣f is differentiable at a
}

, and we define its second derivative to be

the function f ′′ : C → R where C =
{
a ∈ B

∣∣f ′ is differentiable at a
}

and so on.

4.2 Remark: Note that

lim
x→a

f(x)− f(a)

x− a
= lim
h→0

f(a+ h)− f(a)

h
.

To be precise, the limit on the left exists in R if and only if the limit on the right exists in
R, and in this case the two limits are equal.

4.3 Note: Let A ⊆ R be open, let f : A→ R, and let a ∈ A. Then

f is differentiable at a with derivative f ′(a) ⇐⇒ lim
x→a

f(x)− f(a)

x− a
= f ′(a)

⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A
(

0 < |x− a| < δ =⇒
∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ < ε

)
⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A

(
0 < |x− a| < δ =⇒

∣∣∣∣f(x)− f(a)− f ′(a)(x− a)

x− a

∣∣∣∣ < ε

)
⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A

(
0 < |x− a| < δ =⇒

∣∣f(x)− f(a)− f ′(a)(x− a)
∣∣ < ε |x− a|

)
We can also simplify this last expression a little bit by noting that when x = a we have∣∣f(x) − f(a) − f ′(a)(x − a)

∣∣ = 0 = ε |x − a|, so we can replace inequalities by equalities
and say that f is differentiable at a if and only if

∀ε>0 ∃δ>0 ∀x∈A
(
|x− a| ≤ δ =⇒

∣∣f(x)− l(x)
∣∣ ≤ ε |x− a|)

where l : R→ R is given by l(x) = f(a) + f ′(a)(x− a).
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4.4 Definition: When f : A→ R is differentiable at a with derivative f ′(a), the function

l(x) = f(a) + f ′(a)(x− a)

is called the linearization of f at a. Note that the graph y = l(x) of the linearization is
the line through the point (a, f(a)) with slope f ′(a). This line is called the tangent line
to the graph y = f(x) at the point (a, f(a)).

4.5 Theorem: (Differentiability Implies Continuity) Let A ⊆ R be open, let f : A → R
and let a ∈ A. If f is differentiable at a then f is continuous at a.

Proof: We have

f(x)− f(a) =
f(x)− f(a)

x− a
· (x− a) −→ f ′(a) · 0 = 0 as x→ a

and so
f(x) =

(
f(x)− f(a)

)
+ f(a) −→ 0 + f(a) = f(a) as x→ a.

This proves that f is continuous at a.

4.6 Theorem: (Local Determination of the Derivative) Let A,B ⊆ R be open with
A ⊆ B, let f : A→ R and g : B → R wih f(x) = g(x) for all x ∈ A. and let a ∈ A. Then
f is differentiable at a if and only if g is differentiable at a and, in this case, f ′(a) = g′(a).

Proof: The proof is left as an exercise.

4.7 Theorem: (Operations on Derivatives) Let A ⊆ R be open, let f, g : A → R, let
a ∈ A, and let c ∈ R. Suppose that f and g are differentiable at a. Then

(1) (Linearity) the functions cf , f + g and f − g are differentiable at a with

(cf)′(a) = c f ′(a) , (f + g)′(a) = f ′(a) + g′(a) , (f − g)′(a)− f ′(a)− g′(a),

(2) (Product Rule) the function fg is differentiable at a with

(fg)′(a) = f ′(a)g(a) + f(a)g′(a),

(3) (Reciprocal Rule) if g(a) 6= 0 then the function 1/g is differentiable at a with(1

g

)′
(a) = − g

′(a)

g(a)2
,

(4) (Quotient Rule) if g(a) 6= 0 then the function f/g is differentiable at a with(f
g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

g(a)2
.

Proof: We prove Parts (2), (3) and (4). For x ∈ A with x 6= a, we have

(fg)(x)− (fg)(a)

x− a
=
f(x)g(x)− f(a)g(a)

x− a

=
f(x)g(x)− f(x)g(a) + f(x)g(a)− f(a)g(a)

x− a

= f(x) · g(x)− g(a)

x− a
+ g(a) · f(x)− f(a)

x− a
−→ f(a) · g′(a) + g(a) · f ′(a) as x→ a.

Note that f(x)→ f(a) as x→ a because f is continuous at a since differentiability implies
continuity. This proves the Product Rule.
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Suppose that g(a) 6= 0. Since g is continuous at a (because differentiability implies

continuity) we can choose δ > 0 so that |x − a| ≤ δ =⇒ |g(x) − g(a)| ≤ |g(a)|
2 and then

when |x− a| ≤ δ we have |g(x)| ≥ |g(a)|2 so that g(x) 6= 0. For x ∈ A with |x− a| ≤ δ we
have (

1
g

)
(x)−

(
1
g

)
(a)

x−−a
=

1
g(x) −

1
g(a)

x− a
=

−1

g(x)g(a)
· g(x)− g(a)

x− a
−→ −1

g(a)2
· g′(a)

as x→ a. This Proves the Reciprocal Rule.
Finally, note that Part (4) follows from Parts (2) and (3). Indeed when g(a) 6= 0, we

have (f
g

)′
(a) =

(
f · 1

g

)′
(a) = f ′(a) ·

(1

g

)
(a) + f(a) ·

(1

g

)′
(a)

= f ′(a) · 1

g(a)
+ f(a) · −g

′(a)

g(a)2
=
f ′(a)g(a)− f(a)g′(a)

g(a)2
.

4.8 Theorem: (Chain Rule) Let A,B ⊆ R be open, let f : A → R, let g : B → R and
let h = g ◦ f : C → R where C = A ∩ f−1(B). Let a ∈ C and let b = f(a) ∈ B. Suppose
that f is differentiable at a and g is differentiable at b. Then h is differentiable at a with

h′(a) = g′
(
f(a)

)
f ′(a).

Proof: We provide an explanation which can be converted (with a bit of trouble) into a
rigorous proof. When x ∈ A with x 6= a and y = f(x) ∈ B wih y 6= b we have

h(x)− h(a)

x− a
=
g
(
f(x)

)
− g
(
f(a)

)
x− a

=
g(y)− g(b)

x− a

=
g(y)− g(b)

y − b
· y − b
x− a

=
g(y)− g(b)

y − b
· f(x)− f(a)

x− a
−→ g′(b) · f ′(a) = g′

(
f(a)

)
· f ′(a) as x→ a

because as x→ a, since f is continuous at a we also have f(x)→ f(a), that is y → b.
We remark that when one tries to make this argument rigorous, using the ε-δ definition

of limits, a difficulty arises because x 6= a does not imply that y 6= b.

4.9 Definition: Recall that when f : A ⊆ R→ R, we say that f is nondecreasing (on A
when for all x, y ∈ A, if x ≤ y then f(x) ≤ f(y), we say that f is (strictly) increasing (on
A) when for all x, y ∈ A, if x < y then f(x) < f(y), we say that f is (strictly) decreasing
(on A) when for all x, y ∈ A, if x < y then f(x) > f(y), and we say that f is (strictly)
monotonic (on A) when either f is strictly increasing on A or f is strictly decreasing on
A.

4.10 Theorem: (The Inverse Function Theorem) Let I be an interval in R, let f : I → R,
let J = f(I), and let a be a point in I which is not an endpoint.

(1) If f is continuous then its range J = f(I) is an interval in R.
(2) If f is injective and continuous then f is strictly monotonic.
(3) If f : I → J is strictly monotonic, then so is its inverse g : J → I.
(4) If f is bijective and continuous then its inverse g is continuous.

(5) If f is bijective and continuous, and f is differentiable at a with f ′(a) 6= 0, then its
inverse g is differentiable at b = f(a) with g′(b) = 1

f ′(a) .

Proof: This theorem is quite difficult to prove and we omit the proof.
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4.11 Theorem: (Derivatives of the Basic Elementary Functions) The basic elementary
functions have the following derivatives.

(1) (xa)′ = a xa−1 where a ∈ R and x ∈ R is such that xa−1 is defined,

(2) (ax)′ = ln a · ax where a > 0 and x ∈ R and

(loga x)′ = 1
ln a ·

1
x where 0 < a 6= 1 and x > 0, and in particular

(ex)′ = ex for all x ∈ R and (lnx)′ = 1
x for all x > 0,

(3) (sinx)′ = cosx and (cosx)′ = − sinx for all x ∈ R, and

(tanx)′ = sec2 x and (secx)′ = secx tanx for all x ∈ R with x 6= π
2 + kπ, k ∈ Z,

(cotx)′ = − csc2 x and (cscx)′ = − cotx cscx for all x ∈ R with x 6= π + kπ, k ∈ Z,

(4) (sin−1 x)′ = 1√
1−x2

and (cos−1 x)′ = −1√
1−x2

for |x| < 1,

(sec−1 x)′ = 1
x
√
x2−1 and (csc−1 x)′ = −1

x
√
x2−1 for |x| > 1, and

(tan−1 x)′ = 1
1+x2 and (cot−1 x)′ = −1

1+x2 for all x ∈ R.

Proof: First we prove Part 1 in the case that a ∈ Q. When n ∈ Z+ and f(x) = xn we
have

f(u)− f(x)

u− x
=
un − xn

u− x
=

(u− x)(un−1 + un−2x+ un−3x2 + · · ·+ xn−1)

u− x
= un−1 + un−2x+ un−3x2 + · · ·+ xn−1 −→ nxn−1 as u→ x.

This shows that (xn)′ = nxn−1 for all x ∈ R when n ∈ Z+. By the Reciprocal Rule, for
x 6= 0 we have

(x−n)′ =
( 1

xn

)′
= − (xn)′

(xn)2
= −nx

n−1

x2n
= −nx−n−1.

The function g(x) = x1/n is the inverse of the function f(x) = xn (when n is odd, x1/n

is defined for all x ∈ R, and when n is even, x1/n is defined only for x ≥ 0). Since
f ′(x) = (xn)′ = nxn−1 we have f ′(x) = 0 when x = 0. By the Inverse Function Theorem,
when x 6= 0 we have

(x1/n)′ = g′(x) =
1

f ′(g(x))
=

1

n g(x)n−1
=

1

n(x1/n)n−1
=

1

nx1−
1
n

= 1
n x

1
n−1.

Finally, when n ∈ Z+ and k ∈ Z with gcd(k, n) = 1, by the Chain Rule we have

(xk/n)′ =
(
(x1/n)k

)′
= k(x1/n)k−1(x1/n)′ = k x

k−1
n · 1n x

1−n
n = k

n x
k
n−1.

We have proven Part 1 in the case that a ∈ Q.

Next we shall prove Part 2. For f(x) = ax where a > 0, we have

f(x+ h)− f(x)

h
=
ax+h − ax

h
=
axah − ax

h
= ax · a

h − 1

h

and so we have f ′(x) = ax
(

lim
h→0

ah−1
h

)
provided that the limit exists and is finite. For

g(x) = loga x, where 0 < a 6= 1 and x > 0, we have

g(x+ h)− g(x)

h
=

loga(x+ h)− loga x

h
=

loga
(
x+h
x

)
h

=
loga

(
1 + h

x

)
x · hx

= 1
x ·loga

(
1+ h

x

)x/h
and so we have g′(x) = 1

x · loga

(
lim
h→0

(
1 + h

x

)x/h)
provided the limit exists and is finite.
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By letting u = h
x we see that

lim
h→0+

(
1 + h

x

)x/h
= lim
u→∞

(
1 + 1

u

)u
= e

by the definition of the number e. By letting u = −hx , a similar argument shows that

lim
h→0−

(
1 + h

x

)x/h
= lim
u→∞

(
1− 1

u

)−u
= e.

Thus the derivative g′(x) does exist and we have

(loga x)′ = g′(x) = 1
x loga

(
lim
h→0

(
1 + h

x

)x/h)
= 1

x loga e = 1
x ·

ln e
ln a = 1

x ln a .

Since g(x) = loga x is differentiable with g′(x) 6= 0 it follows from the Inverse Function
Theorem that f(x) = ax is differentiable with derivative

(ax)′ = f ′(x) =
1

g′(f(x))
=

1
1

f(x) ln a

= ln a · f(x) = ln a · ax.

This proves Part 2.
Now we return to complete the proof of Part 1, in the case that a /∈ Q. When a > 0

we have ax = ex ln a for all x > 0 and so by the Chain Rule

(xa)′ =
(
ea ln x

)′
= ea ln x(a lnx)′ = xa · ax = a xa−1.

Let us move on to the proof of Part 3. We shall need two trigonometric limits which we
shall explain informally (non-rigorously) with the help of pictures. Consider the following
two pictures, the first showing an angle θ with 0 < θ < π

2 and the second with −π2 < θ < 0.
In both diagrams, the circle has radius 1 and s = sin θ and t = tan θ.

t
s θ

|s| |θ|
|t|

In the first diagram, where 0 < θ < π
2 , we have sin θ < θ < tan θ, and dividing by

sin θ (which is positive) gives 1 < θ
sin θ < 1

cos θ . In the second diagram, where −π2 <
θ < 0, we have − sin θ < −θ < − tan θ, and dividing by − sin θ (which is positive) gives
1 < θ

sin θ < 1
cos θ . In either case, taking the reciprocal gives cos θ < sin θ

θ < 1. Since
lim
θ→0

cos θ = cos(0) = 1, it follows from the Squeeze Theorem that

lim
θ→0

sin θ

θ
= 1.

From this limit we obtain the second trigonometric limit,

lim
θ→0

1− cos θ

θ
= lim
θ→0

1− cos2 θ

θ (1 + cos θ)
= lim
θ→0

sin θ

θ
· sin θ

1 + cos θ
= 1 · 02 = 0.
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Using the above two trigonometric limits, we have

(sinx)′ = lim
h→0

sin(x+ h)− sinx

h
= lim
h→0

sinx cosh− cosx sinh− sinx

h

= lim
h→0

(
cosx · sinh

h
− sinx · 1− cosh

h

)
= cosx · 1− sinx · 0 = cosx

(cosx)′ = lim
h→0

cos(x+ h)− cosx

h
= lim
h→0

cosx cosh− sinx sinh− cosx

h

= lim
h→0

(
− sinx · sinh

h
− cosx · 1− cosh

h

)
= − sinx · 1− cosx · 0 = − sinx.

By the Quotient Rule, we have

(tanx)′ =
( sinx

cosx

)′
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x
= sec2 x.

We leave it as an exercise to complete the proof of Part 3 by calculating the derivatives of
secx and cscx.

Finally, we shall derive the formula for (sin−1 x)′ and leave the rest of the proof of
Part 4 as an exercise. Note that by the Inverse Function Theorem (which we did not
prove), the function sin−1 x is differentiable in (−1, 1). Since sin(sin−1 x) = x for all
x ∈ (−1, 1), we can take the derivative on both sides (using the Chain Rule on the left) to
get cos(sin−1 x) · (sin−1 x)′ = 1 and hence

(sin−1 x)′ =
1

cos(sin−1 x)
=

1√
1− sin2(sin−1 x)

=
1√

1− x2
.

4.12 Definition: Let A ⊆ R, let f : A → R and let a ∈ A. We say that f has a local
maximum value at a when

∃δ>0 ∀x∈A
(
|x− a| ≤ δ =⇒ f(x) ≤ f(a)

)
.

Similarly, we say that f has a local minimum value at a when

∃δ>0 ∀x∈A
(
|x− a| ≤ δ =⇒ f(x) ≥ f(a)

)
.

4.13 Theorem: (Fermat’s Theorem) Let A ⊆ R be open, let f : A→ R, and let a ∈ A.
Suppose that f is differentiable at a and that f has a local maximum or minimum value
at a. Then f ′(a) = 0.

Proof: We suppose that f has a local maximum value at a (the case that f has a local
minimum value at a is similar). Choose δ > 0 so that |x − a| ≤ δ =⇒ f(x) ≤ f(a). For

x ∈ A with a < x < a+ δ, since x > a and f(x) ≥ f(a) we have f(x)−f(a)
x−a ≥ 0, and so

f ′(a) = lim
x→a+

f(x)− f(a)

x− a
≥ 0

by the Comparison Theorem. Similarly, for x ∈ A with a − δ ≤ x < a, since x < a and

f(x) ≥ f(a) we have f(x)−f(a)
x−a ≤ 0, and so

f ′(a) = lim
x→a−

f(x)− f(a)

x− a
≤ 0.
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4.14 Theorem: (Rolle’s Theorem and the Mean Value Theorem) Let a, b ∈ R with a < b.

(1) (Rolle’s Theorem) If f : [a, b] → R differentiable in (a, b) and continuous at a and b
with f(a) = 0 = f(b) then there exists a point c ∈ (a, b) such that f ′(c) = 0.

(2) (The Mean Value Theorem) If f : [a, b] → R is differentiable in (a, b) and continuous
at a and b then there exists a point c ∈ (a, b) with f ′(c) (b− a) = f(b)− f(a).

