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Chapter 1. Exponential and Trigonometric Functions

1.1 Definition: Let X and Y be sets and let f: X — Y. We say that f is injective (or
one-to-one, written as 1:1) when for every y € Y there exists at most one z € X such
that f(z) = y. Equivalently, f is injective when for all x1,29 € X, if f(x1) = f(z2) then
x1 = 9. We say that f is surjective (or onto) when for every y € Y there exists at least
one x € X such that f(z) =y. Equivalently, f is surjective when Range(f) =Y. We say
that f is bijective (or invertible) when f is both injective and surjective, that is when
for every y € Y there exists exactly one € X such that f(z) = y. When f is bijective,
we define the inverse of f to be the function f~1 : Y — X such that for ally € Y, f~1(y)
is equal to the unique element = € X such that f(x) = y. Note that when f is bijective so
is f~1, and in this case we have (f~1)~! = f.

1.2 Example: Let f(z) = %\/ 122 — 22 for 0 < z < 6. Show that f is injective and find
a formula for its inverse function.

Solution: Note that when 0 < x < 6 (indeed when 0 < z < 12) we have 122 — 2% =
z(12 — ) > 0, so that £v/12z — x2 exists, and we have 12z — 2% = 36 — (z — 6)% < 36 so
that % 120 — 22 < % 36 = 2. Thus if 0 < x < 6 then f(z) = %\/ 122 — 22 exists and we
have 0 < f(z) < 2. Let z,y € R with 0 <z <6 and 0 < y < 2. Then we have
y=flz) = y=1V12z — 2?2

<— 3y =12z — 22

<= 9y2: 122 — 22 , since y > 0

= 22— 1224+ 9* =0

12 4+ /144 — 3692

== T = 5 - 6 = 31v/4 —y? , by the Quadratic Formula

< 1 =06—3y/4—y? since x < 6.
Verify that when 0 < y < 2 we have 0 < 4 — y? < 4 so that /4 — y? exists and we have
0 <6 —3y4—y? < 6. Thus when we consider f as a function f : [0,6] — [0,2], it is
bijective and its inverse f=1: [0,2] — [0, 6] is given by f~1(y) = 6 — 3\/4 — 3.

1.3 Definition: Let f: A C R — R. We say that f is even when f(—x) = f(z) for all
x € A and we say that f is odd when f(—x) = —f(x) for all z € A.

1.4 Definition: Let f: A C R — R. We say that f is increasing (on A) when it has the
property that for all z,y € A, if z < y then f(z) < f(y), and we say [ is decreasing (on
A) when for all z,y € A with x < y we have f(z) > f(y). We say that f is monotonic
when f is either increasing or decreasing. Note that every monotonic function is injective.

1.5 Remark: We assume familiarity with exponential, logarithmic, trigonometric and
inverse trigonometric functions. These functions can be defined rigorously. We shall give a
brief description of how one can define the exponential and logarithmic function rigorously,
and we shall provide an informal (non-rigorous) description of the trigonometric and inverse
trigonometric functions, and we shall summarize some of their properties (without giving
rigorous proofs).



1.6 Definition: Let us outline one possible way to define the value of x¥ for suitable real
numbers z,y € R. First we define 2° = 1 for all z € R. Then for n € Z with n > 1 we
define 2" recursively by ™ = z - 2"~ ! for all x € R. Also, for n € Z with n > 1 we define
"= xin for all = £ 0. At this stage we have defined x¥ for y € Z.

When 0 < n € Z is odd, for all z € R we define z'/" = y where y is the unique real
number such that y™ = x (to be rigorous, one must prove that this number y exists and
is unique). When 0 < n € Z is even, for x > 0 we define z'/" = y where y is the unique
nonnegative real number such that y” = x (again, to be rigorous a proof is required). Also,
for 0 < n € Z we define = /" = wll/n , which is defined for x # 0 if n is odd, and is defined
for x > 0 when n is even. When n,m € Z with n > 0 and m > 0 and ged(n,m) = 1, we
define /™ = (z™)'/™ which is defined for all z € R when m is odd and for 2 > 0 when
m is even, and we define z="/™ = ﬁ, defined for x # 0 when m is odd and for x > 0

when m is even. At this stage, we have defined x¥ for y € Q.
For y € R, when x > 0 and y € R, we define

Y= lim o'
1=y, teQ
to be rigorous, one needs to define this limit and prove that it exists and is unique).
g p q

Finally, we define 1¥ =1 for all y € R and we define 0¥ = 0 for all y > 0.

1.7 Theorem: (Properties of Exponentials) Let a,b,z,y € R with a,b > 0. Then
(1) a® =1,

(2) a*tY = a’a®,

(3) a* Y =a”/aY,

(4) (a®)¥ = a™,

(5) (ab)* = a™b”.

Proof: We omit the proof.

1.8 Theorem: (Properties of Power Functions)

(1) When a > 0, the function f : [0,00) — [0,00) given by f(z) = x® is increasing and
bijective and its inverse function is given by f~1(x) = 2'/2.

(2) When a < 0, the function f : (0,00) — (0,00) given by f(z) = z® is decreasing and
bijective and its inverse is given by f~'(z) = a!/*.

Proof: We omit the proof.
1.9 Definition: A function of the form f(x) = z® is called a power function.

1.10 Theorem: (Properties of Exponential Functions)

(1) When a > 1 the function f : R — (0,00) given by f(z) = a” is increasing and bijective.
(2) When 0 < a < 1 the function f : R — (0,00) given by f(z) = a® is decreasing and
bijective.

Proof: We omit the proof.

1.11 Definition: For a > 0 with a # 1, the function f : R — (0,00) given by f(z) = a”
is called the base a exponential function, its inverse function f=! : (0,00) — R is called
the base a logarithmic function, and we write f~!(z) = log, x. By the definition of the
inverse function, we have log,(a®) = z for all x € R and a'°8«¥ = y for all y > 0, and for
all z,y € R with y > 0 we have y = a* <= z = log, y.



1.12 Theorem: (Properties of Logarithms) Let a,b, x,y € (0,00). Then

(1) log,1 =0,

(2) log,(zy) = log, x + log, y,

(3) log,(z/y) = log, x —log, y,

(4) log,(x¥) = ylog, x, and

(5) logb T = loga ZL’/ 1Oga b7

(6) if a > 1, the function g : (0,00) — R given by g(x) = log, x is increasing and bijective.
Proof: We leave it, as an exercise, to show that these properties follow from the properties
of exponentials.

1.13 Definition: There is a number e¢ € R called the natural base, with e = 2.71828,
which can be defined in such a way that the function f(z) = e® is equal to its own

derivative. We define
e= lim (1+1)"

n—oo

(to be rigorous, one must define this limit and prove that it exists and is unique). The
logarithm to the base e is called the natural logarithm, and we write

Inx =log, x for z > 0.

1.14 Note: The properties of exponentials and logarithms in Theorems 1.7 and 1.12 give
V=1, a" ™V =¢"Y, eV =¢"/eY, (%)Y = e,
In1=0, In(zy) =Inz+lny, In(z/y) =lnz—Iny, Inzy =ylnz
Inx

log, z = ha and a” =e

zlna



1.15 Definition: We define the trigonometric functions informally as follows. For 6 > 0,
we define cos # and sin 6 to be the z- and y-coordinates of the point at which we arrive when
we begin at the point (1,0) and travel for a distance of § units counterclockwise around the
unit circle 22 + 4% = 1. For § < 0, cos and sin 6 are the 2 and y-coordinates of the point
at which we arrive when we begin at (1,0) and travel clockwise around the unit circle for a
distance of |# units. When cos 6 # 0 we define secd = 1/ cosf and tan § = sin/ cos, and
when sinf # 0 we define cscf = 1/sinf and cotd = cosf/sinf. (This definition is not
rigorous because we did not define what it means to travel around the circle for a given
distance).

(z,y) = (cos@,sin )

0

(1,0)

1.16 Definition: We define 7, informally, to be the distance along the top half of the
unit circle from (1,0) to (—1,0), and so we have cosm = —1 and sin7 = 0. By symmetry,
the distance from (1,0) to (0,1) along the circle is equal to 7 so we also have cos § = 0

2
and sin 5 = 1.

1.17 Theorem: (Basic Trigonometric Properties) For § € R we have

(1) cos?f +sin* 0 = 1,

(2) cos(—0) = cos 8 and sin(—0) = —sin 6,

(3) cos(6 + m) = —cos @ and sin(f + 7) = —sinb,

(4) cos(6 + 2m) = cosf and sin(f + 27) = sin6).

Proof: Informally, these properties can all be seen immediately from the above definitions.
We omit a rigorous proof.

1.18 Theorem: (Trigonometric Ratios) Let 6 € (0,%). For a right angle triangle with
an angle of size 6 and with sides of lengths x, y and r as shown, we have

Y cos.@zE , Siné?:y and tan@zy.
r r x

T

Proof: We can see this informally by scaling the picture in Definition 2.17 by a factor of r.

1.19 Theorem: (Special Trigonometric Values) We have the following exact trigonometric

values. - i o
6 0 § I 3 32
V3 V2 1
cosf@ 1 5 ? \5[ 0
. 1 2 3
Sin 0 O 5 5 5 1

Proof: This follows from the above theorem using certain particular right angled triangles.

4



1.20 Theorem: (Trigonometric Sum Formulas) For «, f € R we have

cos(aw + ) = cosacos B —sinasin 8, and

sin(a + ) = sinacos B + cos asin .