Proof: To Prove Rolle’s Theorem, let f : [a, b] → R be differentiable in (a, b) and contin-
uous at a and b with f(a) = 0 = f(b). If f is constant, then f ′(x) = 0 for all x ∈ [a, b].
Suppose that f is not constant. Either f(x) > 0 for some x ∈ (a, b) or f(x) < 0 for some
x ∈ (a, b). Suppose that f(x) > 0 for some x ∈ (a, b) (the case that f(x) < 0 for some
x ∈ (a, b) is similar). By the Extreme Value Theorem, f attains its maximum value at
some point, say c ∈ [a, b]. Since f(x) > 0 for some x ∈ (a, b), we must have f(c) > 0.
Since f(a) = f(b) = 0 and f(c) > 0, we have c ∈ (a, b). By Fermat’s Theorem, we have
f ′(c) = 0. This completes the proof of Rolle’s Theorem.

To prove the Mean Value Theorem, suppose that f : [a, b] → R is differentiable in

(a, b) and continuous at a and b. Let g(x) = f(x) − f(a) − f(b)−f(a)
b−a (x − a). Then g is

differentiable in (a, b) with g′(x) = f ′(x) − f(b)−f(a)
b−a and g is continuous at a and b with

g(a) = 0 = g(b). By Rolle’s Theorem, we can choose c ∈ (a, b) so that f ′(c) = 0, and then

g′(c) = f(b)−f(a)
b−a , as required.

4.15 Corollary: Let a, b ∈ R with a < b. Let f : [a, b] → R. Suppose that f is
differentiable in (a, b) and continuous at a and b.

(1) If f ′(x) ≥ 0 for all x ∈ (a, b) then f is nondecreasing on [a, b].
(2) If f ′(x) > 0 for all x ∈ (a, b) then f is strictly increasing on [a, b].
(3) If f ′(x) ≤ 0 for all x ∈ (a, b) then f is nonincreasing on [a, b].
(4) If f ′(x) < 0 for all x ∈ (a, b) then f is strictly decreasing on [a, b].
(5) If f ′(x) = 0 for all x ∈ (a, b) then f is constant on [a, b].
(6) If g : [a, b]→ R is continuous at a and b and differentiable in (a, b) with g′(x) = f ′(x)
for all x ∈ (a, b), then for some c ∈ R we have g(x) = f(x) + c for all x ∈ (a, b).

Proof: We prove Part 1 and leave the rest of the proofs as exercises. Suppose that f ′(x) ≥ 0

for all x ∈ (a, b). Let a ≤ x < y ≤ b. Choose c ∈ (x, y) so that f ′(c) = f(y)−f(x)
y−x . Then

f(y)− f(x) = f ′(c)(y − x) ≥ 0 and so f(y) ≥ f(x). Thus f is nondecreasing on [a, b].

4.16 Corollary: (The Second Derivative Test) Let I be an interval in R, let f : I → R
and let a ∈ I. Suppose that f is differentiable in I with f ′(a) = 0.

(1) If f ′′(a) > 0 then f has a local minimum at a.
(2) If f ′′(a) < 0 then f has a local maximum at a.

Proof: The proof is left as an exercise.

4.17 Theorem: (l’Hôpital’s Rule) Let I be a non degenerate interval in R. Let a ∈ I, or
let a be an endpoint of I. Let f, g : I \ {a} → R. Suppose that f and g are differentiable
in I \ {a} with g′(x) 6= 0 for all x ∈ I \ {a}. Suppose either that lim

x→a
f(x) = 0 = lim

x→a
g(x)

or that lim
x→a

g(x) = ±∞. Suppose that lim
x→a

f ′(x)

g′(x)
= u ∈ R̂. Then lim

x→a

f(x)

g(x)
= u.

Similar results hold for limits x→ a+, x→ a−, x→∞ and x→ −∞.

Proof: We omit the proof, which is fairly difficult.
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Chapter 5. Integration

The Riemann Integral

5.1 Definition: A partition of the closed interval [a, b] is a set X = {x0, x1, · · · , xn}
with

a = x0 < x1 < x2 < · · · < xn = b .

The intervals [xi−1, xi] are called the subintervals of [a, b], and we write

∆ix = xi − xi−1
for the size of the ith subinterval. Note that

n∑
i=1

∆ix = b− a .

The size of the partition X, denoted by |X| is

|X| = max
{

∆ix
∣∣1 ≤ i ≤ n} .

5.2 Definition: Let X be a partition of [a, b], and let f : [a, b] → R be bounded. A
Riemann sum for f on X is a sum of the form

S =
n∑
i=1

f(ti)∆ix for some ti ∈ [xi−1, xi] .

The points ti are called sample points.

5.3 Definition: Let f : [a, b]→ R be bounded. We say that f is (Riemann) integrable
on [a, b] when there exists a number I with the property that for every ε > 0 there exists
δ > 0 such that for every partition X of [a, b] with |X| < δ we have |S − I| < ε for every
Riemann sum for f on X, that is∣∣∣∣∣

n∑
i=1

f(ti)∆ix− I

∣∣∣∣∣ < ε .

for every choice of ti ∈ [xi−1, xi] The number I can be shown to be unique. It is called the
(Riemann) integral of f on [a, b], and we write

I =

∫ b

a

f , or I =

∫ b

a

f(x) dx .

5.4 Example: Show that the constant function f(x) = c is integrable on any interval

[a, b] and we have

∫ b

a

c dx = c(b− a).

Solution: The solution is left as an exercise.

5.5 Example: Show that the identity function f(x) = x is integrable on any interval

[a, b], and we have

∫ b

a

x dx = 1
2 (b2 − a2).
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Solution: Let ε > 0. Choose δ = 2ε
b−a . Let X be any partition of [a, b] with |X| < δ. Let

ti ∈ [xi−1, xi] and set S =
n∑
i=1

f(ti)∆ix =
n∑
i=1

ti∆ix. We must show that |S− 1
2 (b2−a2)| < ε.

Notice that

n∑
i=1

(xi + xi−1)∆ix =
n∑
i=1

(xi + xi−1)(xi − xi−1) =
n∑
i=1

xi
2 − xi−12

= (x1
2 − x02) + (x2

2 − x12) + · · ·+ (xn−1
2 − xn−22) + (xn

2 − xn−12)

= −x02 + (x1
2 − x12) + · · ·+ (xn−1

2 − xn−12) + xn
2

= xn
2 − x02 = b2 − a2

and that when ti ∈ [xi−1, xi] we have
∣∣ti − 1

2 (xi + xi−1)
∣∣ ≤ 1

2 (xi − xi−1) = 1
2∆ix, and so∣∣S − 1

2 (b2 − a2)
∣∣ =

∣∣∣ n∑
i=1

ti∆ix− 1
2

n∑
i=1

(xi + xi−1)∆ix
∣∣∣

=
∣∣∣ n∑
i=1

(
ti − 1

2 (xi + xi+1)
)

∆ix
∣∣∣

≤
n∑
i=1

∣∣ti − 1
2 (xi + xi+1)

∣∣∆ix

≤
n∑
i=1

1
2∆ix∆ix ≤

n∑
i=1

1
2δ∆ix

= 1
2δ(b− a) = ε .

5.6 Example: Let f(x) =

{
1 if x ∈ Q
0 if x /∈ Q .

Show that f is not integrable on [0, 1].

Solution: Suppose, for a contradiction, that f is integrable on [0, 1], and write I =
∫ 1

0
f .

Let ε = 1
2 . Choose δ so that for every partition X with |X| < δ we have |S−I| < 1

2 for every

Riemann sum S for f on X. Choose a partition X with |X| < δ. Let S1 =
n∑
i=1

f(ti)∆ix

where each ti ∈ [xi−1, xi] is chosen with ti ∈ Q, and let S2 =
n∑
i=1

f(si)∆ix where each

si ∈ [xi−1, xi] is chosen with si /∈ Q. Note that we have |S1 − I| < 1
2 and |S2 − I| < 1

2 .

Since each ti ∈ Q we have f(ti) = 1 and so S1 =
n∑
i=1

f(ti)∆ix =
n∑
i=1

∆ix = 1− 0 = 1, and

since each si /∈ Q we have f(si) = 0 and so S2 =
n∑
i=1

f(si)∆ix = 0. Since |S1 − I| < 1
2 we

have |1 − I| < 1
2 and so 1

2 < I < 3
2 , and since |S2 − I| < 1

2 we have |0 − I| < 1
2 and so

− 1
2 < I < 1

2 , giving a contradiction.
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Integrals of Continuous Functions

5.7 Theorem: (Continuous Functions are Integrable) Let f : [a, b] → R be continuous.
Then f is integrable on [a, b].

Proof: We omit the proof, which is quite difficult.

5.8 Note: Let f be integrable on [a, b]. Let Xn be any sequence of partitions of [a, b] with
lim
n→∞

|Xn| = 0. Let Sn be any Riemann sum for f on Xn. Then {Sn} converges with

lim
n→∞

Sn =

∫ b

a

f(x) dx .

Proof: Write I =
∫ b
a
f . Given ε > 0, choose δ > 0 so that for every partition X of [a, b]

with |X| < δ we have |S − I| < ε for every Riemann sum S for f on X, and then choose
N so that n > N =⇒ |Xn| < δ. Then we have n > N =⇒ |Sn − I| < ε.

5.9 Note: Let f be integrable on [a, b]. If we let Xn be the partition of [a, b] into n
equal-sized subintervals, and we let Sn be the Riemann sum on Xn using right-endpoints,
then by the above note we obtain the formula∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(xn,i)∆n,ix , where xn,i = a+ b−a
n i and ∆n,ix = b−a

n .

5.10 Example: Find

∫ 2

0

2x dx.

Solution: Let f(x) = 2x. Note that f is continuous and hence integrable, so we have∫ 2

0

2x dx = lim
n→∞

n∑
i=1

f(xn,i)∆n,ix = lim
n→∞

n∑
i=1

f
(
2i
n

) (
2
n

)
= lim
n→∞

n∑
i=1

22i/n
(
2
n

)
= lim
n→∞

2 · 41/n

n
· 4− 1

41/n − 1
, by the formula for the sum of a geometric sequence

=
(

lim
n→∞

6 · 41/n
)(

lim
n→∞

1

n
(
41/n − 1

)) = 6 lim
n→∞

1
n

41/n − 1
= 6 lim

x→0

x

4x − 1

= 6 lim
x→0

1

ln 4 · 4x
, by l’Hôpital’s Rule

= 6
ln 4 = 3

ln 2 .
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5.11 Lemma: (Summation Formulas) We have

n∑
i=1

1 = n ,

n∑
i=1

i =
n(n+ 1)

2
,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

n∑
i=1

i3 =
n2(n+ 1)2

4

Proof: These formulas could be proven by induction, but we give a more constructive

proof. It is obvious that
n∑
i=1

1 = 1 + 1 + · · · 1 = n. To find
n∑
i=1

i, consider
n∑
n=1

(
i2− (i−1)2

)
.

On the one hand, we have
n∑
i=1

(
i2 − (i− 1)2

)
= (12 − 02) + (22 − 12) + · · ·+ ((n− 1)2 − (n− 2)2) + (n2 − (n− 1)2)

= −02 + (12 − 12) + (22 − 22) + · · ·+ ((n− 1)2 − (n− 1)2) + n2

= n2

and on the other hand,
n∑
i=1

(
i2 − (i− 1)2

)
=

n∑
i=1

(
i2 − (i2 − 2i+ 1)

)
=

n∑
i=1

(2i− 1) = 2
n∑
i=1

i−
n∑
i=1

1

Equating these gives n2 = 2
n∑
i=1

i−
n∑
i=1

1 and so

2
n∑
i=1

i = n2 +
n∑
i=1

1 = n2 + n = n(n+ 1) ,

as required. Next, to find
∞∑
n=1

i2, consider
∑
i=1

(
i3 − (i− 1)3

)
. On the one hand we have

n∑
i=1

(
i3 − (i− 1)3

)
= (13 − 03) + (23 − 13) + (33 − 23) + · · ·+ (n3 − (n− 1)3)

= −03 + (13 − 13) + (23 − 23) + · · ·+ ((n− 1)3 − (n− 1)3) + n3

= n3

and on the other hand,
n∑
i=1

(
i3 − (i− 1)3

)
=

n∑
i=1

(
i3 − (i3 − 3i2 + 3i− 1)

)
=

n∑
i=1

(3i2 − 3i+ 1) = 3
n∑
i=1

i2 − 3
n∑
i=1

i+
n∑
i=1

1 .

Equating these gives n3 = 3
n∑
i=1

i2 − 3
n∑
i=1

i+
n∑
i=1

1 and so

6
n∑
i=1

i2 = 2n3 + 6
n∑
i=1

i− 2
n∑
i=1

1 = 2n3 + 3n(n+ 1)− 2n = n(n+ 1)(2n+ 1)

as required. Finally, to find
n∑
i=1

i3, consider
n∑
i=1

(
i4 − (i− 1)4

)
. On the one hand we have

n∑
i=1

(
i4 − (i− 1)4

)
= n4 ,

(as above) and on the other hand we have

n∑
i=1

(
i4 − (i− 1)4

)
=

n∑
i=1

(4i3 − 6i2 + 4i− 1) = 4
n∑
i=1

i3 − 6
n∑
i=1

i2 + 4
n∑
i=1

i−
n∑
i=1

1 .
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Equating these gives n4 = 4
n∑
i=1

i3 − 6
n∑
i=1

i2 + 4
n∑
i=1

i−
n∑
i=1

1 and so

4
n∑
i=1

i3 = n4 + 6
n∑
i=1

i2 − 4
n∑
i=1

i+
n∑
i=1

1

= n4 + n(n+ 1)(2n+ 1)− 2n(n+ 1) + n

= n4 + 2n3 + n2 = n2(n+ 1)2 ,

as required.

5.12 Example: Find

∫ 3

1

x+ 2x3 dx.

Solution: Let f(x) = x+ 2x3. Then∫ 3

1

x+ 2x3 dx = lim
n→∞

n∑
i=1

f(xn,i)∆n,ix

= lim
n→∞

n∑
i=1

f
(
1 + 2

n i
) (

2
n

)
= lim
n→∞

n∑
i=1

((
1 + 2

n i
)

+ 2
(
1 + 2

n i
)3) ( 2

n

)
= lim
n→∞

n∑
i=1

(
1 + 2

n i+ 2
(
1 + 6

n i+ 12
n2 i

2 + 8
n3 i

3
)) (

2
n

)
= lim
n→∞

n∑
i=1

(
6
n + 28

n2 i+ 48
n3 i

2 + 32
n4 i

3
)

= lim
n→∞

(
6
n

n∑
i=1

1 + 28
n2

n∑
i=1

i+ 48
n3

n∑
i=1

i2 + 32
n4

n∑
i=1

i3
)

= lim
n→∞

(
6
n · n+ 28

n2 · n(n+1)
2 + 48

n3 · n(n+1)(2n+1)
6 + 32

n4 · n
2(n+1)2

4

)
= 6 + 28

2 + 48·2
6 + 32

4 = 44 .
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Basic Properties of Integrals

5.13 Theorem: (Linearity) Let f and g be integrable on [a, b] and let c ∈ R. Then f + g
and cf are both integrable on [a, b] and∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g

and ∫ b

a

cf = c

∫ b

a

f .

Proof: The proof is left as an exercise.

5.14 Theorem: (Comparison) Let f and g be integrable on [a, b]. If f(x) ≤ g(x) for all
x ∈ [a, b] then ∫ b

a

f ≤
∫ b

a

g .

Proof: The proof is left as an exercise.

5.15 Theorem: (Additivity) Let a < b < c and let f : [a, c]→ R be bounded. Then f is
integrable on [a, c] if and only if f is integrable both on [a, b] and on [b, c], and in this case∫ b

a

f +

∫ c

b

f =

∫ c

a

f .

Proof: We omit the proof, which is quite difficult.

5.16 Definition: We define

∫ a

a

f = 0 and for a < b we define

∫ a

b

f = −
∫ b

a

f .

5.17 Note: Using the above definition, the Additivity Theorem extends to the case
that a, b, c ∈ R are not in increasing order: for any a, b, c ∈ R, if f is integrable on[

min{a, b, c},max{a, b, c}
]

then ∫ b

a

f +

∫ c

b

f =

∫ c

a

f .

5.18 Theorem: (Estimation) Let f be integrable on [a, b]. Then |f | is integrable on [a, b]
and ∣∣∣∣∣

∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f | .

Proof: We omit the proof, which is quite difficult.
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The Fundamental Theorem of Calculus

5.19 Notation: For a function F , defined on an interval containing [a, b], we write[
F (x)

]b
a

= F (b)− F (a) .