Proof: Informally, we can prove this with the help of a picture. The picture below illustrates
the situation when «, 8 € (O, %)

B ¢ F
d
o A
E
b
604 a
O D C (1,0)

In the picture, O is the origin, A is the point with coordinates (cos«,sin«) and B is the
point (z,y) = (cos(a + B),sin(a + §)). In triangle ODE we see that coso = 9D _ _a

OFE cos 3
. _ DE _ _b _ . : )

and sina = G5 = 5B and so @ = cosacosfB , b =sinacos$. In triangle EF B, verify
: _ EF _ _d . _ BF _ _c

that the angle at F has size a, and so we have cosa = £5 = S and sina = g5 = S

and so ¢ = sinasin 8, d = cos asin 5. The x and y-coordinates of the point B are x = a—c¢
and y = b+ d, and so

cos(a+ ) =x=a—c¢=cosacos S —sinasinf , and
sin(a+ ) =y =b+d =sinacos 8 — cosasin 3.

This proves the theorem (informally) in the case that «, 5 € (O, %) One can then show
that the theorem holds for all a, 8 € R by using the Basic Trigonometric Properties (2),
(3) and (4).

1.21 Theorem: (Double Angle Formulas) For all z,y € R we have

(1) sin2z = 2sinz cosx and cos2x = cos? —sin’x = 2cos?x — 1 = 1 — 2sin’ 2, and
1 2 1—cos2
(2) cos? z = w and sin’z = #

Proof: The proof is left as an exercise.

1.22 Theorem: (Trigonometric Functions)

(1) The function f : [0, 7] — [—1, 1] defined by f(x) = cosx is decreasing and bijective.
(2) The function g : [ — 5,%]| — [-1,1] given by g(z) = sin is increasing and bijective.
(3) The function h : ( -5, %) given by h(x) = tanx is increasing and bijective.

Proof: We omit the proof.

1.23 Definition: The inverses of the functions f, g and A in the above theorem are called
the inverse cosine, the inverse sine, and the inverse tangent functions. We write

fYz) = cos™tz, g7' =sin" 'z and h~'(z) = tan~' 2. By the definition of the inverse
function, we have



1.24 Definition: Let A and B be sets andlet c€ F. Let f: A— R and g: B — R. We
define the functions c¢f, f+g, f—9,f-g : ANB — R by
(cf)(z) =cf(x)

(f +9)(x) = f(z)+ g(x)

(f = 9)(x) = f(z) — g(x)

(f - 9)(x) = f(x)g(x)
for all z € AN B, and for C = {z € AN B|g(x) # 0} we define f/g: C — R by
S

(f/9)(x) = f(z)/9(z)

for all x € C.

1.25 Definition: A polynomial function (over R) is a function f : R — R which can
be obtained from the functions 1 and x using (finitely many applications of) the operations
cfy f+9, f—g, f-gand fog. In other words, a polynomial is a function of the form

n .
f(x)= > izt = co+ 17 + cox® + -+ + cpa™
i=0
for some n € N and some ¢; € F. The numbers ¢; are called the coefficients of the
polynomial and when ¢,, # 0 the number n is called the degree of the polynomial.

1.26 Definition: A rational function (over R) is a function f : A C R — R which can
be obtained from the functions 1 and x using (finitely many applications of) the operations
cfy f+g, f—g, f-g, f/g and fog. In other words, a rational function is a function of

the form
f(x) =p(z)/q(z)

for some polynomials p and gq.

1.27 Definition: The functions 1, z, /™ with 0 < n € Z, e*, Inz, sinz and sin™ 'z,

are called the basic elementary functions. An elementary function is any function
f: ACR — R which can be obtained from the basic elementary functions using (finitely
many applications of) the operations cf, f+g¢g, f —g, f-g, f/g and fog.

1.28 Example: The following functions are elementary
|$ | =V wzv
cos T = sin (x + %),

tan~ !z = sin ™! (L),
V14 a2
Vx+sinz
J(@) = ———
tan~!(Inz)

We shall see later that every elementary function is continuous in its domain, so any
function which is discontinuos at a point in its domain cannot be elementary.



Chapter 2. Limits of Sequences

2.1 Notation: We write N = {0,1,2,---} for the set of natural numbers (which
we take to include the number 0), ZT = {1,2,3,---} for the set of positive integers,
Z = {0,£1,+2,---} for the set of all integers, Q for the set of rational numbers and
we write R for the set of real numbers. We assume familiarity with the sets N, ZT, Z,
Q and R and with the algebraic operations +, —, X, = and the order relations <, <,
>, > on these sets.

2.2 Definition: Forp € Z, let Z>, = {k € Z|k > p}. A sequence in a set A is a function
of the form z : Z>, — A for some p € Z. Given a sequence z : Z>, — A, the k™ term of
the sequence is the element z; = z(k) € A, and we denote the sequence = by

(Tk)k>p = (Tlk > p) = (Tp, Tpi1, Tpra, -+ +).
Note that the range of the sequence (x)x>p is the set {zx}i>p = {i|k > p}.

2.3 Definition: Let (x)r>p be a sequence in R. For a € R we say that the sequence
(k) k>p converges to a (or that the limit of (xy)r>), is equal to a), and we write z, — a

(as k — 00), or we write lim xj = a, when
k—o0

Ve>03Ime Zsy, Yk €Z>, (k>m = |z, —a| <e).

We say that the sequence (z%)r>, converges (in R) when there exists a € R such that
(k) k>p converges to a. We say that the sequence (xj)r>, diverges (in R) when it does
not converge (to any a € R). We say that (z3)r>, diverges to infinity, or that the
limit of (zx)k>p is equal to infinity, and we write x — oo (as k — o0), or we write
lim z; = oo, when

k—o00
VreRdm e Z>, Vk € Z>, (kZm:>xk>T).

Similarly we say that (zj)r>, diverges to —oo, or that the limit of (xj)r>, is equal to

negative infinity, and we write x;, — —oo (as k — 00), or we write lim z; = —oo when
k— o0

VreRIAm € Zsp, Vhk € Zsy (k> m =z <r).

2.4 Example: Let (x)r>0 be the sequence in R given by zj = (_]j)k for k > 0. Show
that klim zr = 0.
—00

Solution: Note that for k > 2 we have |zj| = % = (%) (%) (%) (k 1) (%) < % . % = %.
Given € € R with € > 0, we can choose m € Zxy with m > 2 (by the Archimedean
Property of Z in R), and then for all k > m we have |z, — 0| = |z;| < + < 2 <e. Thus

lim x; = 0, by the definition of the limit.

k—oo

2.5 Example: Let (ax)r>0 be the Fibonacci sequence in R, which is defined recursively
by ap =0, a1 =1 and by ap = ax_1 + ar_2 for k > 2. Show that hm ap = 00

k— o0
Solution: We have ag = 0, a1 = 1, as = 1 and a3 = 2. Note that ap > k — 1 when
k € {0,1,2,3}. Let n > 4 and suppose, inductively, that a, > k — 1 for all k¥ € Z with
0<k<mn.Thena, =ap_1+a,—2>n—-2)+(n-3)=n+n—-5>n+4-5=n—1. By
the Strong Principle of Induction, we have a,, > n — 1 for all n > 0. Given r € R we can
choose m € Z>q with m > r 41, and then for all K > m we have ap, > k—1>m —1>r.
Thus lem ar = oo by the definition of the limit.



2.6 Example: Let x;, = (—1)* for k > 0. Show that (xy)x>o diverges.
Solution: Suppose, for a contradiction, that (zj)r>¢ converges and let a = hm xrr. By

taking € = 1 in the definition of the limit, we can choose m € Z so the for all k € N,
if & > m then |z — a| < 1. Choose k € N with 2k > m. Since |z, —a] < 1 and
Tor = (—1)2* = 1, we have |1 —a] < 1 so that 0 < a < 2. Since |r2x11 —a| < 1 and
Topp1 = (—1)%%T1 = —1, we also have | — 1 — a| < 1 which implies that —2 < a < 0. But
then we have a < 0 and a > 0, which is not possible.

2.7 Theorem: (Independence of the Limit on the Initial Terms) Let (zx)r>, be a sequence
in R.
(1) If ¢ > p and yx, = =z for all k > q, then (xy)r>p converges if and only if (yx)k>4

converges, and in this case lim zp = hm Yk -
k—o0

(2) If | > 0 and yx, = x4y for all k > p, then (z1)r>p converges if and only if (yi)r>p

converges, and in this case khm Ty = hm Yk -
— 00

Proof: We prove Part 1 and leave the proof of Part 2 as an exercise. Let ¢ > p and let
yr = x, for k > q. Suppose (zj)r>, converges and let a = klim xi. Let € > 0. Choose
— 00

m € Z so that for all k € Z>,, if Kk > m then |z —a| < e. Let k € Z>, with k& > m.

Since ¢ > p we also have k € Z>,, and so |yx — a| = |z — a| < e. Thus (yk)k>q converges
with hm yr = a. Conversely, suppose that (yx)r>, converges and let a = hm yr. Let
k—o0 k— oo

e > 0. Choose m; € Z so that for all k € Z>,, if & > m; then |yx — a| < e. Choose
m = max{mi,q}. Let k € Z>, with £ > m. Since kK > m, we have k > ¢ and k > m; and

so |z —a| = |yr — a| < e. Thus (xg)k>p converges with klim T = a.
- — 00

2.8 Remark: Because of the above theorem, we often denote the sequence (xy)x>, simply
as (x), omitting the initial index p from our notation. Also, in the statements of some
theorems and in some proofs we select a particular starting point, often p = 1, with the
understanding that any other starting value would work just as well.

2.9 Theorem: (Uniqueness of the Limit) Let (i) be a sequence in R. If (z1) has a limit
(finite or infinite) then the limit is unique.

Proof: Suppose, for a contradiction, that x; — oo and x — —oo. Since xp — oo we can
choose my € Z so that £ > m; = x;, > 0. Since x, — —oo we can choose my € Z so
that k > my = x;, < 0. Choose any k € Z>, with £ > m; and kK > mg. Then x5, > 0
and zp < 0, which is not possible.