5.20 Theorem: (The Fundamental Theorem of Calculus)
(1) Let f be integrable on [a, b]. Define F : [a, b]→ R by

F (x) =

∫ x

a

f =

∫ x

a

f(t) dt .

Then F is continuous on [a, b]. Moreover, if f is continuous at a point x ∈ [a, b] then F is
differentiable at x and

F ′(x) = f(x) .

(2) Let f be integrable on [a, b]. Let F be differentiable on [a, b] with F ′ = f . Then∫ b

a

f =
[
F (x)

]b
a

= F (b)− F (a) .

Proof: (1) Let M be an upper bound for |f | on [a, b]. For a ≤ x, y ≤ b we have∣∣F (y)− F (x)
∣∣ =

∣∣∣∣∫ y

a

f −
∫ x

a

f

∣∣∣∣ =

∣∣∣∣∫ y

x

f

∣∣∣∣ ≤ ∣∣∣∣∫ y

x

|f |
∣∣∣∣ ≤ ∣∣∣∣∫ y

x

M

∣∣∣∣ = M |y − x|

so given ε > 0 we can choose δ = ε
M to get

|y − x| < δ =⇒
∣∣F (y)− F (x)

∣∣ ≤M |y − x| < Mδ = ε .

Thus F is continuous on [a, b]. Now suppose that f is continuous at the point x ∈ [a, b].
Note that for a ≤ x, y ≤ b with x 6= y we have∣∣∣∣F (y)− F (x)

y − x
− f(x)

∣∣∣∣ =

∣∣∣∣∣
∫ y
a
f −

∫ x
a
f

y − x
− f(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫ y
x
f

y − x
−
∫ y
x
f(x)

y − x

∣∣∣∣∣
=

1

|y − x|

∣∣∣∣∫ y

x

(
f(t)− f(x)

)
dt

∣∣∣∣
≤ 1

|y − x|

∣∣∣∣∫ y

x

∣∣f(t)− f(x)
∣∣ dt∣∣∣∣ .

Given ε > 0, since f is continuous at x we can choose δ > 0 so that

|y − x| < δ =⇒
∣∣f(y)− f(x)

∣∣ < ε

and then for 0 < |y − x| < δ we have∣∣∣∣F (y)− F (x)

y − x
− f(x)

∣∣∣∣ ≤ 1

|y − x|

∣∣∣∣∫ y

x

∣∣f(t)− f(x)
∣∣ dt∣∣∣∣

≤ 1

|y − x|

∣∣∣∣∫ y

x

ε dt

∣∣∣∣ =
1

|y − x|
ε|y − x| = ε .

and thus we have F ′(x) = f(x) as required.
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(2) Let f be integrable on [a, b]. Suppose that F is differentiable on [a, b] with F ′ = f . Let
ε > 0 be arbitrary. Choose δ > 0 so that for every partition X of [a, b] with |X| < δ we

have

∣∣∣∣∣
∫ b

a

f −
n∑
i=1

f(ti)∆ix

∣∣∣∣∣ < ε for every choice of sample points ti ∈ [xi−1, xi]. Choose

sample points ti ∈ [xi−1, xi] as in the Mean Value Theorem so that

F ′(ti) =
F (xi)− F (xi−1)

xi − xi−1
,

that is f(ti)∆ix = F (xi)− F (xi−1). Then

∣∣∣∣∣
∫ b

a

f −
n∑
i=1

f(ti)∆ix

∣∣∣∣∣ < ε, and

n∑
i=1

f(ti)∆ix =

n∑
i=1

(
F (xi)− F (xi−1

)
=
(
F (x1)− F (x)

)
+
(
F (x2)− F (x1)

)
+ · · ·+

(
F (n− 1)− F (xn)

)
= −F (x) +

(
F (x1)− F (x1)

)
+ · · ·+

(
F (xn−1)− F (xn−1)

)
+ F (xn)

= F (xn)− F (x) = F (b)− F (a) .

and so

∣∣∣∣∣
∫ b

a

f −
(
F (b)− F (a)

)∣∣∣∣∣ < ε. Since ε was arbitrary,

∣∣∣∣∣
∫ b

a

f −
(
F (b)− F (a)

)∣∣∣∣∣ = 0.

5.21 Definition: A function F such that F ′ = f on an interval is called an antiderivative
of f on the interval.

5.22 Note: If G′ = F ′ = f on an interval, then (G − F )′ = 0, and so G − F is constant
on the interval, that is G = F + c for some constant c.

5.23 Notation: We write∫
f = F + c , or

∫
F (x) dx = F (x) + c

when F is an antiderivative of f on an interval, so that the antiderivatives of f on the
interval are the functions of the form G = F + c for some constant c.

5.24 Example: Find

∫ √3

0

dx

1 + x2
.

Solution: We have

∫
dx

1 + x2
= tan−1 x+ c, since

d

dx
(tan−1 x) =

1

1 + x2
, and so by Part 2

of the Fundamental Theorem of Calculus, we have∫ √3

0

dx

1 + x2
=
[

tan−1 x
]√3

0
= tan−1

√
3− tan−1 0 = π

3 .
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Chapter 6. Methods of Integration

Basic Integrals

6.1 Note: We have the following list of Basic Integrals∫
xp dx =

xp+1

p+ 1
+ c , for p 6= −1

∫
sec2 x dx = tanx+ c∫

dx

x
= ln |x|+ c

∫
secx tanx dx = secx+ c∫

ex dx = ex + c

∫
tanx dx = ln | secx|+ c∫

ax dx =
ax

ln a
+ c

∫
secx dx = ln | secx+ tanx|+ c∫

lnx dx = x lnx− x+ c

∫
dx

1 + x2
= tan−1 x+ c∫

sinx dx = − cosx+ c

∫
dx√

1− x2
= sin−1 x+ c∫

cosx dx = sinx+ c

∫
dx

x
√
x2 − 1

= sec−1 x+ c

Proof: Each of these equalities is easy to verify by taking the derivative of the right side. For

example, we have

∫
lnx dx = x lnx−x+c since

d

dx
(x lnx−x) = 1·lnx+x· 1x−1 = lnx, and

we have

∫
tanx dx = ln | secx|+ c since

d

dx
(ln | secx|) =

secx tanx

secx
= tanx, and we have∫

secx dx = ln | secx+tanx|+c since
d

dx
(ln | secx+tanx|) =

secx tanx+ sec2 x

secx+ tanx
= secx.

6.2 Example: Find

∫ 4

1

x2 − 5√
x

dx.

Solution: By the Fundamental Theorem of Calculus and Linearity, we have∫ 4

1

x2 − 5√
x

dx =

∫ 4

1

x3/2 − 5x−1/2 dx =
[
2
5x

5/2 − 10x1/2
]4
1

=
(
64
5 − 20

)
−
(
2
5 − 10

)
= 12

5 .
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Substitution

6.3 Theorem: (Substitution, or Change of Variables) Let u = g(x) be differentiable on
an interval and let f(u) be continuous on the range of g(x). Then∫

f(g(x))g′(x) dx =

∫
f(u) du

and ∫ b

x=a

f(g(x))g′(x) dx =

∫ g(b)

u=g(a)

f(u) du .

Proof: Let F (u) be an antiderivative of f(u) so F ′(u) = f(u) and

∫
f(u) du = F (u) + c.

Then from the Chain Rule, we have
d

dx
F (g(x)) = F ′(g(x))g′(x) = f(g(x))g′(x), and so∫

f(g(x))g′(x) dx = F (g(x)) + c = F (u) + c =

∫
f(u) du

and ∫ b

x=a

f(g(x))g′(x) dx =
[
F (g(x))

]b
x=a

= F (g(b))− F (g(a))

=
[
F (u)

]g(b)
u=g(a)

=

∫ g(b)

u=g(a)

f(u) du .

6.4 Notation: For u = g(x) we write du = g′(x) dx. More generally, for f(u) = g(x) we
write f ′(u) du = g′(x) dx. This notation makes the above theorem easy to remember and
to apply.

6.5 Example: Find

∫ √
2x+ 3 dx.

Solution: Make the substitution u = 2x+ 3 so du = 2dx. Then∫ √
2x+ 3 dx =

∫
1
2u

1/2 du = 1
3 u

3/2 + c = 1
3 (2x+ 3)3/2 + c .

(In applying the Substitution Rule, we used u = g(x) = 2x + 3 and f(u) =
√
u = u1/2,

but the notation du = g′(x) dx allows us to avoid explicit mention of the function f(u) in
our solution).

6.6 Example: Find

∫
x ex

2

dx.

Solution: Make the substitution u = x2 so du = 2x dx. Then∫
x ex

2

dx =

∫
1
2e
u du = 1

2e
u + c = 1

2e
x2

+ c .
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6.7 Example: Find

∫
lnx

x
dx.

Solution: Let u = lnx so du =
1

x
dx. Then∫

lnx

x
dx =

∫
u du = 1

2u
2 + c = 1

2 (lnx)2 + c .

6.8 Example: Find

∫
tanx dx.

Solution: We have tanx =
sinx

cosx
. Let u = cosx so du = − sinx dx. Then∫

tanx dx =

∫
sinx dx

cosx
=

∫
−du
u

= − ln |u|+ c = − ln | cosx|+ c = ln | secx|+ c .

6.9 Example: Find

∫
dx

x+
√
x

.

Solution: Let u =
√
x so u2 = x and 2u du = dx. Then∫

dx

x+
√
x

=

∫
2u du

u2 + u
=

∫
2 du

u+ 1
.

Now let v = u+ 1 do dv = du. Then∫
dx

x+
√
x

=

∫
2 du

u+ 1
=

∫
2

v
dv = 2 ln |v|+ c = 2 ln |u+ 1|+ c = 2 ln(

√
x+ 1) + c .

6.10 Example: Find

∫ 2

0

x dx√
2x2 + 1

.

Solution: Let u = 2x2 + 1 so du = 4x dx. Then∫ 2

x=0

x dx√
2x2 + 1

=

∫ 9

u=1

1
4 du√
u

=

∫ 9

1

1
4 u
−1/2 du =

[
1
2 u

1/2
]9
1

= 3
2 −

1
2 = 1 .

6.11 Example: Find

∫ 1

0

dx

1 + 3x2
.

Solution: Let u =
√

3x so du =
√

3 dx. Then∫ 1

0

dx

1 + 3x2
=

∫ √3

0

1√
3
du

1 + u2
=
[

1√
3

tan−1 u
]√3

0
= 1√

3
π
3 = π

3
√
3
.
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Integration by Parts

6.12 Theorem: (Integration by Parts) Let f(x) and g(x) be differentiable in an interval.
Then ∫

f(x)g′(x) dx = f(x)g(x)−
∫
g(x)f ′(x) dx

so ∫ b

x=a

f(x)g′(x) dx =

[
f(x)g(x)−

∫
g(x)f ′(x) dx

]b
x=a

.

Proof: By the Product Rule, we have
d

dx
f(x)g(x) = f ′(x)g(x) + f(x)g′(x) and so∫

f ′(x)g(x) + f(x)g′(x) dx = f(x)g(x) + c ,

which can be rewritten as∫
f(x)g′(x) dx = f(x)g(x)−

∫
g(x)f ′(x) dx .

(We do not need to include the arbitrary constant c since there is now an integral on both
sides of the equation).

6.13 Notation: If we write u = f(x), du = f ′(x) dx, v = g(x) and dv = g′(x) dx, then
the top formula in the above theorem becomes∫

u dv = uv −
∫
v du .

6.14 Note: To find the integral of a polynomial multiplied by an exponential function
or a trigonometric function, try Integrating by parts with u equal to the polynomial (you
may need to integrate by parts repeatedly if the polynomial is of high degree).

To integrate a polynomial (or an algebraic) function times a logarithmic or inverse
trigonometric function, try integrating by parts letting u be the logarithmic or inverse
trigonometric function.

To integrate an exponential function times a sine or cosine function, try integrating
by parts twice, letting u be the exponential function both times.

6.15 Example: Find

∫
x sinx dx.

Solution: Integrate by parts using u = x, du = dx, v = − cosx and dv = sinx dx to get∫
x sinx dx =

∫
u dv = uv −

∫
v du = −x cosx+

∫
cosx dx = −x cosx+ sinx+ c .
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6.16 Example: Find

∫
(x2 + 1)e2x dx.

Solution: Integrate by parts using u = x2 + 1, du = 2x dx, v = 1
2e

2x and dv = e2x dx to
get ∫

(x2 + 1)e2x dx =

∫
u dv = uv −

∫
v du = 1

2 (x2 + 1)e2x −
∫
x e2x dx .

To find

∫
x e2x dx we integrate by parts again, this time using u2 = x, du2 = dx, v2 = 1

2e
2x

and dv2 = e2x dx to get∫
(x2 + 1)e2x dx = 1

2 (x2 + 1)e2x −
∫
x e2x dx

= 1
2 (x2 + 1)e2x −

(
1
2 xe

2x −
∫

1
2e

2x dx

)
= 1

2 (x2 + 1)e2x −
(

1
2 xe

2x − 1
4e

2x

)
+ c

= 1
4

(
2x2 − 2x+ 3

)
e2x + c

6.17 Example: Find

∫
lnx dx.

Solution: Integrate by parts using u = lnx, du =
1

x
dx, v = x and dv = dx to get∫

lnx dx = x lnx−
∫

1 dx = x lnx− x+ c .

6.18 Example: Find

∫ 4

1

√
x lnx dx.

Solution: Integrate by parts using u = lnx, du =
1

x
dx, v = 2

3x
3/2 and dv = x1/2 dx to get∫ 4

1

√
x lnx dx =

[
2
3x

3/2 lnx−
∫

2
3x

1/2 dx

]4
1

=

[
2
3x

3/2 lnx− 4
9x

3/2

]4
1

=
(
16
3 ln 4− 32

9

)
−
(
2
3 ln 1− 4

9

)
= 16

3 ln 4− 28
9 .

6.19 Example: Find

∫
ex sinx dx

Solution: Write I =

∫
ex sinx dx. Integrate by parts twice, first using u1 = ex, du = ex dx,

v = − cosx and dv = sinx dx, and next using u2 = ex, du2 = ex dx, v2 = sinx and
dv2 = cosx dx to get

I = −ex cosx+

∫
ex cosx dx

= −ex cosx+

(
ex sinx−

∫
ex sinx dx

)
= −ex cosx+ ex sinx− I

.

Thus 2I = −ex cosx+ ex sinx+ c and so I = 1
2 (sinx− cosx)ex + d.
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6.20 Example: Let n ≥ 2 be an integer. Find a formula for

∫
sinn x dx in terms of∫

sinn−2 x dx, and hence find

∫
sin2 x dx and

∫
sin4 x dx.

Solution: Let I =

∫
sinn x dx =

∫
sinn−1 x sinx dx. Integrate by parts using u = sinn−1 x,

du = (n− 1) sinn−2 x cosx dx, v = − cosx and dv = sinx dx to get

I = − sinn−1 x cosx+

∫
(n− 1) sinn−2 x cos2 x dx

= − sinn−1 x cosx+

∫
(n− 1) sinn−2 x(1− sin2 x) dx

= − sinn−1 x cosx+ (n− 1)

∫
sinn−2 x dx− (n− 1)I .

Add (n− 1)I to both sides to get nI = − sinn−1 x cosx+ (n− 1)

∫
sinn−2 x dx, that is∫

sinn x dx = − 1
n sinn−1 x cosx+ n−1

n

∫
sinn−2 x dx .

In particular, when n = 2 we get∫
sin2 x dx = − 1

2 sinx cosx+ 1
2

∫
1 dx = − 1

2 sinx cosx+ 1
2x+ c

and when n = 4 we get∫
sin4 x dx = − 1

4 sin3 x cosx+ 3
4

∫
sin2 x dx = − 1

4 sin3 x cosx− 3
8 sinx cosx+ 3

8x+ c .

6.21 Example: Let n ≥ 2 be an integer. Find a formula for

∫
secn x dx in terms of∫

secn−2 x dx, and hence find

∫
sec3 x dx.

Solution: Let I =

∫
secn x dx =

∫
secn−2 x sec2 x dx. Using Integrate by Parts with

u = secn−2 x, du = (n− 2) secn−2 x tanx dx, v = tanx and dv = tanx dx, we obtain

I = secn−2 x tanx−
∫

(n− 2) secn−2 x tan2 x dx

= secn−2 x tanx−
∫

(n− 2) secn−2 x(sec2 x− 1) dx

= secn−2 x tanx− (n− 2)I + (n− 2)

∫
secn−2 x dx

Add (n− 2)I to both sides to get (n− 1)I = secn−2 x tanx+ (n− 2)

∫
secn−2 x dx, that is∫

secn x dx = 1
n−1 secn−2 x tanx+ n−2

n−1

∫
secn−2 x dx .

In particular, when n = 3 we get∫
sec3 x dx = 1

2 secx tanx+ 1
2

∫
secx dx = 1

2 secx tanx+ 1
2 ln

∣∣ secx+ tanx
∣∣+ c
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Trigonometric Integrals

6.22 Note: To find

∫
f(sinx) cos2n+1 x dx, write cos2n+1 x = (1− sin2 x)n cosx then try

the substitution u = sinx, du = cosx dx.

To find

∫
f(cosx) sin2n+1 x dx, write sin2n+1 x = (1 − cos2 x)n sinx then try the

substitution u = cosx, du = − sinx dx.

To find

∫
sin2m x cos2n x dx, try using the trigonometric identities sin2 θ = 1

2−
1
2 cos 2θ

and cos2 θ = 1
2 + 1

2 cos 2θ. Alternatively, write cos2n x = (1− sin2 x)n and use the formula
from Example 2.20.

To find

∫
f(tanx) sec2n+2 x dx, write sec2n+2 x = (1 + tan2 x)n sec2 x dx and try the

substitution u = tanx, du = sec2 x dx.

To find

∫
f(secx) tan2n+1 x dx, write tan2n+1 x =

(sec2 x− 1)n

secx
secx tanx dx and

try the substitution u = secx, du = secx tanx dx.

To find

∫
sec2n+1 x tan2n x dx, write tan2n x = (sec2 x−1)n and use the formula from

Example 2.21.

6.23 Example: Find

∫ π/3

0

sin3 x

cos2 x
dx.

Solution: Make the substitution u = cosx so du = − sinx dx. Then∫ π/3

0

sin3 x

cos2 x
dx =

∫ π/3

0

(1− cos2 x) sinx dx

cos2 x
=

∫ 1/2

1

− (1− u2) du

u2
=

∫ 1/2

1

− 1

u2
+ 1 du

=
[
1
u + u

]1/2
1

=
(
2 + 1

2

)
− (1 + 1) = 1

2 .

6.24 Example: Find

∫
sin6 x dx.

Solution: We could use the method of example 2.20, but we choose instead to use the
half-angle formulas. We have∫ π/4

0

sin6 x dx =

∫ π/4

0

(
1
2 −

1
2 cos 2x

)3
dx =

∫ π/4

0

1
8 −

3
8 cos 2x+ 3

8 cos2 2x− 1
8 cos3 2x dx

=

∫ π/4

0

1
8 −

3
8 cos 2x+ 3

8

(
1
2 + 1

2 cos 4x
)
− 1

8

(
1− sin2 2x

)
cos 2x dx

=

∫ π/4

0

5
16 −

1
2 cos 2x+ 3

16 cos 4x+ 1
8 sin2 2x cos 2x dx

=
[

5
15x−

1
4 sin 2x+ 3

64 sin 4x+ 1
48 sin3 2x

]π/4
0

= 5π
64 −

1
4 + 1

48 = 5π
64 −

11
48 .
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6.25 Example: Find

∫ π/4

0

sec4 x√
tanx+ 1

dx.

Solution: Make the substitution u = tanx so du = sec2 x dx. Then∫ π/4

0

sec4 x√
tanx+ 1

dx =

∫ π/4

0

(tan2 x+ 1) sec2 x dx√
tanx+ 1

=

∫ 1

0

(u2 + 1) du√
u+ 1

Now make the substitution v = u+ 1 so u = v − 1 and du = dv. Then∫ 1

0

u2 + 1√
u+ 1

du =

∫ 2

1

(v − 1)2 + 1√
v

dv =

∫ 2

1

v3/2 − 2 v1/2 + 2 v−1/2 dv

=
[
2
5 v

5/2 − 4
3 v

3/2 + 4 v1/2
]2
1

=
(
2·4
√
2

5 − 4·2
√
2

3 + 4
√

2
)
−
(
2
5 −

4
3 + 4

)
= (24−40+60)

√
2

15) − 6−20+60
15 = 44

√
2−46
15 .

6.26 Example: Find

∫ π/4

0

tan4 x dx.

Solution: Note first that

tan4 x = tan2 x(sec2 x− 1) = tan2 x sec2 x− tan2 x = tan2 x sec2 x− sec2 x+ 1 .

To find

∫
tan2 x sec2 x dx, make the substitution u = tan θ, du = sec2 θ dθ to get∫

tan2 x sec2 x dx =

∫
u2 du = 1

3u
3 + c = 1

3 tan3 x+ c .

Thus we have∫ π/4

0

tan4 x dx =

∫ π/4

0

tan2 x sec2 x− sec2 x+ 1

=
[
1
3 tan3 x− tanx+ x

]π/4
0

= 1
3 − 1 + π

4 = π
4 −

2
3 .

6.27 Note: To find

∫
sin(ax) sin(bx) dx ,

∫
cos(ax) cos(bx) dx , or

∫
sin(ax) cos(bx) dx,

use one of the identities

cos(A−B)− cos(A+B) = 2 sinA sinB

cos(A−B) + cos(A+B) = 2 cosA cosB

sin(A−B) + sin(A+B) = 2 sinA cosB .

6.28 Example: Find

∫ π/6

0

cos 3x cos 2x dx.

Solution: Since 2 cos 3x cos 2x = cos(3x− 2x) + cos(3x+ 2x) = cosx+ cos 5x, we have∫ π/6

0

cos 2x cos 3x dx =

∫ π/6

0

1
2 (cosx+cos 5x) dx =

[
1
2 sinx+ 1

10 sin 5x
]π/6
0

= 1
4 + 1

20 = 3
10 .
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Inverse Trigonometric Substitution

6.29 Note: To solve an integral involving
√
a2 + b2(x+ c)2 or 1/(a2 + b2(x+ c)2), try the

substitution θ = tan−1 b(x+c)a so that a tan θ = b(x + c), a sec θ =
√
a2 + b2(x+ c)2 and

a sec2 θ dθ = b dx.
For an integral involving

√
a2 − b2(x+ c)2, try the substitution θ = sin−1 b(x+c)a so

that a sin θ = b(x+ c), a cos θ =
√
a2 − b2(x+ c)2 and a cos θ dθ = b dx.

For an integral involving
√
b2(x+ c)2 − a2, try the substitution θ = sec−1 b(x+c)a so

that a sec θ = b(x+ c), a tan θ =
√
b2(x+ c)2 − a2 and a sec θ tan θ dθ = b dx.

6.30 Example: Find

∫ 1

0

dx

(4− 3x2)3/2
.

Solution: Let 2 sin θ =
√

3x so 2 cos θ =
√

4− 3x2 and 2 cos θ dθ =
√

3 dx. Then∫ 1

0

dx

(4− 3x2)3/2
=

∫ π/3

0

2√
3

cos θ dθ

(2 cos θ)3
=

∫ π/3

0

1
4
√
3

sec2 θ dθ =
[

1
4
√
3

tan θ
]π/3
0

= 1
4 .

6.31 Example: Find

∫ √3

1

dx

x2
√
x2 + 3

.

Solution: Let
√

3 tan θ = x so
√

3 sec θ =
√
x2 + 3 and

√
3 sec2 θ dθ = dx, and also let

u = sin θ so du = cos θ dθ. Then∫ √3

1

dx

x2
√
x2 + 3

=

∫ π/4

π/6

√
3 sec2 θ dθ

3 tan2 θ
√

3 sec θ
=

∫ π/4

π/6

1

3

sec θ

tan2 θ
dθ =

∫ π/4

π/6

1

3

cos θ dθ

sin2 θ

=

∫ 1/
√
2

1/2

1

3u2
du =

[
− 1

3u

]1/√2

1/2

= −
√
2
3 + 2

3 = 2−
√
2

3 .

6.32 Example: Find

∫ 4

2

√
x2 − 4

x2
dx.

Solution: Let 2 sec θ = x so 2 tan θ =
√
x2 − 4 and 2 sec θ tan θ dθ = dx. Then∫ 4

2

√
x2 − 4

x2
dx =

∫ π/3

0

tan2 θ sec θ dθ

sec2 θ
=

∫ π/3

0

tan2 θ

sec θ
dθ =

∫ π/3

0

sec2 θ − 1

sec θ
dθ

=

∫ π/3

0

sec θ − cos θ dθ =
[

ln | sec θ + tan θ| − sin θ
]π/3
0

= ln(2 +
√

3)−
√
3
2 .

6.33 Example: Find

∫ 3

2

(4x− x2)3/2 dx.

Solution: Let 2 sin θ = x− 2 so 2 cos θ =
√

4x− x2 and 2 cos θ dθ = dx. Then∫ 3

2

(4x− x2)3/2 dx =

∫ π/6

0

16 cos4 θ dθ =

∫ π/6

0

4 (1 + cos 2θ)2 dθ

=

∫
4 + 8 cos 2θ + 4 cos2 2θ dθ =

∫
4 + 8 cos 2θ + 2 + 2 cos 4θ dθ

=
[
6θ + 4 sin 2θ + 1

2 sin 4θ
]π/6
0

= π + 2
√

3 +
√
3
4 = π + 9

√
3

4 .
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Partial Fractions

6.34 Note: We can find the integral of a rational function
f(x)

g(x)
as follows:

Step 1: use long division to find polynomials q(x) and r(x) with deg r(x) < deg g(x) such

that f(x) = g(x)q(x) + r(x) for all x, and note that
f(x)

g(x)
= q(x) +

r(x)

g(x)
so∫

f(x)

g(x)
dx =

∫
q(x) +

r(x)

g(x)
dx .

(If deg f(x) < deg g(x) then q(x) = 0 and r(x) = f(x)).

Step 2: factor g(x) into linear and irreducible quadratic factors.

Step 3: write
r(x)

g(x)
as a sum of terms so that for each linear factor (ax+ b)k we have the

k terms
A1

(ax+ b)
+

A2

(ax+ b)2
+ · · ·+ Ak

(ax+ b)k

and for each irreducible quadratic factor (ax2 + bx+ c)k we have the k terms

B1x+ C1

(ax2 + bx+ c)
+

B2x+ C2

(ax2 + bx+ c)2
+ · · ·+ Bkx+ Ck

(ax2 + bx+ c)k
.

Writing
r(x)

g(x)
in this form is called splitting

r(x)

g(x)
into its partial fractions decomposition.

Step 4: solve the integral.

6.35 Example: If g(x) = x(x− 1)3(x2 + 2x+ 3)2 then in step 3 we would write

r(x)

g(x)
=
A

x
+

B

x− 1
+

C

(x− 1)2
+

D

(x− 1)3
+

Ex+ F

x2 + 2x+ 3
+

Gx+H

(x2 + 2x+ 3)2
.

and then solve for the various constants.

6.36 Example: Find

∫ 3

2

x− 7

(x− 1)2(x+ 2)
dx.

Solution: In order to get
x− 7

(x− 1)2(x+ 2)
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 2
we need

A(x− 1)(x+ 2) +B(x+ 2) + C(x− 1)2 = x− 7 .

Equating coefficients gives A+C = 0, A+B − 2C = 1 and −2A+ 2B +C = −7. Solving
these three equations gives A = 1, B = −2 and C = −1, and so we have∫ 3

2

x− 7

(x− 1)2(x+ 2)
dx =

∫ 3

2

A

x− 1
+

B

(x− 1)2
+

C

x+ 2

=

∫ 3

2

1

x− 1
− 2

(x− 1)2
− 1

x+ 2
dx =

[
ln(x− 1) + 2

x−1 − ln(x+ 2)
]3
2

= (ln 2 + 1− ln 5)− (2− ln 4) = ln
8

5
− 1 .
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6.37 Example: Find

∫ √3

1

x4 − x3 + 1

x3 + x
dx.

Solution: Use long division of polynomials to show that
x4 − x3 + 1

x3 + x
= x−1+

−x2 + x+ 1

x3 + x
.

Next, note that to get
A

x
+
Bx+ C

x2 + 1
=
−x2 + x+ 1

x3 + x
we need A(x2 + 1) + (Bx+ C)(x) =

−x2 + x + 1. Equating coefficients gives A + B = −1, C = 1 and A = 1. Solving these
three equations gives A = 1, B = −2 and C = 1. Thus∫ √3

1

x4 − x3 + 1

x3 + x
dx =

∫ √3

1

x− 1 +
1

x
− 2x

x2 + 1
+

1

x2 + 1
dx

=
[
1
2 x

2 − x+ lnx− ln(x2 + 1) + tan−1 x
]√3

1

=
(
3
2 −
√

3 + ln
√

3− ln 4 + π
3

)
−
(
1
2 − 1− ln 2 + π

4

)
= 2−

√
3 + ln

√
3
2 + π

12 .

6.38 Example: Find I =

∫ 2

1

x5 + x4 − 2x3 − 2x2 − 5x− 25

x2(x2 − 2x+ 5)2
dx.

Solution: To get

A

x
+
B

x2
+

Cx+D

x2 − 2x+ 5
+

Ex+ F

(x2 − 2x+ 5)2
=
x5 + x4 − 2x3 − 2x2 − 5x− 25

x2(x2 − 2x+ 5)2

we need Ax(x2−2x+ 5)2 +B(x2−2x+ 5)2 + (Cx+D)(x2)(x2−2x+ 5) + (Ex+F )(x2) =
x5 + x4 − 2x3 − 2x2 − 5x − 25. Expanding the left hand side then equating coefficients
gives the 5 equations

A+ C = 1 , −4A+B − 2C +D = 1 , 14A− 4B + 5C − 2D + E = −2

− 20A+ 14B + 5D + F = −2 , 25A− 20B = −5 , 25B = −25

Solving these equations gives A = −1, B = −1, C = 2, D = 2, E = 2 and F = −18, so

I =

∫ 2

1

− 1

x
− 1

x2
+

2x+ 2

x2 − 2x+ 5
+

2x− 18

(x2 − 2x+ 5)2
dx

=

∫ 2

1

− 1

x
− 1

x2
+

2x− 2 + 4

x2 − 2x+ 5
+

2x− 2− 16

(x2 − 2x+ 5)2
dx

=

∫ 2

1

− 1

x
− 1

x2
+

2x− 2

x2 − 2x+ 5
+

4

x2 − 2x+ 5
+

2x− 2

(x2 − 2x+ 5)2
− 16

(x2 − 2x+ 5)2
dx

We have

∫
1

x
dx = lnx+c and

∫
1

x2
dx = − 1

x
+c. Make the substitution u = x2−2x+5,

du = (2x− 2) dx to get∫
(2x− 2) dx

x2 − 2x+ 5
=

∫
du

u
= lnu+ c = ln(x2 − 2x+ 5) + c

and ∫
(2x− 2) dx

(x2 − 2x+ 5)2
=

∫
du

u2
=
−1

u
+ c =

−1

x2 − 2x+ 5
+ c.

Make the substitution 2 tan θ = x− 1, 2 sec θ =
√
x2 − 2x+ 5, 2 sec2 θ dθ = dx to get∫

4 dx

x2 − 2x+ 5
=

∫
4 · 2 sec2 θ dθ

(2 sec θ)2
=

∫
2 dθ = 2θ + c = 2 tan−1

(
x−1
2

)
+ c
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and∫
16 dx

(x2 − 2x+ 5)2
=

∫
16 · 2 sec2 θ dθ

(2 sec θ)4
dθ =

∫
2 dθ

sec2 θ
=

∫
2 cos2 θ dθ =

∫
1 + cos 2θ dθ

= θ + 1
2 sin 2θ + c = θ + sin θ cos θ + c = tan−1

(
x−1
2

)
+ 2(x−1)

x2−2x+5 + c .

Thus we have

I =

[
− lnx+

1

x
+ ln(x2 − 2x+ 5) + 2 tan−1

x− 1

2

− 1

x2 − 2x+ 5
− tan−1

x− 1

2
− 2(x− 1)

x2 − 2x+ 5

]2
1

=

[
ln
x2 − 2x+ 5

x
+

1

x
− 2x− 1

x2 − 2x+ 5
+ tan−1

x− 1

2

]2
1

=
(
ln 5

2 + 1
2 −

3
5 + tan−1 1

2

)
−
(
ln 4 + 1− 1

4

)
= ln 5

8 −
17
20 + tan−1 1

2 .

6.39 Example: Find

∫
sec3 x dx

secx− 1
.

Solution: Multiply the numerator and denominator by secx+ 1 to get∫
sec3 x dx

secx− 1
=

∫
sec3 x(secx+ 1)

(sec2 x− 1)
dx =

∫
sec4 x+ sec3 x

tan2 x
dx =

∫
sec4 x

tan2 x
dx+

∫
sec3 x

tan2 x
dx .

Make the substitution u = tanx, du = sec2 x dx to get∫
sec4 x

tan2 x
dx =

∫
(tan2 x+ 1) sec2 x dx

tan2 x
=

∫
u2 + 1

u2
du

=

∫
1 +

1

u2
du = u− 1

u
+ c = tanx− cotx+ c .