Suppose, for a contradiction, that zp — oo and xp — a € F. Since xp — a we can
choose my € Z so that k > m; = |z — a| < 1. Since x — 0o we can choose my € Z
so that k > my = x, > a+ 1. Choose any k € Z>, with k > m; and k > ms. Then
we have |rp —al < 1 so that © < a + 1 and we have x; > a + 1, which is not possible.
Similarly, it is not possible to have x;, — —oc and xp — a € F.

Finally suppose, for a contradiction, that xx — a and x; — b where a,b € F with
a # b. Since x; — a we can choose my € Z so that k > m; = |z —a| < |a bl Since
xr — b we can choose mg € Z so that k > my = |z — b| < %. Choose any k € Z>,,
with £ > my and k > my. Then we have |z, — a| < bg“ and |x, — b < b_T“ and so, using
the Triangle Inequality, we have

|a—b|:|a—mk+xk—b|§|xk—a|+|mk—b|<|a—;b|+@:|a—b|,

which is not possible.



2.10 Theorem: (Basic Limits) For a € R we have

lim a=a, lim k=00 and lim — =0.
k—o0 k—o0 k—oo k

Proof: The proof is left as an exercise.

2.11 Theorem: (Operations on Limits) Let (x) and (yx) be sequences in R and let
c € R. Suppose that (xy) and (yi) both converge with x; — a and yy, — b. Then

(1) (cxy) converges with cxy — ca,

(2) (z + yi) converges with (xy + y) — a + b,

(3) (xx — yx) converges with (xx — yx) — a — b,

(4) (xxyx) converges with xyy, — ab, and

(5) if b # 0 then (xy/yx) converges with xy/yr — a/b.

Proof: We prove Parts 4 and 5 leaving the proofs of the other parts as an exercise. First
we prove Part 4. Note that for all k£ we have
|Zkyk — abl = |zryr — Tkb+ b — ab| < |xpyr — kb + |[2£b — ab| = |zk| lyr — b[ +[b]|z) — al.
Since x — a we can choose m; € Z so that k > m; = |z} — a| < 1 and we can choose
my € Z so that k > my = |2 —a| < Since yr — b we can choose mg € Z so
that k > mg = |yr, — b| < TTTan
have |z —a| <1, |2x — a| < gy and [2e — b < giap-
|zk| = |z —a+a| < |z —al + |a] < 1+ |a|. By our above calculation (where we found a
bound for |z,yr — ab|) we have

|[wryr — abl < [zrflyr — 0] + [bllzx — af < (1 + af)|yr — 0] + (1 + [b])|zx — a

< (1 + |a|)m + (1 + |b|)m = €.

AT
Let m = max{mj, mo, mz} and let k > m. Then we

Since |z — a| < 1, we have

Thus we have xxyr — ab, by the definition of the limit.
To prove Part 5, suppose that b # 0. Since yx — b # 0, we can choose m1 € Z so that
that £ > m; = |yp — b| < %. Then for k > m; we have

b
6] = 16— yi +yi| < 10— il + ux] < B+ |yx|

so that
b b
gl > bl = 5 =15 > 0.
In particular, we remark that when & > m; we have yi # 0 so that yik is defined. Note
that for all &k > m; we have
1 1‘_’b_yk’<|b_yk|_ 2

yr b

= < = 05 Yk — bl
lyel (o]~ LLogpp (B2

2
Let € > 0. Choose mgy € Z so that k > my = |y — b| < |b|T€. Let m = max{mq, mso}.

2 2
For k > m we have k > m; and k > mgy and so |y;€]>%and |y;€—b|<|b‘76andso

1 1 bl2
R P T O NI T . il S
U b’ = 2 |yk | [b]2 D)
. . 1 1 . . Te 1t ! o 1 _a
This proves that klglgo T b Using Part 4, we have klggo = klglgo (a:k —yk) =a- -y =7



2.12 Example: Let x, = for k£ > 0. Find klim L.
— 00

k241
2k2+k+3
R _ 4 (3)”
s =

TR = 3 g+ (1)
Limits 1 — 1, 2 — 2 and % — 0 together with Operations on Limits.

1402
2+40+3-02

Solution: We have xj, = 5 — = % where we used the Basic

2.13 Definition: The above theorem can be extended to include many situations involving
infinite limits. To deal with these cases, we define the set of extended real numbers to
be the set R

R =RU{—00,00}.

We extend the order relation < on R to an order relation on R by defining —oo < co and
—o0 < a and a < oo for all a € R. We partially extend the operations + and x to R as
follows: for a € R we define

ot+oo=00, 0+a=00, (—0)+ (—0)=—-00, (—0)+a,
0000 =00 ,(00)(—00) =—00, (—00)(—0) =00,
xifa>0 —oo if a > 0,
00-a= and (—oo)(a) =
-0 ifa<0 o if a < 0,

but other values, including oo + (—00), oo - 0 and —oo - 0 are left undefined in R. Ina

similar way, we partially extend the inverse operations — and + to R. For example, for
a € R we define

00— (—00) = 00, —00—00 = —00, 0—G = 00, —00—a = —00, A—00 = —00, a—(—00) = 00,
a 00 oo ifa >0 —0 —oo if a >0
— =0, — = and — =
o0 a —ooifa <0 a oo ifa <0

>

with other values, including co — oo, 2 and 5, left undefined. The expressions which are

left undefined in IA{, including

o0—o00, -0, ,

818

0o a
0’0’
are known as indeterminate forms.

2.14 Theorem: (Extended Operations on Limits) Let (xy) and (yx) be sequences in R.

A~

Suppose that lim zp = u and lim yr = v where u,v € R.
k—oo k—oo

(1) if u+ v is defined in R then klim (xk +yr) = u+ v,
—00
(2) if w — v is defined in R then klim (xk —yk) = u — v,
— 00
(3) if u- v is defined in R then klim (k- yr) = u-v, and
— 00

(4) if u/v is defined in R then klim (xk/yK) = u/v.
—00

Proof: The proof is left as an exercise.
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2.15 Theorem: (Comparison) Let (xy) and (yi) be sequences in R. Suppose that xy, < y
for all k. Then

(1) if zj; — a and yr — b then a < b,
(2) if x, — oo then y, — oo, and
(3) if yr, — —oo then z — —oo.

Proof: We prove Part 1. Suppose that x; — a and yi — b. Suppose, for a contradiction,

that a > b. Choose my € Z so that k > m; = |z — a] < ‘IT_b. Choose mo € Z so

that k > mo = |yx — b < %5°. Let k = max{my,ms}. Since |z —a| < %52, we have

T > a—“T_b = aT’Lb. Since |y, — b < “T_b, we have y, < b+“7_b = “TH’. This is not
possible since zp < yg.

2.16 Example: Let z;, = (2 +sink)Ink for £ > 1. Find lim Tk

Solution: For all £ > 1 we have sink > —1 so (2 4+ sink) > ; and hence z;, > 1 Ink.

Since xj > 1 Ink for all £ > 1 and 1 Ink — 5 -00=o00,it follows that zp — o by the
Comparlson Theorem.

2.17 Theorem: (Squeeze) Let (xy), (yx) and (zj) be sequences in R and let a € R.

(1) If xp, <y, < zi, for all k and xy, — a and zy, — a then y, — a.
(2) If x| < yi for all k and y,, — 0 then ) — 0.

Proof: We prove Part 1. Suppose that z; < y, < zi for all k, and suppose that z, — a
and zp — a. Let € > 0. Choose my € Z so that k > m; = |z — a] < ¢, choose my € Z
so that k > my = |z — a| < € and let m = max{my, ma}. Then for k > m we have
a—e<xp <yp <z <a+eandso |y, —al <e Thus yp — a, as required.

2.18 Example: Let z;, = % for k > 1. Find klim T
— 00

Solution: For all £ > 1 we have —3 < tan~ 1k < 5 and —1 <sink <1 and so

k—3% <k:+tan_1k:< k+ 3
2k:+1— 2k +sink — 2k—1"
k:+2

k+tan™
2k+sm k — 3

. : k—
As in previous examples, we have - 5 and - 5 , and so rp =

2k—|—1
by the Squeeze Theorem.
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2.19 Definition: Let (zx) be a sequence in R. For a,b € R, we say that the sequence
(zx) is bounded above by b when z;, < b for all k, and we say that the sequence (xy) is
bounded below by a when a < xj, for all k. We say (zj) is bounded above when it
is bounded above by some element b € R, we say that (zj) is bounded below when it
is bounded below by some a € R, and we say that (z) is bounded when it is bounded
above and bounded below.

2.20 Definition: Let (x) be a sequence in R. We say that (zj) is increasing (for £ > p)
when for all k,1 € Z>,, if k£ < then z;, < x;. We say that (z) is strictly increasing
(for k > p) when for all k,l € Z>,, if K <[ then z;, < ;. Similarly, we say that (z) is
decreasing when for all k,l € Z>,, if kK <[ the x;, > x; and we say that (z) is strictly
decreasing when for all k,l € Z>,, if k <[ the x;, > ;. We say that (x}) is monotonic
when it is either increasing or decreasing.

2.21 Theorem: (Monotonic Convergence) Let (x) be a sequence in R.

(1) Suppose (z) is increasing. If (z1) is bounded above then it converges, and if (xy) is
not bounded above then x; — 0o.

(2) Suppose (z) is decreasing. If (xy) is bounded below then it converges, and if (zy) is
not bounded below then x;, — —o0.

Proof: The statement of this theorem is intuitively reasonable, but it is quite difficult to
prove. In most calculus courses this theorem is accepted axiomatically, without proof. A
rigorous proof is often provided in analysis courses.