Make the substitution v = sinx, dv = cosx dx and integrate by parts to get∫
sec3 x

tan2 x
dx =

∫
dx

cosx sin2 x
=

∫
cosx dx

(1− sin2 x) sin2 x
=

∫
dv

(1− v2) v2

=

∫
1

1− v2
+

1

v2
dv =

∫ 1
2

1− v
+

1
2

1 + v
+

1

v2
dv

= − 1
2 ln |1− v|+ 1

2 ln |1 + v| − 1
v + c = 1

2 ln
∣∣∣ 1+v1−v

∣∣∣− 1
v + c

= 1
2 ln 1+sin x

1−sin x − cscx+ c = 1
2 ln (1+sin x)2

(cos x)2 − cscx+ c = ln
∣∣∣ 1+sin x

cos x

∣∣∣− cscx+ c .

Thus

∫
sec3 x

secx− 1
dx = tanx− cotx+ ln | secx+ tanx| − cscx+ c.
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Improper Integration

6.40 Definition: Suppose that f : [a, b) → R is integrable on every closed interval
contained in [a, b). Then we define the improper integral of f on [a, b) to be∫ b

a

f = lim
t→b−

∫ t

a

f

provided the limit exists and, when the improper integral exists and is finite, we say
that f is improperly integrable on [a, b), (or that the improper integral of f on [a, b)
converges). In this definition we also allow the case that b =∞, and then we have∫ ∞

a

f = lim
t→∞

∫ t

a

f .

Similarly, if f : (a, b]→ R is integrable on every closed interval in (a, b] then we define the
improper integral of f on (a, b] to be∫ b

a

f = lim
t→a+

∫ b

t

f

provided the limit exists, and we say that f is improperly integrable on (a, b] when the
improper integral is finite. In this definition we also allow the case that a = −∞. For a
function f : (a, b) → R, which is integrable on every closed interval in (a, b), we choose a
point c ∈ (a, b), then we define the improper integral of f on (a, b) to be∫ b

a

f =

∫ c

a

f +

∫ b

c

f

provided that both of the improper integrals on the right exist and can be added, and we
say that f is improperly integrable on (a, b) when both of the improper integrals on
the right are finite. As an exercise, you should verify that the value of this integral does
not depend on the choice of c.

6.41 Notation: For a function F : (a, b)→ R write[
F (x)

]b−
a+

= lim
x→b−

F (x)− lim
x→a+

F (x) .

We use similar notation when F : [a, b)→ R and when F : (a, b]→ R.

6.42 Note: Suppose that f : (a, b) → R is integrable on every closed interval contained
in (a, b) and that F is differentiable with F ′ = f on (a, b). Then∫ b

a

f =
[
F (x)

]b−
a+
.

A similar result holds for functions defined on half-open intervals [a, b) and (a, b].

Proof: Choose c ∈ (a, b). By the Fundamental Theorem of Calculus we have∫ b

a

f =

∫ c

a

f +

∫ b

c

f = lim
s→a+

∫ c

s

f + lim
t→b−

∫ t

c

f

= lim
s→a+

(
F (c)− F (s)

)
+ lim
t→b−

(
F (t)− F (c)

)
= lim
t→b−

F (t)− lim
s→a+

F (s) =
[
F (x)

]b−
a+
.
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6.43 Example: Find

∫ 1

0

dx

x
and find

∫ 1

0

dx√
x

.

Solution: We have ∫ 1

0

dx

x
=
[

lnx
]1
0+

= 0− (−∞) =∞

and ∫ 1

0

dx√
x

=
[
2
√
x
]1
0+

= 2− 0 = 2 .

6.44 Example: Show that

∫ 1

0

dx

xp
converges if and only if p < 1.

Solution: The case that p = 1 was dealt with in the previous example. If p > 1 so that
p− 1 > 0 then we have∫ 1

0

dx

xp
=

[
−1

(p− 1)xp−1

]1
0+

=
(
− 1
p−1

)
−
(
−∞

)
=∞

and if p < 1 so that 1− p > 0 then we have∫ 1

0

dx

xp
=

[
x1−p

1− p

]1
0+

=
(

1
1−p

)
−
(
0
)

= 1
1−p .

6.45 Example: Show that

∫ ∞
1

dx

xp
converges if and only if p > 1.

Solution: When p = 1 we have∫ ∞
1

dx

xp
=

∫ ∞
1

1

x
=
[

lnx
]∞
1

=∞− 0 =∞ .

When p > 1 so that p− 1 > 0 we have∫ ∞
1

dx

xp
=

[
−1

(p− 1)xp−1

]∞
1

= (0)−
(
− 1
p−1

)
= 1

p−1

and if p < 1 so that 1− p > 0 then we have∫ ∞
1

dx

xp
=

[
x1−p

1− p

]∞
1

=
(
∞
)
−
(

1
1−p

)
=∞ .
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6.46 Example: Find

∫ ∞
0

e−x dx.

Solution: We have ∫ ∞
0

e−x dx =
[
− e−x

]∞
0

= 0− (−1) = 1 .

6.47 Example: Find

∫ 1

0

lnx dx.

Solution: We have ∫ 1

0

lnx dx =
[
x lnx− x

]1
0+

= (−1)− (0) = −1 ,

since l’Hôpital’s Rule gives lim
x→0+

x lnx = lim
x→0+

lnx
1
x

= lim
x→0+

1
x

− 1
x2

= lim
x→0+

−x = 0.

6.48 Theorem: (Comparison) Let f and g be integrable on closed subintervals of (a, b),
and suppose that 0 ≤ f(x) ≤ g(x) for all x ∈ (a, b). If g is improperly integrable on (a, b)
then so is f and then we have ∫ b

a

f ≤
∫ b

a

g .

On the other hand, if

∫ b

a

f diverges then

∫ b

a

g diverges, too. A similar result holds for

functions f and g defined on half-open intervals.

Proof: The proof is left as an exercise.

6.49 Example: Determine whether

∫ π/2

0

√
secx dx converges.

Solution: For 0 ≤ x < π
2 we have cosx ≥ 1− 2

π x so secx ≤ 1
1− 2

π x
hence

√
secx ≤ 1√

1− 2
π x

.

Let u = 1− 2
π x so that du = − 2

π dx. Then∫ π/2

x=0

1√
1− 2

π x
dx =

∫ 0

u=1

−π2 u
−1/2 =

[
− π u1/2

]0
1

= π

which is finite. It follows that

∫ π/2

0

√
secx dx converges, by comparison.

6.50 Example: Determine whether

∫ ∞
0

e−x
2

dx converges.

Solution: For 0 ≤ u we have eu ≥ 1+u, so for 0 ≤ x we have ex
2 ≥ 1+x2, so e−x

2 ≤ 1

1 + x2
.

Since ∫ ∞
0

dx

1 + x2
=
[

tan−1 x
]∞
0

= π
2 ,

which is finite, we see that

∫ ∞
0

e−x
2

dx converges, by comparison.
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6.51 Theorem: (Estimation) Let f be integrable on closed subintervals of (a, b). If |f | is
improperly integrable on (a, b) then so is f , and then we have∣∣∣∣∣

∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f | .

A similar result holds for functions defined on half-open intervals.

Proof: The proof is left as an exercise.

6.52 Example: Show that

∫ ∞
0

sinx

x
dx converges.

Solution: We shall show that both of the integrals

∫ 1

0

sinx

x
dx and

∫ ∞
1

sinx

x
dx converge.

Since lim
x→0+

sinx

x
= 1, the function f defined by f(0) = 1 and f(x) =

sinx

x
for x > 0 is

continuous (hence integrable) on [0, 1]. By part 1 of the Fundamental Theorem of Calculus,

the function

∫ 1

r

f(x) dx is a continuous function of r for r ∈ [0, 1] and so we have∫ 1

0

sinx

x
dx = lim

r→0+

∫ 1

r

sinx

x
dx = lim

r→0+

∫ 1

r

f(x) dx =

∫ 1

0

f(x) dx ,

which is finite, so

∫ 1

0

sinx

x
dx converges.

Integrate by parts using u = 1
x , du = − 1

x2 dx, v = − sinx and dv = cosx dx to get∫ ∞
1

sinx

x
dx =

[
− cosx

x

]∞
1

−
∫ ∞
1

cosx

x2
dx = cos(1)−

∫ ∞
1

cosx

x2
dx .

Since
∣∣∣cosx

x2

∣∣∣ ≤ 1

x2
and

∫ ∞
1

dx

x2
converges, we see that

∫ ∞
1

∣∣∣cosx

x2

∣∣∣ dx converges too, by

comparison. Thus

∫ ∞
1

cosx

x2
dx also converges by the Estimation Theorem.
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Chapter 7. Series

Series

7.1 Definition: Let {an}n≥k be a sequence. The series
∑
n≥k

an is defined to be the

sequence {Sl}l≥k where

Sl =
l∑

n=k

an = ak + ak+1 + · · ·+ al .

The term Sl is called the lth partial sum of the series
∑
n≥k

an. The sum of the series,

denoted by

S =
∞∑
n=k

an = ak + ak+1 + ak+2 + · · · ,

is the limit of the sequence of partial sums, if it exists, and we say the series converges
when the sum exists and is finite.

7.2 Example: (Geometric Series) Show that for a 6= 0, the series
∑
n≥k

an converges if and

only if |r| < 1, and that in this case
∞∑
n=k

arn =
ark

1− r
.

Solution: The lth partial sum is

Sl =

∞∑
n=k

arn = ark + ark+1 + ark+2 + · · ·+ arl .

When r = 1 we have Sl = a(l − k + 1) and so lim
l→∞

Sl = ±∞ (+∞ when a > 0 and

−∞ when a < 0). When r 6= 1 we have rSl = ark+1 + ark+2 + · · · + arl + arl+1, so
Sl − rSl = ark − arl+1 = ark

(
1− rl−k+1

)
and so

Sl =
ark(1− rl−k+1)

1− r
.

When r > 1, lim
l→∞

rl−k+1 = ∞ and so lim
l→∞

Sl = ±∞ (+∞ when a > 0 and −∞ when

a < 0). When r ≤ −1, lim
l→∞

rl−k+1 does not exist, and so neither does lim
l→∞

Sl. When

|r| < 1, we have lim
l→∞

rl−k+1 = 0 and so lim
l→∞

Sl =
ark

1− r
, as required.

7.3 Example: Find

∞∑
n=−1

3n+1

22n−1
.

Solution: This is a geometric series. By the formula in the previous example, we have

∞∑
n=−1

3n+1

22n−1
=

∞∑
n=−1

3 · 3n

2−1 · 4n
=

∞∑
n=−1

6
(
3
4

)n
=

6
(
3
4

)−1
1− 3

4

=
6 · 43

1
4

= 32 .
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7.4 Example: (Telescoping Series) Find
∞∑
i=1

1

n2 + 2n
.

Solution: We use a partial fractions decomposition. The lth partial sum is

Sl =
l∑

n=1

1

n(n+ 2)
=

l∑
n=1

( 1
2

n
−

1
2

n+ 2

)
= 1

2

l∑
n=1

(
1
n −

1
n+2

)
= 1

2

( (
1− 1

3

)
+
(
1
2 −

1
4

)
+
(
1
3 −

1
5

)
+ · · ·+

(
1

n−2 −
1
n

)
+
(

1
n−1 −

1
n+1

)
+
(

1
n −

1
n+2

))
= 1

2

(
1 + 1

2 −
1

n+1 −
1

n+2

)
,

since all the other terms cancel. Thus the sum of the series is

S = lim
l→∞

Sl = 1
2

(
1 + 1

2

)
= 3

4 .

7.5 Theorem: (First Finitely Many Terms do Not Affect Convergence) Let {an}n≥k be a

sequence. Then for any integer m ≥ k, the series
∑
n≥k

an converges if and only if the series∑
n≥m

an converges, and in this case
∞∑
n=k

an =
(
ak + ak+1 + · · ·+ am−1

)
+
∞∑
n=m

an .

Proof: Let Sl =
l∑

n=k

an and let Tl =
l∑

n=m

an. Then for all l ≥ m we have

Sl =
(
ak + ak+1 + · · ·+ am−1

)
+ Tl ,

and so {Sl} converges if and only if {Tl} converges, and in this case

lim
l→∞

Sl =
(
ak + ak+1 + · · ·+ am−1

)
+ lim
l→∞

Tl .

7.6 Note: Since the first finitely many terms do not affect the convergence of a series, we

often omit the subscript n ≥ k in the expression
∑
n≥k

an when we are interested in whether

or not the series converges. On the other hand, we cannot omit the subscript n = k when

we are interested in the value of the sum
∞∑
n=k

an.

7.7 Definition: When we approximate a value x by the value y, the (absolute) error in
our approximation is |x− y|.

7.8 Note: If
∑
n≥k

an converges and l ≥ k then, by the above theorem, so does
∞∑

n≥l+1

an. If

we approximate the sum S =

∞∑
n=k

an by the lthpartial sum Sl =

l∑
n=k

an, then the error in

our approximation is ∣∣S − Sl∣∣ =

∣∣∣∣∣
∞∑

n=l+1

an

∣∣∣∣∣ .
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7.9 Theorem: (Linearity) If
∑
an and

∑
bn are convergent series then

(1) for any real number c,
∑
can converges and

∞∑
n=k

can = c

∞∑
n=k

an , and

(2) the series
∑

(an + bn) converges and
∞∑
n=k

(an + bn) =
∞∑
n=k

an +
∞∑
n=k

bn .

Proof: This follows immediately from the Linearity Theorem for sequences.

7.10 Theorem: (Series of Positive Terms) Let
∑
an be a series.

(1) If an ≥ 0 for all n ≥ k then either
∑
an converges or

∞∑
n=k

an =∞.

(2) If an ≤ 0 for all n ≥ k then either
∑
an converges or

∞∑
n=k

an = −∞.

Proof: This follows from the Monotone Convergence Theorem for sequences. Indeed if
an ≥ 0 for all n ≥ k, then {Sl} is increasing (since Sl+1 = Sl + al+1 ≥ Sl for all l). Either
{Sl} is bounded above, in which case {Sl} converges hence

∑
an converges, or {Sl} is

unbounded, in which case lim
n→∞

Sl =∞ hence
∞∑
n=k

an =∞.
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Convergence Tests

7.11 Theorem: (Divergence Test) If
∑
an converges then lim

n→∞
an = 0. Equivalently, if

lim
n→∞

an either does not exist, or exists but is not equal to 0, then
∑
an diverges.

Proof: Suppose that
∑
an converges, and say

∞∑
n=k

an = S. Let Sl be the lthpartial sum.

Then lim
l→∞

Sl = S = lim
l→∞

Sl−1, and we have al = Sl − Sl−1, and so

lim
l→∞

al = lim
l→∞

Sl − lim
l→∞

Sl−1 = S − S = 0 .

7.12 Example: Determine whether
∑
e1/n converges.

Solution: Since lim
n→∞

e1/n = e0 = 1,
∑
e1/n diverges by the Divergence Test.

7.13 Note: The converse of the Divergence Test is false. For example, as we shall see in
Example 6.27 below,

∑
1
n diverges even though lim

n→∞
1
n = 0.

7.14 Theorem: (Integral Test) Let f(x) be positive and decreasing for x ≥ k, and let

an = f(n) for all integers n ≥ k. Then
∑
an converges if and only if

∫ ∞
k

f(x) dx converges,

and in this case, for any l ≥ k we have∫ ∞
l+1

f(x) dx ≤
∞∑

n=l+1

an ≤
∫ ∞
l

f(x) dx .

Proof: Let Tm be the mth partial sum for
∑
n≥l+1

an, so Tm =
m∑

n=l+1

an. Note that since

f(x) is decreasing, it is integrable on any closed interval. Also, for each n ≥ l we have

an = f(n) ≤ f(x) for all x ∈ [n− 1, n], so

∫ n

n−1
f(x) dx ≥

∫ n

n−1
an dx = an and so

Tm =
m∑

n=l+1

an ≤
m∑

n=l+1

∫ n

n−1
f(x) dx =

∫ m

l

f(x) dx ≤
∫ ∞
l

f(x) dx .

Since f(n) = an is positive, the sequence {Tm} is increasing. If

∫ ∞
k

f converges, then

{Tn} is bounded above by

∫ ∞
l

f(x) dx, and so it converges with lim
m→∞

Tm ≤
∫ ∞
l

f(x) dx.

Similarly, for each n ≥ l we have an = f(n) ≥ f(x) for all x ∈ [n, n + 1] so that∫ n+1

n

f(x) dx ≤
∫ n+1

n

andx = an and so

Tm =
m∑

n=l+1

an ≥
m∑

n=l+1

∫ n+1

n

f(x) dx =

∫ m+1

l+1

f(x) dx .