2.22 Example: Let 1 = % and let xx11 =5 — % for £ > 1. Determine whether (zy)
converges, and if so then find the limit.

Solution: Suppose, for now, that (xx) does converge, say xr — a. By Independence of

Converge on Initial Terms, we also have z; 11 — a. Using Operations on Limits, we have

a= lim x4 = lim (5—i) =5—4%. Since a = 5— 4, we have a? = 5a—4 or equivalently
k— o0 k— oo Tk @ @

(a —1)(a —4) = 0. We have proven that if the sequence converges then its limit must be
equal to 1 or 4.

The first few terms of the sequence are x; = %, ro = 2 and x3 = 3. Since the terms
appear to be increasing, we shall try to prove that 1 <z, < x,4+1 <4 for all n > 1. This
is true when n = 1. Suppose it is true when n = k. Then we have

l1<zgp<tp1 <4d=1>L>_L >l _ygy<_ 2+ <__4 <_j
<y < < > = <

k — Tpy1 — 4 Tk — Tkl —

= 1<5- - <5- - <4=1<uapy <zp2 < 4

Tk+1
Thus, by the Principle of Induction, we have 1 <z, <z, <4 for alln > 1.
Since z,, < x,41 for all n > 1, the sequence is increasing, and since z,, < 4 for all
n > 1, the sequence is bounded above by 4. By the Monotone Convergence Theorem, the
sequence does converge. By the first paragraph, we know the limit must be either 1 or 4,
and since the sequence starts at x1 = 2 and increases, the limit must be 4.

12



Chapter 3. Limits of Functions and Continuity

3.1 Definition: Let A C R and let a € R. We say that a is a limit point of A when
Vé>03dxeA 0< |z —al <.

We say that a is a limit point of A from below (or from the left) when
Vo >0dreAd a—d<zx<a.

We say that a is a limit point of A from above (or from the right) when
Vo>0dreA a<z<a+d.

We say that A is not bounded above when VmeR dr€ A x > m, and we say that A
is not bounded below when VmeR dJzc A =z < m.

3.2 Example: Let A be a finite union of non-degenerate intervals in R (a non-degenerate
interval is an interval which contains more than one point). The limit points of A are
the points a € R such that either a € A or a is an endpoint of one of the intervals. The
limit points of A from below are the points a € R such that either a € A or a is the right
endpoint of one of the intervals. The set A is not bounded above when one of the intervals
is of one of the forms (a, o), [a,0) or (—oo,o0) = R.

3.3 Definition: Let A C R and let f: A — R. When a € R is a limit point of A, we
make the following definitions.

(1) For b € R, we say that the limit of f(z) as x tends to a is equal to b, and we write
lim f(z) =b or we write f(z) — b as x — a, when
T—a

Ve>036>0VzeA (0< |z —a| <d = |f(z) — b <e).
(2) We say the limit of f(x) as x tends to a is equal to infinity, and we write lim f(x) = oo,

Tr—a
or we write f(z) — oo as ¢ — a, when

VreR30>0VzeA (0< |z —a| <0 = f(z)>r).
(3) We say that the limit of f(z) as x tends to a is equal to negative infinity, and we
write lim f(z) = —o0, or we write f(x) = —o0 as © — a, when
r—a

VreR 36>0VzeA (0< |z —a| <d = f(z) <r).

When q is a limit point of A from below and b € R, we make the following definitions.
(4) lim f(z)=b <= Ve>036>0VzeA (a—d<z<a= [f(z)—Db] <e).

(5) Il_;r?l_ f@)=00 <= VWeRII>0Vzed (a—d<z<a= f(z)>r).

(6) zlzrgl_ f@)=-00 <= WeR3I>0Vzcd (a—d<z<a= f(z)<r).

When a is a limit point of A from above and b € R, we make the following definitions.
(7) mli>r£1+f(a:) =b < Ve>036>0Vz€d (a<z<a+d= |f(z)—b<e).

(8) mligaf(x) =00 <= WeRI>0Vred (a<z<a+d= f(z)>r).

9) mli)r£1+f(x):—oo — VreR3I6>0Vzed (a<z<a+d= f(z)<r).
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When A is not bounded above and b € R, we make the following definitions.
(10) xlg{)lof(m) =b < Ve>03ImecRVzeA (z >m = |f(z) — b <e¢).
(11) Ilglgof(w) =0 <= VreR3ImeRVzeA (z>m = f(z)>r).
(12) xl;rgof(x) =00 <= VreR3ImeRVzed (z>m = f(z)<r).

When A is not bounded below and b € R, we make the following definitions.
(13) xgrfloof(x) =b <<= Ve>0dmeRVzcA (:1; <m=|f(z) b < e).
(14) mli)riloof(x) =0 <= VreRdImeRVzecAd (x <m = f(x) > r).
(15) xEIow(x) =-0 <= VreR3ImeRVzeA (z <m = f(z)<r).

2422 -3
3.4 Example: Let f(x) = HQ—ZC Show that lim f(x) = 2.
e —1 z—1
Solution: Note that for x # 1 we have
| 22420-3 | @+3)(z—1) _ |zt3 _ |z4+3-2z—2| _ |—z41| _ |z—1]
|f(5‘7) _2| - ;2_1 _2‘ — | (D) (z—1) _2‘ - a:il _2’ - +gc+1 ‘ - ac++1 ‘  Jz+1]”

Let € > 0. Choose § = min{l,¢e}. Let 0 < |z — 1] < 4. Since 0 < |x — 1| we have z # 1

I;;H Since |z — 1] < 6 <1 we have 0 < x < 3 so that
1 <x+1, and hence |f(z) — 2| = Ii;ﬂ < |z — 1]. Finally, since |z — a|] < d < € we have

|f(z) —2| <|x—1| <e. Thus lim1 f(z)=2.
z—

so, as shown above, |f(z) — 2| =

3.5 Theorem: (Two Sided Limits) Let A C R, let f : A — R and let a € R. Suppose
that a is a limit point of A both from the left and from the right. Then for u € R we have
ligl f(z) =w if and only if lim f(x)=u = lim+ f(z).

r—a r—a~ r—a

Proof: We prove the theorem in the case that u = b € R. Suppose that lim f(x) =b € R.
Tr—a

Let € > 0. Choose § > 0 so that for all z € A, if 0 < |x — a|] < § then |f(x) — b| < e. For
x € Awitha—6 <x <awehave 0 < |z —a| <dandso |f(x)—b] <e This shows that
lim f(z)="0. Forx € Awitha <z < x4+ we have 0 < |[x—a| < § and so |f(x) —b| < e.

T—a~—

This show that lim f(x) =b.

z—at

Conversely, suppose that lim f(z) =b = lim+ f(z). Let e > 0. Since f(x) — b
T—a

r—a—
as * — a~, we can choose §; > 0 so that for all z € A with a —§ < a < a we have

|f(z) —b] < e Since f(x) — b as x — at we can choose d; > 0 so that for all z € A
with @ < = < a + 2 we have |f(z) — b] < e. Let 6 = min{d;,d2}. Let z € A with
0 < |z —a| < §. Either we have x < a or we have x > a. In the case that z < a we have
a—08 <a—0<z<aandso |f(x)— bl <e (by the choice of ;). In the case that z > a
we have a < z < a+ 6 < a+ 6 and so |f(x) — b| < € (by the choice of d2). In either case
we have |f(x) — b| < ¢, and so il_)na f(x) = b, as required.
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3.6 Remark: For the sequence (zx)r>p in R given by z = f(k) where f : Z>, — R,
the definitions (10), (11) and (12) agree with our definitions for limits of sequences. Thus
limits of sequences are a special case of limits of functions. The following theorem shows
that limits of functions are determined by limits of sequences.

3.7 Theorem: (The Sequential Characterization of Limits of Functions) Let A C R, let
f+A—= R, and let u € R.

(1) When a € R is a limit point of A, lim f(x) = w if and only if for every sequence (zy)

r—ra
in A\ {a} with x), — a we have f(x) — u.

(2) When a is a limit point of A from below, lim f(x) = u if and only if for every sequence
r—a—

(xg) in {x € Alx < a} with x}, — a we have f(x) — u.

(3) When a is a limit point of A from above, lim+ f(x) = w if and only if for every sequence
Tr—a

(xg) in {x € Alx > a} with x}, — a we have f(x) — u.

(4) When A is not bounded above, wlg{)lo f(x) = u if and only if for every sequence (xy,)
in A with z; — oo we have f(xy) — u.

(5) When A is not bounded below, mEIEloof(m) = u if and only if for every sequence (xy)

in A with x;, — —oo we have f(xy) — u.

Proof: We prove Part 1 in the case that u = b € R. Let a € R be a limit point of A.
Suppose that lim f(z) = b € R. Let (z) be a sequence in A\ {a} with zx — a. Let
T—a

€ > 0. Since lim f(x) = b, we can choose § > 0so that 0 < [z —a| <d = |f(z) =b| <e.
r—a

Since x, — a we can choose m € Z so that k > m = |z — a| < §. Then for k > m, we
have |z — a] < § and we have z; # a (since the sequence (zy) is in the set A\ {a}) so
that 0 < |z — a| < 0 and hence |f(x) — b| < e. This shows that f(zx) — b.

Conversely, suppose that ilg}l f(z) # b. Choose ¢y > 0 so that for all 6 > 0 there
exists € A with 0 < |z —a| < 6 and |f(z) — b] > €. For each k € ZT, choose =}, € A
with 0 < |z — a| < ¢ and |f(2x) — b] > €o. In this way we obtain a sequence (zj)r>1 in
A\ {a}. Since |z —a| < 1 for all k € ZT, it follows that zx — a (indeed, given € > 0
we can choose m € Z with m > % and then k > m = |z, —a| < % < % < €). Since
|f(xk) — b > € for all k, it follows that f(xx) 4 b (indeed if we had f(zr) — b we could
choose m € Z so that k > m = |f(xx) — b| < €y and then we could choose k = m to get

| f(zk) — b] < €0).

3.8 Remark: It follows from the Sequential Characterization of Limits of Functions that
all of our theorems about limits of sequences imply analogous theorems in the more general
setting of limits of functions. We list several of those theorems and give one sample proof.

3.9 Theorem: (Local Determination of Limits) Let A C B C R, let a be a limit point of
A (hence also of B) and let f : A — R and g : B — R with f(z) = g(z) for all x € A.

Then if lim g(z) = u € R then lim f(z) = u.
r—ra r—ra
Similar results holds for limits x — a® and = — +00.

3.10 Theorem: (Uniqueness of Limits) Let A C R, let a be a limit point of A, and let
f:A— R. Foru,v € R, if lim f(z) = w and lim f(x) = v then v = v. Similar results
r—a Tr—a

hold for limits © — a* and z — +oo.
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3.11 Theorem: (Basic Limits) Let F' be a subfield of R, and let A C F'. For the constant
function f : A — F given by f(x) = b for all x € A, we have

lim f(z) =0, lim f(x)=5b, lim f(x)=0b, lim f(z)=0 and lim f(x)=0"0,
r—sa+t rT—a— —00 T——00

T—a

and for the identity function f : A — F given by f(x) = x for all x € A we have

lm f(z)=a, lm f(z)=a, lim f(z)=a, lm f(z)=co and lim f(z)= oo

whenever the limits are defined.

3.12 Theorem: (Extended OperatiAons on Limits) Let A C R, let f,g: A — R and let
a be a limit point of A. Let u,v € R and suppose that il_rgl f(z) = u and ;gr(ll g(z) = v.
Then

(1) if u+ v is defined in R then gllirb(f +g)(x) =u+w,

(2) if u — v is defined in R then :llgz(f —g)(x) =u—wv,

(3) if u- v is defined in R then :llgb(fg)(x) =u- v, and

(4) if u/v is defined in R then glg}l(f/g)(ac) =u/v.

Similar results hold for limits x — a* and x — %oo0.

Proof: We prove Part 4. Suppose that u/v is defined in R. Let (zx) be any sequence in
A\ {a} with z;, — a. By the Sequential Characterization of Limits, since lim f(z) = u we
Tr—a

have f(zr) — u, and since lim g(x) = v we have f(z;) — v. By Extended Operations on
Tr—a

Limits of Sequences (Theorem 1.14), since f(zy) — w and g(zx) — v and u/v is defined

in R, we have (f/g)(zs) = % — u/v. Thus (f/g)(xx) — u/v for every sequence (x)

in A\ {a} with ; — a. By the Sequential Characterization of Limits, it follows that
lim (7/9)(0) = u/v.
3.13 Theorem: (The Comparison Theorem) Let A C F, let f,g: A — R and let a € R
be a limit point of A. Suppose that f(x) < g(z) for all x € A. Then
(1) if lim f(x) = v and lim f(z) = v with u,v € R, then u < v,
T—a Tr—a
(2) if lim f(x) = oo then lim g(z) = oo, and
T—a r—a
(3) 1f£1_>nzg(x) = —o0 then a%l—%g(x) = —00.
Similar results hold for limits © — a® and x — 4o0.

3.14 Theorem: (The Squeeze Theorem) Let A C R, let f,g,h: A — R, and let a € R
be a limit point of A.

(1) If f(z) < g(z) < h(zx) for all z € A and liin flz)=0b= li_r>n h(zx), then li_r>n g(z) =b.
(2) If | f(x)| < g(x) for all x € A and lim g(z) = 0 then lim f(x) = 0.
T—a Tr—a

Similar results hold for limits x — a* and z — +o0.
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3.15 Definition: Let A C R, and let f: A — R. For a € A, we say that f is continuous
at a when
Ve>0 36 >0 Vz e A (Jzr—a|<déd = |f(z)— fla)| <e).

We say that f is continuous (on A) when f is continuous at every point a € A.

3.16 Theorem: Let AC R, Ilet f: A— R and let a € A. Then

(1) if a is not a limit point of A then f is continuous at a, and
(2) if a is a limit point of A then f is continuous at a if and only if lim f(z) = f(a).

Tr—a

Proof: The proof is left as an exercise.

3.17 Theorem: (The Sequential Characterization of Continuity) Let A C R, let a € A,
and let f : A — R. Then f is continuous at a if and only if for every sequence (zj) in A
with xp, — a we have f(x) — f(a).

Proof: Suppose that f is continuous at a. Let (x) be a sequence in A with 2, — a. Let
€ > 0. Choose § > 0 so that for all z € A we have |z —a| < § = |f(z) — f(a)| < e.
Choose m € Z so that for all indices k we have k > m = |z, —a| < 6. Then when k > m
we have |z — a| < § and hence |f(zr) — f(a)| < e. Thus we have f(xy) — f(a).

Conversely, suppose that f is not continuous at a. Choose ¢y > 0 so that for all § > 0
there exists z € A with |z —a| < ¢ and |f(z) — f(a)| > €. For each k € Z™, choose
xy, € A with |2y, —a| < § and |f(z)) — f(a)| > €. Consider the sequence (z}) in A. Since
2k, —a| < 4 for all k € Z*, it follows that z — a. Since |f(z)) — f(a)| > € for all
k € Z*, it follows that f(xy) 4 f(a).

3.18 Theorem: (Operations on Continuous Functions) Let A C R, let f,g : A — R,
let a € A and let ¢ € R. Suppose that f and g are continuous at a. Then the functions
cf, f+g9, f—g and fg are all continuous at a, and if g(a) # 0 then the function f/g is
continuous at a.

Proof: The proof is left as an exercise.

3.19 Theorem: (Composition of Continuous Functions) Let A,B C R, let f : A - R
and g: B— R, andlet h=go f:C — R where C = AN f~Y(B).

(1) If f is continuous at a € C and g is continuous at f(a), then h is continuous at a.

(2) If f is continuous (on A) and g is continuous (on B) then h is continuous (on C').

Proof: Note that Part 2 follows immediately from Part 1, so it suffices to prove Part 1.
Suppose that f is continuous at a € A and g is continuous at b = f(a) € B. Let (xx)
be a sequence in C' with z; — a. Since f is continuous at a, we have f(xy) — f(a) = b
by the Sequential Characterization of Continuity. Since ( f (xk)) is a sequence in B with
f(zr) — b and since g is continuous at b, we have g(f(zx)) — ¢(b) by the Sequential
Characterization of Continuity. Thus we have h(zx) = g(f(zx)) = 9(b) = g(f(a)) = h(a).
We have shown that for every sequence (xj) in C' with z; — a we have h(zy) — h(a).
Thus h is continuous at a by the Sequential Characterization of Continuity.
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3.20 Theorem: (Functions Acting on Limits) Let A, B C R,let f: A—R,letg: B— R

and let h = go f : C — F where C = AN f~Y(B). Let a be a limit point of C' (hence

also of A) and let b be a limit point of B. Suppose that lim f(z) = a and lin}Jg(y) =c.
r—a y—

Suppose either that f(x) # b for all x € C'\ {a} or that g is continuous at b € B. Then
lim h(z) = ¢

Tr—a

Analogous results hold, dealing with limits  — a*, x — +o00, y — b and y — +o0.

Proof: The proof is left as an exercise. It is similar to the proof of the Composition of
Continuous Functions Theorem.

3.21 Definition: The functions 1, z, {/z with n € Z*, €%, Inz, sinz and sin~!z,
are called the basic elementary functions. An elementary function is any function
f:AC R — R which can be obtained from the basic elementary functions using (finitely
many applications of) the operations ¢f, f+g¢, f —g, f-g, f/g and fog.

3.22 Example: Each of the following functions f(x) is elementary: f(x) = |z| = Va2,

f(x) = cosz = sin(z+ %), f(z) = tanz = 2L f(z) = tan 'z = sin_1<

T
Vitz2 )’
VT +sin x

e
tan—!(Inz) *

f(x) = 2% = e*™% where a € R, f(x) = a® = ¢*™% where a > 0, and f(z) =

3.23 Note: We shall assume familiarity with exponential, logarithmic, trigonometric and
inverse trigonometric functions. In particular, we shall assume that they are known to be
continuous in their domains, (and it follows that every elementary function is continuous
in its domain). We shall also assume that their asymptotic behaviour, the intervals on
which they are increasing and decreasing, and all of their usual algebraic identities are
known. A review of this material can be found in Chapter 1.

A rigorous proof that these basic elementary functions are continuous, and that they
satisfy their usual well-known properties, is quite long and difficult (and we shall not
give a proof in this course). The main difficulty lies in giving a rigorous definition for
each of the basic elementary functions. In most calculus courses, we define exponential
and trigonometric functions informally. We might define the function f(z) = e* to be
the function with f(0) = 1 which is equal to its own derivative, but we do not ever
prove rigorously that such a function actually exists. We might define the sine and cosine
functions by saying that for § > 0, when we start at (1,0) and travel a distance 6 units
counterclockwise around the unit circle 22 + 2 = 1, the point at which we arrive is (by
definition) the point (z,y) = (cos#,sinf), but we have not yet rigorously defined the
meaning of distance along a curve. We use these informal definitions to argue, informally,
that % sinx = cosx and % cosx = —sinx and then we argue that because e”, sinx and
cos x are differentiable, therefore they must be continuous.

There are various possible ways to define exponential and trigonometric functions
rigorously. One way is to wait until one has rigorously defined power series and then
define

= 1 (-1
Z_: nl ", sinx = Z (2n+)1),x , COST = Z (2n)' x"
If we define e, sinz and cos z using these formulas, then one can prove (rigorously) that

they are differential and continuous, and one can verify (although it is quite time consuming
to do so) that they satisfy all of their usual well-known properties.
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3.24 Example: For each of the following sequences (xj)i>0, evaluate lim xy, if it exists.

k— o0
(a) @), = YE (b) @k = gy (c) o = sin~* (k= VI +F)

. /352 \/ 3+ V/
Solution: For Part (a), we have xj = iﬁ_;’l = 1+2£2 — 143;-8 = /3 where we used
k

Basic Limits, Extended Operations on Limits, the fact that /x is continuous, and the
Sequential Characterization of Limits (Since x is continuous at 3 we have lin:13 vz =3,
T—

and since 3 + % — 3 we have klim \/3+ k% = lir% Vv = V/3 by the Sequential Charac-
—00 T—

terization of Limits) .