If

∫ ∞
k

f converges, then lim
m→∞

Tm ≥ lim
m→∞

∫ m+1

l+1

f(x) dx =

∫ ∞
l+1

f(x) dx. If

∫ ∞
k

f = ∞

then lim
m→∞

∫ m+1

l+1

f(x) dx =∞, and so lim
m→∞

Tm =∞ too, by Comparison.
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7.15 Example: (p-Series) Show that the series
∑
n≥1

1

np
converges if and only if p > 1. In

particular, the harmonic series
∑

1
n diverges.

Solution: If p < 0 then lim
n→∞

1

np
= ∞ and if p = 0 then lim

n→∞

1

np
= 1, so in either case∑

1
np diverges by the Divergence Test. Suppose that p > 0. Let an = 1

np for integers
n ≥ 1, and let f(x) = 1

xp for real numbers x ≥ 1. Note that f(x) is positive and decreasing

for x ≥ 1 and an = f(n) for all n ≥ 1. Since we know that

∫ ∞
1

f(x) dx converges if and

only if p > 1, it follows from the Integral Test that
∑
an converges if and only if p > 1.

7.16 Example: Approximate S =
∞∑
n=1

1

2n2
so that the error is at most 1

100 .

Solution: We let an = 1
2n2 and f(x) = 1

2x2 so that we can apply the Integral Test. If we
choose to approximate the sum S by the lthpartial sum Sl, then the error is

E = S − Sl =
∞∑

n=l+1

an ≤
∫ ∞
l

1

2x2
dx =

[
− 1

2x

]∞
l

=
1

2l
,

and so to insure that E ≤ 1
100 we can choose l so that 1

2l ≤
1

100 , that is l ≥ 50. Since it
would be tedious to add up the first 50 terms of the series, we take an alternate approach.
The Integral Test gives us upper and lower bounds: we have∫ ∞

l+1

f(x) dx ≤ S − Sl ≤
∫ ∞
l

f(x) dx

1

2(l + 1)
≤ S − Sl ≤

1

2l

Sl +
1

2(l + 1)
≤ S ≤ Sl +

1

2l
.

If approximate S using the midpoint of the upper and lower bounds, that is if we make

the approximation S ∼= Sl + 1
2

(
1
2l + 1

2(l+1)

)
, then the error E will be at most half of the

difference of the bounds:
E ≤ 1

2

(
1
2l −

1
2(l+1)

)
= 1

4l(l+1) .

To get E ≤ 1
100 we want 1

4 l (l+1) ≤
1

100 , that is l (l + 1) ≥ 25, and so we can take l = 5.

Thus we estimate

S ∼= S5 + 1
2

(
1
10 + 1

12

)
= 1

2 + 1
8 + 1

18 + 1
32 + 1

50 + 1
20 + 1

24 = 5929
7200 .(

Incidentally, the exact value of this sum is π2

12

)
.
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7.17 Theorem: (Comparison Test) Let 0 ≤ an ≤ bn for all n ≥ k. Then if
∑
bn converges

then so does
∑
an and in this case,

∞∑
n=k

an ≤
∞∑
n=k

bn .

Proof: Let Sl =
l∑

n=k

an and let Tl =
l∑

n=k

bn. Since 0 ≤ an, bn for all n, the sequences {Sl}

and {Tl} are increasing. Since an ≤ bn for all n we have Sl ≤ Tl for all l. Suppose that∑
bn converges with say

∞∑
n=k

bn = T so that lim
l→∞
{Tl} = T . Then Sl ≤ Tl ≤ T for all l, so

{Sl} is increasing and bounded above, hence convergent, and lim
l→∞

Sl ≤ lim
l→∞

Tl.

7.18 Example: Determine whether
∑
n≥0

1√
n3 + 1

converges.

Solution: Note that 0 ≤ 1√
n3+1

≤ 1√
n3

= 1
n3/2 for all n ≥ 1, and

∑
1

n3/2 converges since it

is a p-series with p = 3
2 , and so

∑
1√
n3+1

also converges, by the Comparison Test.

7.19 Example: Determine whether
∑
n≥1

tan 1
n converges.

Solution: For 0 < x < π
2 we have x < tanx, so for n ≥ 1 we have 0 < 1

n < tan 1
n . Since the

harmonic series
∑

1
n diverges, the series

∑
tan 1

n also diverges by the Comparison Test.

7.20 Example: Approximate S =
∞∑
n=0

1

n!
so that the error is at most 1

100 .

Solution: If we make the approximation S ∼= Sl =
l∑

n=0

1

n!
then the error is

E = S − Sl =
∞∑

n=l+1

1

n!

= 1
(l+1)! + 1

(l+2)! + 1
(l+3)! + 1

(l+4)! + · · ·

= 1
(l+1)!

(
1 + 1

l+2 + 1
(l+2)(l+3) + 1

(l+2)(l+3)(l+4) + · · ·
)

≤ 1
(l+1)!

(
1 + 1

l+2 + 1
(l+2)2 + 1

(l+2)3 + · · ·
)

= 1
(l+1)!

1

1− 1
l+2

= l+2
(l+1)(l+1)!

where we used the Comparison Test and the formula for the sum of a geometric series. To
get E ≤ 1

100 we can choose l so that l+2
(l+1)(l+1)! ≤

1
100 . By trial and error, we find that we

can take l = 4, so we make the approximation

S ∼= S4 = 1 + 1 + 1
2 + 1

6 + 1
24 = 65

24 .

(Incidentally, we shall see later that the exact value of this sum is e).
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7.21 Theorem: (Limit Comparison Test) Let an ≥ 0 and let bn > 0 for all n ≥ k.

Suppose that lim
n→∞

an
bn

= r. Then

(1) if r =∞ and
∑
an converges then so does

∑
bn,

(2) if r = 0 and
∑
bn converges then so does

∑
an, and

(3) if 0 < r <∞ then
∑
an converges if and only if

∑
bn converges.

Proof: If lim
n→∞

an
bn

= ∞, then for large n we have an
bn

> 1 so that an > bn, and so if
∑
an

converges, then so does
∑
bn by the Comparison Test. If lim

n→∞
an
bn

= 0 then for large n we

have an
bn

< 1 so an < bn, and so if
∑
bn converges then so does

∑
an by the Comparison

Test. Suppose that lim
n→∞

an
bn

= r with 0 < r <∞. Choose N so that when n > N we have∣∣∣anbn − r∣∣∣ < r
2 so that r

2 <
an
bn
< 3r

2 and hence

0 < r
2bn ≤ an ≤

3r
2 bn .

If
∑
an converges, then

∑
r
2bn converges by the Comparison Test, and hence

∑
bn con-

verges by linearity. If
∑
bn converges, then

∑
3r
2 bn converges by linearity, and hence so

does
∑
an by the Comparison Test.

7.22 Example: Determine whether
∑

1√
n3−1 converges.

Solution: Note that we cannot use the same argument that we used earlier to show that∑
1√
n3+1

converges, because 1√
n3+1

< 1
n3/2 but 1√

n3−1 >
1

n3/2 . We use a different approach.

Let an = 1√
n3−1 and let bn = 1

n3/2 . Then lim
an
bn

= lim
n→∞

n3/2√
n3 − 1

= lim
n→∞

1√
1− 1

n3

= 1,

and
∑
bn =

∑
1

n3/2 converges (its a p-series with p = 3
2 ), and so

∑
an converges too, by

the Limit Comparison Test.
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7.23 Theorem: (Ratio Test) Let an > 0 for all n ≥ k. Suppose lim
n→∞

an+1

an
= r. Then

(1) if r < 1 then
∑
an converges, and

(2) if r > 1 then lim
n→∞

an =∞ so
∑
an =∞.

Proof: Suppose that lim
n→∞

an+1

an
= r < 1. Choose s with r < s < 1, and then choose N so

that when n > N we have an+1

an
< s and hence an+1 < san. Fix k > N . Then ak+1 < sak,

ak+2 < sak+1 < s2ak, ak+3 < sak+2 < s3ak, and so on, so we have an < bn = sn−kak for
all n ≥ k. Since

∑
bn is geometric with ratio s < 1, it converges, and hence so does

∑
an

by the Comparison Test.
Now suppose that lim

n→∞
an+1

an
= r > 1. Choose s with 1 < s < r, then choose N so

that when n > N we have an+1

an
> s and hence an+1 > san. Fix k > N . Then as above

an > bn = sn−kak for all n ≥ k, and lim
n→∞

bn =∞, so lim
n→∞

an =∞ too.

7.24 Example: Determine whether
∑

5n

n! converges.

Solution: Let an = 5n

n! . Then an+1

an
= 5n+1

(n+1)! ·
n!
5n = 5

n+1 → 0 as n → ∞, and so
∑
an

converges by the Ratio Test.

7.25 Note: If lim
n→∞

an+1

an
= 1, then

∑
an could converge or diverge. For example, if an = 1

n

then an+1

an
= n

n+1 → 1 as n→∞ and
∑
an diverges, but if bn = 1

n2 then bn+1

bn
= n2

(n+1)2 → 1

as n→∞ and
∑
bn converges.

7.26 Theorem: (Root Test) Let an ≥ 0 for all n ≥ k. Suppose that lim
n→∞

n
√
an = r. Then

(1) if r < 1 then
∑
an converges, and

(2) if r > 1 then lim
n→∞

an =∞ so
∑
an =∞.

Proof: The proof is left as an exercise. It is similar to the proof of the Ratio Test.

7.27 Example: Determine whether
∑(

n
n+1

)n2

converges.

Solution: Let an =
(

n
n+1

)n2

. Then n
√
an =

(
n
n+1

)n
= en ln( n

n+1 ), and by l’Hôpital’s Rule

we have lim
n→∞

n ln
(

n
n+1

)
= lim

x→∞

ln
(

x
x+1

)
1
x

= lim
x→∞

1
(x+1)2

− 1
x2

= lim
x→∞

−x2

(x+ 1)2
= −1, and so

lim
n→∞

n
√
an = e−1 < 1. Thus

∑
an converges by the Root Test.
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7.28 Definition: A sequence {an}n≥k is said to be alternating when either we have
an = (−1)n|an| for all n ≥ k or we have an = (−1)n+1|an| for all n ≥ k.

7.29 Theorem: (Aternating Series Test) Let {an}n≥k be an alternating series. If {|an|}
is decreasing with lim

n→∞
|an| = 0 then

∑
n≥k

an converges, and in this case∣∣∣∣∣
∞∑
n=k

an

∣∣∣∣∣ ≤ |ak| .
Proof: To simplify notation, we give the proof in the case that k = 0 and an = (−1)n|an|.

Suppose that
{
|an|

}
is decreasing with |an| → 0. Let Sl =

l∑
n=0

an. We consider the

sequences {S2l} and {S2l−1} of even and odd partial sums. Note that since
{
|an|

}
is

decreasing, we have
S2l − S2l−1 = |a2l| − |a2l−1| ≤ 0

so
{
S2l

}
is decreasing, and we have

S2l = |a0| − |a1|+ |a2| − |a3|+ · · ·+ |a2l−2| − |a2l−1|+ |a2l|
=
(
|a0| − |a1|

)
+
(
|a2| − |a3|

)
+ · · ·+

(
|a2l−2| − |a2l−1|

)
+ |a2l|

≥ |a0| − |a1|

and so {S2l} is bounded below by |a0| − |a1|. Thus
{
S2l} converges by the Monotone

Convergence Theorem. Similarly,
{
S2l−1

}
is increasing and bounded above by |a0|, so it

also converges, and we have lim
l→∞

S2l−1 ≤ |a0|.
Finally we note that since |an| → 0, taking the limit on both sides of the equality

|a2l| = S2l − S2l−1 gives 0 = lim
l→∞

S2l − lim
l→∞

S2l−1. and so we have lim
l→∞

S2l = lim
l→∞

S2l−1.

It follows that
{
Sl
}

converges, and we have lim
l→∞

Sl = lim
l→∞

S2l = lim
l→∞

S2l−1 ≤ |a0|.

7.30 Example: Determine whether
∑
n≥2

(−1)n lnn√
n

converges.

Solution: Let an =
(−1)n lnn√

n
. Let f(x) =

lnx√
x

so that |an| = f(n). Note that

f ′(x) =

1
x ·
√
x− lnx · 1

2
√
x

x
=

2− lnx

2x3/2
,

so we have f ′(x) < 0 for x > e2. Thus f(x) is decreasing for x > e2, and so
{
|an|

}
is

decreasing for n ≥ 8. Also, by l’Hôpital’s Rule, we have

lim
x→∞

f(x) = lim
x→∞

lnx√
x

= lim
x→∞

1
x
1

2
√
x

= lim
x→∞

2√
x

= 0

and so |an| → 0 as n→∞. Thus
∑
an converges by the Alternating Series Test.
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7.31 Example: Approximate the sum S =
∞∑
n=0

(−2)n

(2n)!
so that the error is at most 1

2000 .

Solution: Let an =
(−2)n

(2n)!
. Note that

|an+1|
|an|

=
2n+1

(2n+ 2)!
· (2n)!

2n
=

2

(2n+ 2)(2n+ 1)
=

1

(n+ 1)(2n+ 1)
.

Since |an+1|
|an| ≤ 1 for all n ≥ 0, we know that {|an|} is decreasing. Since lim

n→∞
|an+1|
|an| = 0, we

know that
∑
|an| converges by the Ratio Test, and so |an| → 0 by the Divergence Test.

This shows that we can apply the Alternating Series Test.

If we approximate S by the lthpartial sum Sl =
l∑

n=0

an, then by the Alternating Series

Test, the error is

E =
∣∣S − Sl∣∣ =

∣∣∣∣∣
∞∑

n=l+1

an

∣∣∣∣∣ ≤ ∣∣al+1

∣∣ =
2l+1

(2l + 2)!
.

To get E ≤ 1
2000 we can choose l so that 2l+1

(l+1)! ≤
1

2000 . By trial and error we find that we

can take l = 3. Thus we make the approximation

S ∼= S3 = 1− 2
2! + 22

4! −
23

6! = 1− 1 + 1
6 + 1

90 = 7
45 .(

We shall see later that the exact value of this sum is cos
√

2
)
.

7.32 Definition: A series
∑
n≥k

an is said to converge absolutely when
∑
n≥k
|an| converges.

The series is said to converge conditionally if
∑
n≥k

an converges but
∑
n≥k
|an| diverges.

7.33 Example: For 0 < p ≤ 1, the p-series
∑

1
np diverges, but since

{
1
np

}
is decreasing

towards 0,
∑ (−1)n

np converges by the Alternating Series Test. Thus for 0 < p ≤ 1, the

alternating p-series
∑ (−1)n

np
converges conditionally.

7.34 Theorem: (Absolute Convergence Implies Convergence) If
∑
|an| converges then

so does
∑
an.

Proof: Suppose that
∑
|an| converges. Note that −|an| ≤ an ≤ |an| so that

0 ≤ an + |an| ≤ 2|an| for all n .

Since
∑
|an| converges,

∑
2|an| converges by linearity, and so

∑(
an + |an|

)
converges by

the Comparison Test. Since
∑
|an| and

∑(
an + |an|

)
both converge,

∑
an converges by

linearity.

7.35 Example: Determine whether
∑ sinn

n2
converges.

Solution: Let an =
sinn

n2
. Then |an| = | sinn|

n2 ≤ 1
n2 . Since

∑
1
n2 converges (its a p-series

with p = 2),
∑
|an| converges by the Comparison Test, and hence

∑
an converges too,

since absolute convergence implies convergence.
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Multiplication of Series

7.36 Theorem: (Multiplication of Series) Suppose that
∑
n≥0
|an| converges and

∑
n≥0

bn

converges and define cn =
n∑
k=0

akbn−k. Then
∑
n≥0

cn converges and

∞∑
n=0

cn =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
.

Proof: Let Al =
l∑

n=0
an, Bl =

l∑
n=0

bn, Cl =
l∑

n=0
cn, A =

∞∑
n=0

an, B =
∞∑
n=0

bn, K =
∞∑
n=0
|an|

and El = B −Bl. Then we have

Cl = a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + · · ·+ (a0bl + · · ·+ alb0)

= a0Bl + a1Bl−1 + a2Bl−2 + · · ·+ alB0

= a0(B − El) + a1(B − El−1) + · · ·+ al(B − E0)

= AlB −
(
a0El + a1El−1 + · · ·+ alE0

)
and so ∣∣AB − Cl∣∣ ≤ ∣∣(A−Al)B∣∣+

∣∣a0El + a1El−1 + · · ·+ alE0

∣∣ .
Let ε > 0. Choose m so that j > m =⇒ Ej <

ε
3K . Let E = max

{
|E0|, · · · , |Em|

}
. Choose

L > m so that when l > L we have
l∑

n=l−m
|an| < ε

3E and we have |Al − A||B| < ε
3 . Then

for l > L,∣∣Cl −AB∣∣ < ∣∣(Al −A)B
∣∣+
∣∣a0El + · · ·+ al−m−1Em+1

∣∣+
∣∣al−mEm + · · ·+ alE0

∣∣
≤ ε

3 +

(
l−m−1∑
n=0

|an|
)

ε
3K +

(
l∑

n=l−m+1

|an|
)
E

< ε
3 +K ε

3K + ε
3EE = ε .