1
_ 143k __ 13 . 1.1/3 0+3 | 1. _
For Part (b), z = Ve~ /5 kP — gpEs= - 00 = —1-00 = —oo where
k

we used Basic Limits, Extended Operations, the continuity of </x, and the Sequential
Characterization of Limits

12 et Uit ) R L | -1 1
For Part (c), note that k—vk? + k = FVITTE T RVRTTE i ATl — T

and so 75, = sin”! (k; —Vk?2 — k:) — sin”! (— %) =-I
3.25 Exercise: Evaluate each of the following limits, if they exist.

2V -2 2
(a) lim ve+ -2 (b) lim sin_l( - x—}—?)) (c¢) lim e/

r—3 3 —x rx—1 r—1 x2—1 x—0
1 3_2 2 2_2 o
(@) Tim _CEEDVE g, YRR T2t () lim L 23
z—00 \/Ax3 — 2z + 1 e—1- 224 2x—3 1+ 23 4+ 422 + 5x 4+ 2

3.26 Theorem: (Intermediate Value Theorem) Let I be an intervalin R andlet f : I — R
be continuous. Let a,b € I with a <b and let y € R. Suppose that either f(a) <y < f(b)
or f(b) <y < f(a). Then there exists z € [a,b] with f(z) = y.

Proof: Like the Monotone Convergence Theorem, the statement of this theorem is in-
tuitively reasonable, but it is quite difficult to prove, and in most calculus courses this
theorem is accepted axiomatically, without proof.

3.27 Example: Prove that there exists z € [0, 1] such that 3z — 23 = 1.

Solution: Let f(z) = 3z — 3. Note that f is continuous (it is an elementary function) with
f(0) =0 and f(1) = 2 and so, by the Intermediate Value Theorem, there exists z € [0, 1]

such that f(z) = 1. We remark that in fact f(z) =1 when z = 2cos (7).

3.28 Definition: Let A C R, and let f: A — R. For a € A, if f(a) > f(x) for every
x € A, then we say that f(a) is the maximum value of f and that f attains its maximum
value at a. Similarly for b € A, if f(b) < f(x) for every x € A then we say that f(b) is the
minimum value of f (in A) and that f attains its minimum value at b. We say that f
attains its extreme values in A when [ attains its maximum value at some point a € A
and f attains its minimum value at some point b € A.

3.29 Theorem: (Extreme Value Theorem) Let a,b € R with a < b, and let f : [a,b] = R
be continuous. Then f attains its extreme values in [a, b].

Proof: Like the Monotone Convergence Theorem and the Intermediate Value Theorem,
the statement of this theorem seems reasonable, but it is difficult to prove.
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Chapter 4. Differentiation

4.1 Definition: For a subset A C R, we say that A is open when it is a union of open
intervals. Let A C R be open, let f: A — R. For a € A, we say that f is differentiable
at a when the limit

@) - fa)

r—a T —a

exists in R. In this case we call the limit the derivative of f at a, and we denote to by
f'(a), so we have

T—a Tr—a
We say that f is differentiable (on A) when f is differentiable at every point a € A. In
this case, the derivative of f is the function f’: A — R defined by

o) — 1im £ = @)

Uu—T u —I
When [’ is differentiable at a, denote the derivative of f’ at a by f”(a), and we call
f"(a) the second derivative of f at a. When f”(a) exists for every a € A, we say that
[ is twice differentiable (on A), and the function f” : A — R is called the second
derivative of f. Similarly, f"/(a) is the derivative of f” at a and so on. More generally,

for any function f : A — R, we define its derivative to be the function /' : B — R
where B = {a € A} f is differentiable at a}, and we define its second derivative to be

the function f”: C'— R where C = {a € B}f’ is differentiable at a} and so on.

4.2 Remark: Note that
L f@) = @) . flath) o)

z—a T —a h—0 h

To be precise, the limit on the left exists in R if and only if the limit on the right exists in
R, and in this case the two limits are equal.

4.3 Note: Let A C R be open, let f: A — R, and let a € A. Then

f is differentiable at a with derivative f'(a) = lim w = f'(a)
< Ve>039>0VzxecA (0< |z —al <d = 'w — f'(a) <e)
— Ve>036>0VzrecA <0 <lzr—al<d= 'f(x) _f<a;__‘];/(a)(x_a) < e)

= Ve>030>0VreA (o <lw—al <6 = |f(z) - fla) - f'(a)(z —a)| < eyx—a\)

We can also simplify this last expression a little bit by noting that when x = a we have
|f(z) = f(a) = f'(a)(x — a)| = 0 = €|z — al, so we can replace inequalities by equalities
and say that f is differentiable at a if and only if

Ve>039>0VreA (\x—a| <0 = |f(z)—l(z)| < e|x—a|>
where [ : R — R is given by I(z) = f(a) + f'(a)(z — a).
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4.4 Definition: When f : A — R is differentiable at a with derivative f’(a), the function
l(z) = f(a) + f'(a)(z — a)

is called the linearization of f at a. Note that the graph y = I(x) of the linearization is
the line through the point (a, f(a)) with slope f’(a). This line is called the tangent line
to the graph y = f(x) at the point (a, f(a)).

4.5 Theorem: (Differentiability Implies Continuity) Let A C R be open, let f : A — R
and let a € A. If f is differentiable at a then f is continuous at a.

Proof: We have
(z—a)— f(a)-0=0 asx —a
and so

f(x) = (f(z) = f(a)) + fla) — 0+ f(a) = f(a) asz — a.
This proves that f is continuous at a.

4.6 Theorem: (Local Determination of the Derivative) Let A,B C R be open with
ACB,let f:A—Randg:B— R wih f(z) =g(z) for all x € A. and let a € A. Then
f is differentiable at a if and only if g is differentiable at a and, in this case, f'(a) = ¢'(a).

Proof: The proof is left as an exercise.
4.7 Theorem: (Operations on Derivatives) Let A C R be open, let f,g : A — R, let
a € A, and let ¢ € R. Suppose that f and g are differentiable at a. Then
(1) (Linearity) the functions cf, f + g and f — g are differentiable at a with
(cf)(a) =cf(a), (f+9)(a)=Ff(a)+¢'(a), (f—9)(a) = f(a) - g'(a),
(2) (Product Rule) the function fg is differentiable at a with
(f9)'(a) = f(a)g(a) + f(a)g'(a),
(3) (Reciprocal Rule) if g(a) # 0 then the function 1/g is differentiable at a with
o g'(a)
<g> W=
(4) (Quotient Rule) if g(a) # 0 then the function f/g is differentiable at a with
Y f'(a)g(a) = f(a)g'(a
(_) (a) = 119 2( )
9 g(a)
Proof: We prove Parts (2), (3) and (4). For x € A with = # a, we have
(f9)(x) = (f9)(a) _ f(z)g(z) — f(a)g(a)

_ f(@)g(x) — f(x)g(a) + f2)g(a) — fla)g(a)
— f(z)- g(x) — g(a) +g(a)- f(z) — f(a)

— f(a) - g'(a) +g(a) - f'(a) asz— a.
Note that f(x) — f(a) as * — a because f is continuous at a since differentiability implies
continuity. This proves the Product Rule.
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Suppose that g(a) # 0. Since g is continuous at a (because differentiability implies
continuity) we can choose § > 0 so that |z —a| < = |g(z) — g(a)| < @ and then

when |z — a| < 6 we have |g(x)| > @ so that g(z) # 0. For z € A with |x —a|] < § we
have
1 — (1L 1 1
H@-()@ - 1 sw-g@ 1,
- : — 2 g (a)
x——a T —a g(x)g(a) T—a g(a)

as x — a. This Proves the Reciprocal Rule.

Finally, note that Part (4) follows from Parts (2) and (3). Indeed when g(a) # 0, we

have
(D w=(r2) @=r@-G)+1@ ()@
P () _ f'(@)gla) ~ f(a)g/(0)
= 7)o+ fla) N = SR

4.8 Theorem: (Chain Rule) Let A,B C R be open, let f : A — R, let g: B — R and
let h=gof:C— R where C = AN f~1(B). Let a € C and let b= f(a) € B. Suppose
that f is differentiable at a and g is differentiable at b. Then h is differentiable at a with

h'(a) =g'(f(a)) f'(a).
Proof: We provide an explanation which can be converted (with a bit of trouble) into a
rigorous proof. When z € A with z # a and y = f(z) € B wih y # b we have

h(z) —ha)  g(f(@) —g(f(a)  gly) — g(b)

! _ g(y)—g(_b) y=b _ g(y)_—g(b) f(z) = f(a)
y—b r—a y—>b r—a

—g'(b) f'(a) =g (f(a))  f'(a) as 2 —a
because as © — a, since f is continuous at a we also have f(x) — f(a), that is y — b.

We remark that when one tries to make this argument rigorous, using the e-¢ definition
of limits, a difficulty arises because x # a does not imply that y # b.

4.9 Definition: Recall that when f: A C R — R, we say that f is nondecreasing (on A
when for all z,y € A, if x <y then f(z) < f(y), we say that f is (strictly) increasing (on
A) when for all z,y € A, if x <y then f(z) < f(y), we say that f is (strictly) decreasing
(on A) when for all z,y € A, if z < y then f(z) > f(y), and we say that f is (strictly)
monotonic (on A) when either f is strictly increasing on A or f is strictly decreasing on

A.