7.37 Example: Find an example of sequences {an}n≥0 and {bn}n≥0 such that
∑
n≥0

an and∑
n≥0

bn both converge, but
∑
n≥0

cn diverges where cn =
n∑
k=0

akbn−k.

Solution: Let an = bn =
(−1)n√
n+ 1

for n ≥ 0, and let

cn =
n∑
k=0

akbn−k = (−1)n
n∑
k=0

1√
(k + 1)(n− k + 1)

.

Recall that for p, q ≥ 0 we have
√
pq ≤ 1

2 (p+ q) (indeed (p+ q)2 − 4pq = p2 − 2pq + q2 =

(p − q)2 ≥ 0, so (p + q)2 ≥ 4pq). In particular
√

(k + 1)(n− k + 1) ≤ 1
2 (n + 2) and so

|cn| ≥
n∑
k=0

2
n+2 = 2(n+1)

n+2 . Thus lim
n→∞

|cn| 6= 0 so
∑
cn diverges by the Divergence Test.
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Chapter 8. Power Series

Power Series

8.1 Definition: A power series centred at a is a series of the form∑
n≥0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

for some real numbers cn, where we use the convention that (x− a)0 = 1.

8.2 Example: The geometric series
∑
n≥0

xn is a power series centred at 0. It converges

when |x| < 1 and for all such x the sum of the series is

∞∑
n=0

xn =
1

1− x
.

8.3 Theorem: (The Interval and Radius of Convergence) Let
∑
n≥0

cn(x− a)n be a power

series. Then the set of x ∈ R for which the power series converges is an interval I centred
at a. Indeed there exists a (possibly infinite) number R ∈ [0,∞] such that

(1) if |x− a| < R then
∑
n≥0

cn(x− a)n converges absolutely, and

(2) if |x− a| > R then
∑
n≥0

cn(x− a)n diverges.

Proof: We prove parts (1) and (2) together by showing that for all r > 0, if
∑
cnr

n

converges then
∑
cn(x − a)n converges absolutely for all x ∈ R with |x − a| < r (we can

then take R to be the least upper bound of the set of all such r). Let r > 0. Suppose
that

∑
cnr

n converges. Let x ∈ R with |x − a| < r. Choose s with |x − a| < s < r.
Since

∑
cnr

n converges, we have cnr
n → 0 by the Divergence Test. Choose N > 0 so that

|cnrn| ≤ 1 for all n ≥ N . Then for n ≥ N we have∣∣cn(x− a)n
∣∣ = |cnrn| ·

|x− a|n

rn
≤ |x− a|

n

rn
≤ sn

rn
=
(
s
r

)n
,

and the series
∑(

s
r

)n
converges (its geometric with positive ratio s

r < 1), and so the series∑∣∣cn(x− a)n
∣∣ converges too, by the Comparison Test.

8.4 Definition: The number R in the above theorem is called the radius of convergence
of the power series, and the interval I is called the interval of convergence of the power
series.
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8.5 Example: Find the interval of convergence of the power series
∑
n≥1

(3− 2x)n√
n

.

Solution: First note that this is in fact a power series, since
(3− 2x)n√

n
= (−2)n√

n

(
x− 3

2

)n
,

and so
∑
n≥1

(3− 2x)n√
n

=
∑
n≥0

cn(x − a)n, where c0 = 0, cn = (−2)n√
n

for n ≥ 1 and a = 3
2 .

Now, let an =
(3− 2x)n√

n
. Then∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣ (3− 2x)n+1

√
n+ 1

√
n

(3− 2x)n

∣∣∣∣ =
√

n
n+1 |3− 2x| −→ |3− 2x| as n→∞.

By the Ratio Test,
∑
an converges when |3 − 2x| < 1 and diverges when |3 − 2x| > 1.

Equivalently, it converges when x ∈ (1, 2) and diverges when x /∈ [1, 2]. When x = 1 so
(3 − 2x) = 1, we have

∑
an =

∑
1√
n

, which diverges (its a p-series), and when x = 2 so

(3− 2x) = −1, we have
∑
an =

∑ (−1)n√
n

which converges by the Alternating Series Test.

Thus the interval of convergence is I = (1, 2 ].

8.6 Note: An argument similar to the one used in the above example, using the Ratio

Test, can be used to show that if lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ exists (finite or infinite) then the radius of

convergence of the power series
∑
cn(x− a)n is equal to

R =
1

lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ = lim
n→∞

∣∣∣∣ cncn+1

∣∣∣∣ .
Indeed if we let R = lim

n→∞

∣∣∣∣ cncn+1

∣∣∣∣ and write an = cn(x− a)n then we have

|an+1|
|an|

=

∣∣cn+1(x− a)n+1
∣∣∣∣cn(x− a)n

∣∣ =

∣∣∣∣cn+1

cn

∣∣∣∣ |x− a| −→ 1

R
|x− a|

and so by the Ratio Test, if |x − a| < R then
∑
|an| converges while if |x − a| > R then

|an| → ∞ so
∑
an diverges. Thus R must be equal to the radius of convergence.
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9. Operations on Power Series

9.1 Theorem: (Continuity of Power Series) Suppose that the power series
∑
cn(x− a)n

converges in an interval I. Then the sum f(x) =
∞∑
n=0

cn(x− a)n is continuous in I.

Proof: We omit the proof

9.2 Theorem: (Addition and Subtraction of Power Series) Suppose that the power series∑
an(x− a)n and

∑
bn(x− a)n both converge in the interval I. Then

∑
(an + bn)(x− a)n

and
∑

(an − bn)(x− a)n both converge in I, and for all x ∈ I we have( ∞∑
n=0

an(x− a)n

)
±

( ∞∑
n=0

bn(x− a)n

)
=
∞∑
n=0

(an ± bn)(x− a)n .

Proof: This follows from Linearity.

9.3 Theorem: (Multiplication of Power Series) Suppose the power series
∑
an(x − a)n

and
∑
bn(x − a)n both converge in an open interval I with a ∈ I. Let cn =

n∑
k=0

akbn−k.

Then
∑
cn(x− a)n converges in I and for all x ∈ I we have

∞∑
n=0

cn(x− a)n =

( ∞∑
n=0

an(x− a)n

)( ∞∑
n=0

bn(x− a)n

)
.

Proof: This follows from the Multiplication of Series Theorem, since the power series
converge absolutely in I.

9.4 Theorem: (Division of Power Series) Suppose that
∑
an(x− a)n and

∑
bn(x− a)n

both converge in an open interval I with a ∈ I, and that b0 6= 0. Define cn by

c0 = a0
b0

, and for n > 0, cn = an
b0
− bnc0

b0
− bn−1c1

b0
− · · · − b1cn−1

b0
.

Then there is an open interval J with a ∈ J such that
∑
cn(x − a)n converges in J and

for all x ∈ J ,

∞∑
n=0

cn(x− a)n =

∞∑
n=0

an(x− a)n

∞∑
n=0

bn(x− a)n
.

Proof: We omit the proof.
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9.5 Theorem: (Composition of Power Series) Let f(x) =
∞∑
n=0

an(x − a)n in an open

interval I with a ∈ I, and let g(y) =
∞∑
m=0

bm(y − b)m in an open interval J with b ∈ J

and with a0 ∈ J . Let K be an open interval with a ∈ K such that f(K) ⊂ J . For
each m ≥ 0, let cn,m be the coefficients, found by multiplying power series, such that
∞∑
n=0

cn,m(x−a)n = bn

( ∞∑
n=0

an(x−a)n− b
)m

. Then
∑
m≥0

cn,m converges for all m ≥ 0, and

for all x ∈ K,
∑
n≥0

( ∞∑
m=0

cn,m

)
(x− a)n converges and

∞∑
n=0

( ∞∑
m=0

cn,m

)
(x− a)n = g

(
f(x)

)
.

Proof: We omit the proof.

9.6 Theorem: (Integration of Power Series) Supoose that
∑
cn(x− a)n converges in the

interval I. Then for all x ∈ I, the sum f(x) =

∞∑
n=0

cn(x − a)n is integrable on [a, x] (or

[x, a]) and ∫ x

a

∞∑
n=0

cn(t− a)n dt =

∞∑
n=0

∫ x

a

cn(t− a)n dt =

∞∑
n=0

cn
n+ 1

(x− a)n+1 .

Proof: We omit the proof

9.7 Theorem: (Differentiation of Power Series) Suppose that
∑
cn(x− a)n converges in

the open interval I. Then the sum f(x) =
∞∑
n=0

cn(x− a)n is differentiable in I and

f ′(x) =

∞∑
n=1

n cn(x− a)n−1 .

Proof: We omit the proof
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9.8 Example: Find a power series centred at 0 whose sum is f(x) =
1

x2 + 3x+ 2
, and

find its interval of convergence.

Solution: We have

f(x) =
1

(x+ 1)(x+ 2)
=

1

x+ 1
− 1

x+ 2
=

1

1 + x
−

1
2

1 + x
2

=

∞∑
n=0

(−x)n −
∞∑
n=0

1
2

(
−x2
)n

=

∞∑
n=0

(−1)nxn −
∞∑
n=0

(−1)n
2n+1 x

n

=
∞∑
n=0

(−1)n
(
1− 1

2n+1

)
xn .

Since

∞∑
n=0

(−x)n converges if and only if |x| < 1 and

∞∑
n=0

1
2

(
−x2
)n

converges when |x| < 2,

it follows from Linearity the the sum of these two series converges if and only if |x| < 1.

9.9 Example: Find a power series centred at −4 whose sum is f(x) =
1

x2 + 3x+ 2
, and

find its interval of convergence.

Solution: We have

f(x) =
1

(x+ 1)(x+ 2)
=

1

x+ 1
− 1

x+ 2
=

1

(x+ 4)− 3
− 1

(x+ 4)− 2

=
− 1

3

1− x+4
3

+
1
2

1− x+4
2

=
∞∑
n=0

− 1
3

(
x+4
3

)n
+
∞∑
n=0

1
2

(
x+4
2

)n
=
∞∑
n=0

(
1

2n+1 − 1
3n+1

)
(x+ 4)n .

Since
∞∑
n=0

− 1
3

(
x+4
3

)n
converges when |x+ 4| < 3 and

∞∑
n=0

1
2

(
x+4
2

)n
converges if and only if

|x+ 4| < 2, it follows that their sum converges if and only if |x+ 4| < 2.

9.10 Example: Find a power series centred at 0 whose sum is f(x) =
1

(1− x)2
.

Solution: We provide three solutions. For the first solution, we multiply two power series.
For |x| < 1 we have

f(x) =
1

1− x
· 1

1− x
=
(
1 + x+ x2 + x3 + · · ·

)(
1 + x+ x2 + x3 + · · ·

)
= 1 + (1 + 1)x+ (1 + 1 + 1)x2 + (1 + 1 + 1 + 1)x3 + · · ·
= 1 + 2x+ 3x2 + 4x3 + · · ·

=

∞∑
n=0

(n+ 1)xn .
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For the second solution, we note that f(x) =
1

1− 2x+ x2
and we use long division.

1 + 2x+ 3x2 + 4x3 + 5x4 + · · ·
1− 2x+ x2

)
1 + 0x+ 0x2 + 0x3 + 0x4 − · · ·
1− 2x+ x2

2x− x2
2x− 4x2 + 2x3

3x2 − 2x3

3x2 − 6x3 + 3x4

4x3 − 8x4 + · · ·
4x3 − 8x4 + · · ·

5x4 + · · ·

For the third solution, we note that

∫
1

(1− x)2
=

1

1− x
and we use differentiation.

1

1− x
= 1 + x2 + x3 + x4 + x5 + · · ·

d

dx

(
1

1− x

)
=

d

dx

(
1 + x+ x2 + x3 + x4 + x5 + · · ·

)
1

(1− x)2
= 1 + 2x+ 3x2 + 4x3 + 5x4 + · · · .

9.11 Example: Find a power series centred at 0 whose sum is ln(1 + x).

Solution: For |x| < 1 we have

1

1 + x
= 1− x+ x2 − x3 + · · ·

ln(1 + x) =

∫
1− x+ x2 − x3 + + · · · dx

= c+ x− 1
2x

2 + 1
3x

3 − 1
4x

4 + · · ·
Putting in x = 0 gives 0 = c, and so

ln(1 + x) =
∞∑
n=1

(−1)n+1

n xn = x− 1
2x

2 + 1
3x

3 − 1
4x

4 + · · · .

9.12 Example: Find a power series centred at 0 whose sum is f(x) = tan−1 x.

Solution: For |x| < 1 we have

1

1 + x2
= 1− x2 + x4 − x6 + · · ·

tan−1 x =

∫
1− x2 + x4 − x6 + · · · dx

= c+ x− 1
3 x

3 + 1
5 x

5 − 1
7 x

7 + · · ·
Putting in x = 0 gives 0 = c, and so

tan−1 x =
∞∑
n=0

(−1)n

(2n+ 1)
x2n+1 = x− 1

3 x
3 + 1

5 x
5 − 1

7 x
7 + · · ·
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Chapter 9. Taylor Series

Taylor Series

9.1 Theorem: Suppose that f(x) =

∞∑
n=0

cn(x − a)n in an open interval I centred at a.

Then f is infinitely differentiable at a and for all n ≥ 0 we have

cn =
f (n)(a)

n!
,

where f (n)(a) denotes the nth derivative of f at a.

Proof: By repeated application of the Differentiation of Power Series Theorem, for all
x ∈ I, we have

f ′(x) =
∞∑
n=1

n cn(x− a)n−1

f ′′(x) =

∞∑
n=2

n(n− 1) cn(x− a)n−2

f ′′′(x) =
∞∑
n=3

n(n− 1)(n− 2) cn(x− a)n−3 ,

and in general

f (k)(x) =
∞∑
n=k

n(n− 1) · · · (n− k + 1) cn(x− a)n−k

and so f(a) = c0, f ′(a) = c1, f ′′(a) = 2 · 1 c2 and f ′′′(a) = 3 · 2 · 1 c3, and in general

f (n)(a) = n! cn

9.2 Definition: Given a function f(x) whose derivatives of all order exist at x = a, we
define the Taylor series of f(x) centred at a to be the power series

T (x) =
∑
n≥0

cn(x− a)n where cn =
f (n)(a)

n!

and we define the lth Taylor Polynomial of f(x) centred at a to be the lth partial sum

Tl(x) =
l∑

n=0

cn(x− a)n where cn =
f (n)(a)

n!

9.3 Example: Find the Taylor series centred at 0 for f(x) = ex.

Solution: We have f (n)(x) = ex for all n, so f (n)(0) = 1 and cn = 1
n! for all n ≥ 0. Thus

the Taylor series is

T (x) =
∞∑
n=0

1
n! x

n = 1 + x+ 1
2!x

2 = 1
3!x

3 + 1
4!x

4 + · · · .
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9.4 Example: Find the Taylor series centred at 0 for f(x) = sinx.

Solution: We have f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = − cosx, f ′′′′(x) = sinx and so
on, so that in general f (2n)(x) = (−1)n sinx and f (2n+1)(x) = (−1)n cosx. It follows that

f (2n)(0) = 0 and f (2n+1)(0) = (−1)n, so we have c2n = 0 and c2n+1 = (−1)n
(2n+1)! . Thus

T (x) =
∞∑
n=0

(−1)n
(2n+1)!x

2n+1 = x− 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + · · · .

9.5 Example: Find the Taylor series centred at 0 for f(x) = cosx.

Solution: We have f ′(x) = − sinx, f ′′(x) = − cosx, f ′′′(x) = sinx, f ′′′′(x) = cosx and so
on, so that in general f (2n)(x) = (−1)n cosx and f (2n+1)(x) = (−1)n+1 sinx. It follows

that f (2n)(0) = (−1)n and f (2n+1)(0) = 0, so we have c2n = (−1)n
(2n)! and c2n+1 = 0. Thus

T (x) =
∞∑
n=0

(−1)n
(2n)! x

2n = 1− 1
2!x

2 + 1
4!x

4 − 1
5!x

6 + · · · .

9.6 Example: Find the Taylor series centred at 0 for f(x) = (1 + x)p where p ∈ R.

Solution: f ′(x) = p(1+x)p−1, f ′′(x) = p(p−1)(1+x)p−2, f ′′′(x) = p(p−1)(p−2)(1+x)p−3,
and in general

f (n)(x) = p(p− 1)(p− 2) · · · (p− n+ 1)(1 + x)p−n ,

so f(0) = 1, f ′(0) = p, f ′′(0) = p(p−1), and in general f (n)(0) = p(p−1)(p−2) · · · (p−n+1),

and so we have cn = p(p−1)(p−2)···(p−n+1)
n! . Thus the Taylor series is

T (x) =
∞∑
n=0

(
p
n

)
xn = 1 + px+ p(p−1)

2! x2 + p(p−1)(p−2)
3! x3 + p(p−1)(p−2)(p−3)

4! x4 + · · ·

where we use the notation(
p
0

)
= 1 , and for n ≥ 1,

(
p
n

)
= p(p−1)(p−2)···(p−n+1)

n!
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9.7 Theorem: (Taylor) Let f(x) be infinitely differentiable in an open interval I with
a ∈ I. Let Tl(x) be the lth Taylor polynomial for f(x) centred at a. Then for all x ∈ I
there exists a number c between a and x such that

f(x)− Tl(x) =
f (l+1)(c)

(l + 1)!
(x− a)l+1 .

Proof: When x = a both sides of the above equation are 0. Suppose that x > a (the
case that x < a is similar). Since f (l+1) is differentiable and hence continuous, by the
Extreme Value Theorem it attains its maximum and minimum values, say M and m.
Since m ≤ f (l+1)(t) ≤M for all t ∈ I, we have∫ t1

a

mdt ≤
∫ t1

a

f (l+1)(t) dt ≤
∫ t1

a

M dt

that is
m(t1 − a) ≤ f (l)(t1)− f (l)(a) ≤M(t1 − a)

for all t1 > a in I. Integrating each term with respect to t1 from a to t2, we get

1
2m(t2 − a)2 ≤ f (l−1)(t2)− f (l)(a)(t2 − a) ≤ 1

2M(tt − a)2

for all t2 > a in I. Integrating with respect to t2 from a to t3 gives

1
3!m(t3 − a)3 ≤ f (l−2)(t3)− f (l−2)(a)− 1

2f
(l)(a)(t3 − a)3 ≤ 1

3!M(t3 − a)3

for all t3 > a in I. Repeating this procedure eventually gives

1
(l+1)!m(tl+1 − a)l+1 ≤ f(tl+1)− Tl(tl+1) ≤ 1

(l+1)!M(tl+1 − a)l+1

for all tl+1 > a in I. In particular 1
(l+1)!m(x− a)l+1 ≤ f(x)− Tl(x) ≤ 1

(l+1)!M(x− a)l+1,
so

m ≤
(
f(x)− Tl(x)

) (l+1)!
(x−a)l+1 ≤M .

By the Intermediate Value Theorem, there is a number c ∈ [a, x] such that

f (l+1)(c) =
(
f(x)− Tl(x)

) (l + 1)!

(x− a)l+1

.
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9.8 Theorem: The functions ex, sinx, cosx and (1 +x)p are all exactly equal to the sum
of their Taylor series centred at 0 in the interval of convergence.

Proof: First let f(x) = ex and let x ∈ R. By Taylor’s Theorem, f(x) − Tl(x) =
ecxl+1

(l + 1)!
for some c between 0 and x, and so∣∣f(x)− Tl(x)

∣∣ ≤ e|x||x|l+1

(l + 1)!
.

Since
∑ e|x||x|l+1

(l + 1)!
converges by the Ratio Test, we have lim

l→∞

e|x||x|l+1

(l + 1)!
= 0 by the Diver-

gence Test, so lim
l→∞

(
f(x)− Tl(x)

)
= 0, and so f(x) = lim

l→∞
Tl(x) = T (x).

Now let f(x)= sinx and let x ∈ R. By Taylor’s Theorem, f(x)−T (x) =
f (l+1)(c)xl+1

(l + 1)!
for some c between 0 and x. Since f (l+1)(x) is one of the functions ± sinx or ± cosx, we
have

∣∣f (l+1)(c)
∣∣ ≤ 1 for all c and so∣∣f(x)− T (x)

∣∣ ≤ |x|l+1

(l + 1)!
.

Since
∑ |x|l+1

(l + 1)!
converges by the Ratio Test, lim

l→∞

|x|l+1

(l + 1)!
= 0 by the Divergence Test,

and so we have and f(x) = T (x) as above.
Let f(x) = cosx. For all x ∈ R we have

f(x) = cosx = d
dx sinx

= d
dx

(
x− 1

3! x
3 + 1

5! x
5 − 1

7! x
7 + · · ·

)
= 1− 1

2! x
2 + 1

4! x
4 − 1

6! x
6 + · · ·

which is the sum of its Taylor series, centred at 0.
Finally, let f(x) = (1 + x)p. The Taylor series centred at 0 is

T (x) = 1 + px+ p(p−1)
2! x2 + p(p−1)(p−2)

3! x3 + p(p−1)(p−2)(p−3)
4! x4 + · · ·

and it converges for |x| < 1. Differentiating the power series gives

T ′(x) = p+ p(p−1)
1! x+ p(p−1)(p−2)

2! x2 + p(p−1)(p−2)(p−3)
3! x3 + · · ·

and so
(1 + x)T ′(x) = p+

(
p+ p(p−1)

1!

)
x+

(
p(p−1)

1! + p(p−1)(p−2)
2!

)
x2

+
(
p(p−1)(p−2)

2! − p(p−1)(p−2)(p−3)
3!

)
x3 + · · ·

= p+ p·p
1! x+ p·p(p−1)

2! x2 + p·p(p−1)(p−2)
3! x3 + · · ·

= p T (x) .

Thus we have (1 +x)T ′(x) = pT (x) with T (0) = 1. This DE is linear since we can write it

as T ′(x)− p
1+xT (x) = 0. An integrating factor is λ = e

∫
− p

1+x dx = e−p ln(1+x) = (1 + x)−p

and the solution is T (x) = (1+x)−p
∫

0 dx = b(1+x)p for some constant b. Since T (0) = 1

we have b = 1 and so T (x) = (1 + x)p = f(x).
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10. Applications

10.1 Example: Let f(x) = sin
(
1
2x

2
)
. Find the 10th derivative f (10)(0).

Solution: We have

f(x) = sin
(
1
2 x

2
)

=
(
1
2 x

2
)
− 1

3!

(
1
2 x

2
)3

+ 1
5!

(
1
2 x

2
)5 − · · ·

= 1
2 x

2 − 1
23 3! x

6 + 1
25 5! x

10 − · · ·

We have c10 = 1
25 5! and so f (10)(0) = 10! c10 = 10!

25 5! = 10·9·8·7·6
25 = 5 · 9 · 7 · 3 = 945 .

10.2 Example: Find lim
x→0

e−2x
2 − cos 2x(

tan−1 x− ln(1 + x)
)2

Solution: We have

e−2x
2 − cos 2x(

tan−1 x− ln(1 + x)
)2 =

(
1− (2x2) + 1

2! (2x
2)2 − · · ·

)
−
(
1− 1

2! (2x)2 + 1
4! (2x)4 − · · ·

)((
x− 1

3x
3 + 1

5x
5 − · · ·

)
−
(
x− 1

2x
3 + 1

3x
3 − · · ·

))2
=

(
1− 2x2 + 2x4 − · · ·

)
−
(
1− 2x2 + 2

3x
4 − · · ·

)(
1
2x

2 − 2
3x

3 + · · ·
)2

=
4
3x

4 + · · ·
1
4x

4 + · · ·
= 1

3 + c1x+ · · · −→ 1
3 as x→ 0 .

10.3 Example: Approximate the value of 1√
e

so the error is at most 1
100 .

Solution: We have

1√
e

= e−1/2 = 1−
(
1
2

)
+ 1

2!

(
1
2

)2 − 1
3!

(
1
2

)3
+ 1

4!

(
1
2

)4 − · · ·
= 1− 1

2 + 1
22 2! −

1
23 3! + 1

24 4! − · · ·
∼= 1− 1

2 + 1
22 2! −

1
23 3! = 1− 1

2 + 1
8 −

1
48 = 29

48

with absolute error E ≤ 1
24 4! = 1

384 , by the Alternating Series Test.

10.4 Example: Approximate the value of
√
e so the error is at most 1

100 .

Solution: We have
√
e = e1/2 = 1 +

(
1
2

)
+ 1

2!

(
1
2

)2
+ 1

3!

(
1
2

)3
+ 1

4!

(
1
2

)4
+ 1

5!

(
1
2

)5
+ · · ·

= 1 + 1
2 + 1

22 2! + 1
23 3! + 1

24 4! + 1
25 5! + · · ·

∼= 1 + 1
2 + 1

22 2! + 1
23 3! = 1 + 1

2 + 1
8 + 1

48 = 79
48

with absolute error

E = 1
24 4! + 1

25 5! + 1
26 6! + 1

27 7! + 1
28 8! + · · ·

= 1
24 4!

(
1
2·5 + 1

22·6·5 + 1
23·7·6·5 + 1

24·8·7·6·5 + · · ·
)

≤ 1
24 4!

(
1
2·5 + 1

2252 + 1
2353 + 1

2454 + · · ·
)

= 1
384 ·

1

1− 1
10

= 1
384 ·

10
9 = 5

1728 <
1

100 ,

where we used the Comparison Test and the formula for the sum of a geometric series.

72



10.5 Example: Approximate the value of ln 2 so the error is at most 1
50

Solution: We provide two solutions. For both solutions, we use the fundtion

f(x) = ln(1 + x) = x− 1
2x

2 + 1
3x

3 − 1
4x

4 + · · ·
For the first solution, we put in x = 1 to get

ln 2 = f(1) = 1− 1
2 + 1

3 −
1
4 + · · ·

∼= 1− 1
2 + 1

3 −
1
4 + · · ·+ 1

49

with absolute error E ≤ 1
50 by the Alternating Series Test. It would be cumbersome to add

up the 49 terms in the above alternating sum, so we provide a second solution in which
we put in x = − 1

2 . We have

ln 2 = − ln 1
2 = −f

(
− 1

2

)
= −

(
− 1

2

)
+ 1

2

(
− 1

2

)2 − 1
3

(
− 1

2

)3
+ 1

4

(
− 1

2

)4 − · · ·
= 1

2 + 1
2·22 + 1

3·23 + 1
4·24 + 1

5·25 + 1
6·26 + · · ·

∼= 1
2 + 1

2·22 + 1
3·23 + 1

4·24 = 1
2 + 1

8 + 1
24 + 1

64 = 131
192

with absolute error
E = 1

5·25 + 1
6·26 + 1

7·27 + 1
8·28 + · · ·

≤ 1
5·25 + 1

5·26 + 1
5·27 + 1

5·28 + · · ·

=
1

5·25

1− 1
2

= 2
5·25 = 1

80

by the Comparison Test and the formula for the sum of a geometric series.

10.6 Example: Approximate the value of 102/3 so the error is at most 1
100 .

Solution: We use the function

f(x) = (1 + x)2/3 = 1 +
( 2

3 )
1! x

( 2
3 )(− 1

3 )
2! x2 +

( 2
3 )(− 1

3 )(− 4
3 )

3! x3 +
( 2

3 )(− 1
3 )(− 4

3 )(− 7
3 )

4! x4 + · · ·
We have

102/3 = (8 + 2)2/3 = 4
(
1 + 1

4

)2/3
= 4 f

(
1
4

)
= 4
(

1 +
( 2

3 )
4·1! +

( 2
3 )(− 1

3 )
42·2! +

( 2
3 )(− 1

3 )(− 4
3 )

43·3! +
( 2

3 )(− 1
3 )(− 4

3 )(− 7
3 )

44·4! + · · ·
)

= 4 + 8
12·1! −

8·1
122·2! + 8·1·4

123·3! −
8·1·4·7
124·4! + · · ·

∼= 4 + 8
12·1! −

8·1
122·2! = 4 + 2

3 −
1
36 = 167

36

with absolute error E ≤ 8·1·4
123·3! = 1

324 by the Alternating Series Test.
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10.7 Example: Approximate the value of π so the error is at most 1
50 .

Solution: We provide two solutions. For both solutions we use the function

f(x) = tan−1 x = x− 1
3 x

3 + 1
5 x

5 − 1
7 x

7 + · · ·
For the first solution, we put in x = 1 to get

π = 4 · π4 = 4f(1) = 4
(
1− 1

3 + 1
5 −

1
7 + · · ·

) ∼= 4
(
1− 1

3 + 1
5 −

1
7 + · · ·+ 1

399

)
with absolute error E ≤ 4

201 by the Alternating Series Test. It would be cumbersome to
add up the 100 terms in the alternating sum, so we provide a second solution in which we
put in x = 1√

3
. We have

π = 6 · π6 = 6f
(

1√
3

)
= 6
(

1√
3
− 1

3·
√
3

3 + 1

5·
√
3

5 − 1

7·
√
3

7 + 1

9·
√
3

9 − · · ·
)

= 2
√

3
(

1− 1
3·3 + 1

5·32 −
1

7·33 + 1
9·34 − · · ·

)
∼= 2
√

3
(

1− 1
3·3 + 1

5·32

)
= 82

√
3

45

with absolute error E ≤ 2
√
3

7·33 = 2
√
3

189 by the Alternating Series Test. We remark that in

order to make this approximation, we must first approximate
√

3.

10.8 Example: Approximate the value of sin
(
10◦
)

so the error is at most 1
1000 .

Solution: We use the function

f(x) = sinx = x− 1
3! x

3 + 1
5! x

5 − · · ·
We put in x = 10◦ = π

18 to get

sin(10◦) = f
(
π
18

)
= π

18 −
1
3!

(
π
18

)3
+ 1

5!

(
π
18

)5 − · · · ∼= π
18

with absolute error E ≤ 1
3!

(
π
18

)3
by the Alternating Series Test. We remark that in order

to make this approximation, we must first approximate π.

10.9 Example: Approximate the value of

∫ 1

0

e−x
2

dx so the error is at most 1
100 .

Solution: We have∫ 1

0

e−x
2

dx =

∫ 1

0

(
1− x2 + 1

2! x
4 − 1

3! x
6 + 1

4! x
8 − · · ·

)
dx

=
[
x− 1

3 x
3 + 1

5·2! x
5 − 1

7·3! x
7 + 1

9·4! x
9 − · · ·

]1
0

= 1− 1
3 + 1

5·2! −
1

7·3! + 1
9·4! − · · ·

∼= 1− 1
3 + 1

5·2! −
1

7·3! = 26
35

with absolute error E ≤ 1
9·4! = 1

216 by the Alternating Series Test.
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10.10 Example: Approximate the value of

∫ √2

0

sinx

x
dx so the error is at most 1

50 .

10.11 Example: Find the exact value of the sum

∞∑
n=0

(−2)n

(2n)!
.

Solution: We have
∞∑
n=0

(−2)n

(2n)!
=
∞∑
n=0

(−1)n
√

2
2n

(2n)!
= cos(

√
2) .

10.12 Example: Find the exact value of the sum

∞∑
n=1

n− 2

(−3)n
.

Solution: Note first that
∞∑
n=1

n− 2

(−3)n
=
∞∑
n=1

n

(−3)n
−
∞∑
n=1

2

(−3)n
.

The second sum on the right is geometric with first term − 2
3 and ratio − 1

3 , so we have∑
n=1

2

(−3)n
=
− 2

3

1 + 1
3

= − 1
2 .

To find the first sum on the right, we begin with the fact that for |x| < 1 we have

1

1− x
= 1 + x+ x2 + x3 + x4 + · · ·

Differentiate both sides to get

1

(1− x)2
= 1 + 2x+ 3x3 + 4x3 + · · ·

Multiply both sides by x to get
x

(1− x)2
= x+ 2x2 + 3x3 + 4x4 + · · ·

Thus we obtain the formula
∞∑
n=1

nxn =
x

(1− x)2
for all |x| < 1 .

Put in x = − 1
3 to get

∞∑
n=1

n

(−3)n
=

− 1
3(

1 + 1
3

)2 = − 3
16 .

Thus we have
∞∑
n=1

n

(−3)n
=
∞∑
n=1

n

(−3)n
−
∞∑
n=1

2

(−3)n
= − 3

16 + 1
2 = 5

16 .
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10.13 Example: Find the exact value of the sum
∞∑
n=0

2 · 5 · 8 · · · · · (3n+ 2)

5n n!
.

Solution: We have
∞∑
n=0

2 · 5 · 8 · · · · · (3n+ 2)

5n n!
= 2

∞∑
n=0

(
5
3

) (
8
3

) (
11
3

)
· · ·
(
3n+2

3

)
n!

· 3n

5n

= 2
∞∑
n=0

(
− 5

3

) (
− 8

3

) (
− 11

3

)
· · ·
(
− 3n+2

3

)
n!

·
(
− 3

5

)n
= 2

(
1− 3

5

)−5/3
= 2 ·

(
5
2

)5/3
.
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