4.10 Theorem: (The Inverse Function Theorem) Let I be an interval in R, let f : I — R,
let J = f(I), and let a be a point in I which is not an endpoint.

(1) If f is continuous then its range J = f(I) is an interval in R.

(2) If f is injective and continuous then f is strictly monotonic.

(3) If f : I — J is strictly monotonic, then so is its inverse g : J — 1.
(4) If f is bijective and continuous then its inverse g is continuous.

(5) If f is bijective and continuous, and f is differentiable at a with f'(a) # 0, then its
inverse g is differentiable at b = f(a) with ¢'(b) = ﬁ

Proof: This theorem is quite difficult to prove and we omit the proof.
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4.11 Theorem: (Derivatives of the Basic Elementary Functions) The basic elementary
functions have the following derivatives.

(1) (%) = az® ! where a € R and x € R is such that ™! is defined,

(2) (a*) =Ilna-a”® Wherea>0anda:€Rand
(log, z)' = = - = where 0 < a # 1 and x > 0, and in particular
(e*) =€ for all z € R and (Inz)’ = < for all z > 0,
(3) (sinz)’ = cosx and (cosz) = —sinz for all v € R, and
(tanz)" = sec® z and (secx)’ = secx tanx for all x € R with ¢ # § + km, k € Z,
(Cotx) = —CSCQCL‘ and (cscx) = —cotx cscx for all x € R with © # © + kn, k € Z,
(4) (sin~tz) = m2 and (cos™!tz) = \E_—lx2 for |z| < 1,
(sec™tz) = \/7_ and (csc™lx) = a:\/;—;i for |x| > 1, and
(tan™! )—H_Qa,nd(cot1 ):1+2forall:1:€R

Proof: First we prove Part 1 in the case that a € Q. When n € Z1 and f(z) = 2™ we
have

f(u) — f(z) out—a” (u— x)(un_l +ur 2+ 32 4+ xn—l)

u—x u—x u—=
:u”_l—|—u"_2x—|—un_3$2+"'+l’n_1 szt asu— .

This shows that (z")’ = na™~! for all x € R when n € ZT. By the Reciprocal Rule, for
x # 0 we have

= (o) = -

x’I’L

The function g(x) = /™ is the inverse of the function f(z) = ™ (when n is odd, z'/™

is defined for all 2 € R, and when n is even, 2!/ is defined only for z > 0). Since
f'(z) = (2™) = na""! we have f/(x) = 0 when x = 0. By the Inverse Function Theorem,
when = # 0 we have

1 1 1 1 1
1/n\t _ 1 - . o o 1 =—1
x =4 (z) = = = = =
NI = @) T nger T @ e
Finally, when n € Z* and k € Z with ged(k,n) = 1, by the Chain Rule we have
(:Uk/”)’ = ((xl/n)k)/ = k(l’l/n)k_l(f}?l/n)/ = k.’]?% . %.’EliTn = %[13%_1.

We have proven Part 1 in the case that a € Q.
Next we shall prove Part 2. For f(z) = a” where a > 0, we have

fl+h)—fz) o™ —a® a%a" —a” _ e ah —1

n  h h T

and so we have f'(z) = ax<}lllr% a"— ) provided that the limit exists and is finite. For
%
g(x) = log, x, where 0 < a # 1 and x > 0, we have

gl@+h)—g(x) log,(x+h)—log,x log, (“£") log, (1 +%)
h N h h - T -

= L.log, (144)*/"

][>

and so we have ¢'(z) = 1 -log, ( hm (1+2 )m/ h) provided the limit exists and is finite.
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By letting u = % we see that

lim (14 2)"" = lim (1+1)" =

h—0t U—00

by the definition of the number e. By letting u = —%, a similar argument shows that

lim (1+2)"" = 1im (1-1) " =

h—0— U— 00

Thus the derivative ¢'(x) does exist and we have

im (1+%)x/h>:%10gae: L. lne _ _1

1 T o
h—0 x na r Ina

(log, z)’ = g'(x) = L log, (

Since g(x) = log, x is differentiable with ¢’(z) # 0 it follows from the Inverse Function
Theorem that f(x) = a® is differentiable with derivative
1 1
(a®) = f'(x) = = =Ina- f(z) =Ilna-a”.
g @) o

This proves Part 2.
Now we return to complete the proof of Part 1, in the case that a ¢ Q. When a > 0

we have a® = e*'¢ for all x > 0 and so by the Chain Rule

%) = ealnac ’:ealnac alnz) = 2% . & :CLIL’a_l.
T

Let us move on to the proof of Part 3. We shall need two trigonometric limits which we
shall explain informally (non-rigorously) with the help of pictures. Consider the following
two pictures, the first showing an angle 6 with 0 < 6 < 7 and the second with —5 < 6 < 0.
In both diagrams, the circle has radius 1 and s = sinf and ¢t = tan 6.

s| 6

|s]{16]

In the first diagram, where 0 < 6 < 3, we have sinf) < 6§ < tan6, and dividing by
sinf (which is positive) gives 1 < size < colsa' In the second diagram, where —3 <
6 < 0, we have —sinf < —0 < —tan6, and dividing by —siné (which is positive) gives

1< %2 < 19. In either case, taking the reciprocal gives cosf < 8¢ < 1. Since

sin 6 cos 0
t%im% cosf = cos(0) = 1, it follows from the Squeeze Theorem that
—
lim 520 _
0—0

From this limit we obtain the second trigonometric limit,

. 1 —cosf . 1 — cos?6 . sinf sin 0 1 0
m ——— = |liIm ——— = |l1m . — . = 0.
6—0 0 0—00 (1 +cosf) 6—0 6 1+ cosb

[V}
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Using the above two trigonometric limits, we have

.+ .. sin(z+h)—sinz . sinxcosh — coszsinh —sinx
(sinz)’ = lim = lim
h—0 h h—0 h
. sin h . 1 —cosh
= lim ( cosz - —— —sinx - ——
h—0 h h
=cosz-1—sinz-0=cosz
, .. cos(x+h)—cosx . cosxcosh —sinxsinh — cosx
(cosz) = lim = lim
h—0 h h—0 h
) ) sin h 1 —rcosh
= lim ( —sinz - —COST + —————
h—0 h
= —sinx-1—-cosx-0= —sinz.
By the Quotient Rule, we have
, sinz\’ cos®z +sin’z 1 9
(tanzx) = = 5 = —— =sec”T.
cos T cos? x cos? x

We leave it as an exercise to complete the proof of Part 3 by calculating the derivatives of
secx and cscz.

Finally, we shall derive the formula for (sin~'z)" and leave the rest of the proof of
Part 4 as an exercise. Note that by the Inverse Function Theorem (which we did not
prove), the function sin™'z is differentiable in (—1,1). Since sin(sin~'z) =  for all
x € (—1,1), we can take the derivative on both sides (using the Chain Rule on the left) to
get cos(sin™ ! z) - (sin”' )’ = 1 and hence

. 1 1 1

(sin""z) = — = = .
cos(sin ! z) \/1 — sin?(sin~ z) V1 — a2

4.12 Definition: Let A C R, let f: A — R and let a € A. We say that f has a local
maximum value at a when

6>0VeeA (|:1; —a| <0 = f(x) < f(a)).
Similarly, we say that f has a local minimum value at a when
36>0 Vee A (|a: 4| <6 = f(x)> f(a)).

4.13 Theorem: (Fermat’s Theorem) Let A C R be open, let f : A — R, and let a € A.
Suppose that f is differentiable at a and that f has a local maximum or minimum value
at a. Then f'(a) = 0.

Proof: We suppose that f has a local maximum value at a (the case that f has a local
minimum value at a is similar). Choose § > 0 so that |z —a| < § = f(z) < f(a). For

x € Awitha <z <a+d,since z>a and f(z) > f(a) WehaveWZO, and so

) — 1 T@) =@

z—at Tr—a

>0
by the Comparison Theorem. Similarly, for z € A with a — § < x < a, since x < a and
f(x) > f(a) we have W <0, and so

o) — 1w T@ @)

r—a~ r—a
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4.14 Theorem: (Rolle’s Theorem and the Mean Value Theorem) Let a,b € R with a < b.

(1) (Rolle’s Theorem) If f : [a,b] — R differentiable in (a,b) and continuous at a and b
with f(a) =0 = f(b) then there exists a point ¢ € (a,b) such that f'(c) = 0.

(2) (The Mean Value Theorem) If f : [a,b] — R is differentiable in (a,b) and continuous
at a and b then there exists a point ¢ € (a,b) with f'(c) (b —a) = f(b) — f(a).

Proof: To Prove Rolle’s Theorem, let f : [a,b] — R be differentiable in (a,b) and contin-
uous at a and b with f(a) = 0 = f(b). If f is constant, then f’(x) = 0 for all x € [a, ]].
Suppose that f is not constant. Either f(x) > 0 for some z € (a,b) or f(x) < 0 for some
x € (a,b). Suppose that f(z) > 0 for some = € (a,b) (the case that f(z) < 0 for some
x € (a,b) is similar). By the Extreme Value Theorem, f attains its maximum value at
some point, say ¢ € [a,b]. Since f(z) > 0 for some = € (a,b), we must have f(c) > 0.
Since f(a) = f(b) = 0 and f(c) > 0, we have ¢ € (a,b). By Fermat’s Theorem, we have
f’(¢) = 0. This completes the proof of Rolle’s Theorem.

To prove the Mean Value Theorem, suppose that f : [a,b] — R is differentiable in

(a,b) and continuous at a and b. Let g(z) = f(z) — f(a) — W (x —a). Then g is

differentiable in (a,b) with ¢'(z) = f'(z) — W and g is continuous at a and b with
g(a) = 0= g(b). By Rolle’s Theorem, we can choose ¢ € (a,b) so that f’(c) = 0, and then

g'(c) = W, as required.

4.15 Corollary: Let a,b € R with a < b. Let f : [a,b] — R. Suppose that f is
differentiable in (a,b) and continuous at a and b.

(1) If f'(x) > 0 for all x € (a,b) then f is nondecreasing on [a, b|.

(2) If f'(x) > 0 for all = € (a,b) then f is strictly increasing on [a, b).

(3) If f'(x) <O for all = € (a,b) then f is nonincreasing on [a, b].

(4) If f'(x) < O for all z € (a,b) then f is strictly decreasing on [a, b].

(5) If f'(x) =0 for all x € (a,b) then f is constant on [a,b].

(6) If g : [a,b] — R is continuous at a and b and differentiable in (a,b) with ¢'(z) = f'(z)
for all x € (a,b), then for some ¢ € R we have g(x) = f(x) + ¢ for all z € (a,b).

Proof: We prove Part 1 and leave the rest of the proofs as exercises. Suppose that f/(z) >0
for all z € (a,b). Let a < x <y < b. Choose ¢ € (z,y) so that f'(c) = % Then
f(y) — f(x) = f'(c)(y —x) >0 and so f(y) > f(x). Thus f is nondecreasing on [a, b].

4.16 Corollary: (The Second Derivative Test) Let I be an interval in R, let f : [ — R
and let a € I. Suppose that f is differentiable in I with f'(a) = 0.

(1) If f"(a) > O then f has a local minimum at a.
(2) If f"(a) < O then f has a local maximum at a.

Proof: The proof is left as an exercise.

4.17 Theorem: (I’'Hopital’s Rule) Let I be a non degenerate interval in R. Let a € I, or
let a be an endpoint of I. Let f,g: I\ {a} — R. Suppose that f and g are differentiable
in I\ {a} with ¢’(x) # 0 for all x € I \ {a}. Suppose either that lim f(z) =0 = lim g(x)

Tr—a T—a
f'(z) f(x)

or that lim g(x) = £oo. Suppose that lim —u € R. Then lim =% =
T—a r—a g (l‘) r—a g(l‘)

Similar results hold for limits v — a™, *x — a~, v — oo and x — —00.

Proof: We omit the proof, which is fairly difficult.
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Chapter 5. Integration

The Riemann Integral

5.1 Definition: A partition of the closed interval [a,b] is a set X = {zg, 21, -, Zp}
with
a=Tog<T1 <X <---<xTp=>b.
The intervals [z;_1,x;] are called the subintervals of [a, b], and we write
Ajx =i — i

for the size of the i*® subinterval. Note that

iAix:b—a.
i=1

The size of the partition X, denoted by | X]| is

| X| =max {A;z|l <i<n}.
5.2 Definition: Let X be a partition of [a,b], and let f : [a,b] — R be bounded. A
Riemann sum for f on X is a sum of the form

S = Z f(tl)AZI for some t; € [.Ti_l,dii] .
=1

The points ¢; are called sample points.

5.3 Definition: Let f : [a,b] — R be bounded. We say that f is (Riemann) integrable
on [a,b] when there exists a number I with the property that for every e > 0 there exists
d > 0 such that for every partition X of [a,b] with |X| < § we have |S — I| < € for every
Riemann sum for f on X, that is

< €.

i f(tz)AzlL' — I
=1

for every choice of t; € [z;—1,x;] The number I can be shown to be unique. It is called the
(Riemann) integral of f on [a,b], and we write

I:/abf,orI:/abf(x)dx.

5.4 Example: Show that the constant function f(z) = c is integrable on any interval
b

[a, b] and we have / cdx =c(b—a).

a

Solution: The solution is left as an exercise.

5.5 Example: Show that the identity function f(x) = x is integrable on any interval

b
[a, b], and we have / r dr = 3 (b* — a?).

a

1
2
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Solution: Let € > 0. Choose § =

2. Let X be any partition of [a,b] with |X| < 4. Let

t; € (w1, m;) andset S = > f(t;) Az = > t;A;x. We must show that |S—1(b?—a?)| < e.
i=1 i=1
Notice that

Z(% +xi1)Aix = (i +miz1) (2 — i) = Z%’Q —xiq?

=1 i=1 i=1
= (1‘12 - 1‘02) + (1‘22 — 1’12) +---+ (l’n_12 — fL’n_22) + (l‘nz — l‘n_12>
=—20°+ (1> —21°) + 4+ (Tn1® — Tpo1?) + 24

— 5,2 — 2 = b2 — a2

n n

and that when ¢; € [z;_1,x;] we have }t 2(901 + x;i_ 1)‘ < %(a:l —zi_q) = %Aix, and so

5302 —a)| = | S e — 4 St i)

. ~
M= I

&
I
-

(tz' — %(.CEZ + .fl?i+1)) AZ.CE

IN
M

’ti — %(.CEZ + xi—i—l)‘Aix

=1
<> %AZCCA x< > %5Aix
i=1 i=1
=36(b—a) =
5.6 Example: Let f(z) = {(1) i i;g Show that f is not integrable on [0, 1].

Solution: Suppose, for a contradiction, that f is integrable on [0, 1], and write I = fol f
Let e = 2. Choose d so that for every partition X with |X| < & we have |S—1I| < 1 for every

Riemann sum S for f on X. Choose a partition X with |X| < . Let S; = Y f(t:) Az
i=1

where each t; € [x;_1, ;] is chosen with t; € Q, and let Sy = Z f(s;)A;x where each

=1

i € [ri—1,x;] is chosen with s; ¢ Q. Note that we have |S; — I| < 3 and [S—I| < 3.

Since each t; € Q we have f(t;) =1 and so S = Z ft)Ax = Z A;x=1-0=1, and

since each s; ¢ Q we have f(sl) =0 and so Sy = Z f(si)A;z = 0. Since |S; —I| < 1 we

have \1—[\ < 1 andso i < I <2 and since |52—I] < 1 we have [0 — I| < % and so
—5 < 1 < 5 glVlng a Contradlctlon
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Integrals of Continuous Functions

5.7 Theorem: (Continuous Functions are Integrable) Let f : [a,b] — R be continuous.
Then f is integrable on [a, b].

Proof: We omit the proof, which is quite difficult.

5.8 Note: Let f be integrable on [a,b]. Let X,, be any sequence of partitions of [a, b] with
lim |X,| =0. Let S,, be any Riemann sum for f on X,,. Then {S,,} converges with
n—oo

b
lim Sn:/ f(x)dz.

n—oo

Proof: Write I = ff f. Given € > 0, choose § > 0 so that for every partition X of [a,b]
with |X| < 6 we have |S — I| < € for every Riemann sum S for f on X, and then choose
N so that n > N = |X,,| < 4. Then we have n > N = |S,, — I| < e.

5.9 Note: Let f be integrable on [a,b]. If we let X,, be the partition of [a,b] into n
equal-sized subintervals, and we let .S,, be the Riemann sum on X, using right-endpoints,
then by the above note we obtain the formula

n

b n
/ flx)dz = nh_)rrgo Z f(zn,i)An iz, where 2, ; = a + b_T“i and A, ;z = b=a
a i=1

2
5.10 Example: Find/ 2% dx.
0

Solution: Let f(x) = 2%. Note that f is continuous and hence integrable, so we have

n n

2 n
/ 2" dx = lim Zf(acmi)An’ix = li_)m Zf (%) (%) = lim ZZQi/" (%)

n—oo n—oo
i=1 i=1
. 2-4Ym 41 ,

= lim . , by the formula for the sum of a geometric sequence

n—00 n 41/” —1

/ 1 x

. . ql/n . _ . n _ .
= (im0 a) (Jim, g —gy) =0 i g = = O i
= 69113% TR by I’'Hopital’s Rule
-6 _ 3
" In4 T In2°
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5.11 Lemma: (Summation Formulas) We have

. n(n+1 (2n—i—1 = n?(n+ 1)
zﬁ—” 2: ZZ Z: =— 1

Proof: These formulas could be proven by induction, but we give a more constructive
n n n
proof. It is obvious that > 1 =1+41+---1=n. Tofind }_ 4, consider Y. (i — (i —1)?).

i=1 i=1 n=1
On the one hand, we have

z:jl(ﬂ—(z’—lﬂ):(12_02)+(22_12)+...+((n_1)2_(n_2)2)+(n2_(n_1>2)

:—02-1-(12—12)+(22—22)+...+((n_1)2_(n_1)2)+n2
and on the other hand,

S (2~ (i - 1)%) = i(e’?—u?—%ﬂ»:i@i—”:?éi‘él

=1 1 =1

n n
23 i=n*+> 1=n’+n=n(n+1),
/ i=1

as required. Next, to find " i?, consider Y (i® — (i — 1)®). On the one hand we have

n=1 i=1
2 (== = (1P =0)+ (2 =1+ (3 =2+ + (0 = (n = 1))
i=1
=0+ -1)+ 2 -2°)++((n-1)° = (n—1)°) +n°
= n3
and on the other hand,

S (= (i — 1))

I

s
I
—

(i — (® = 3i% + 3i — 1))

I
M=

(3i2—3i+1)=3> 2 =3 i+ 1.

s
Il
—
-
Il
—_
.
I
MR
-
Il
MR

n n n
Equating these gives n® =3 > i? =3 Y i+ > 1 and so
i=1 i=1 =1

n n n
6> i2=2n3+6>i—-2> 1=2n34+3n(n+1)-2n=n(n+1)2n+1)
=1 =1 =1
n

as required. Finally, to find > i3, consider (i4 — (i — 1)4). On the one hand we have
i=1 i=1

Z (24_(2_1>4) :714,
i=1
(as above) and on the other hand we have

> (it = (= 1)*) = 3 (43 — 6 +4z—1)_4zz —6> 2 +4>i— > 1.
i=1 i=1 i=1 i=1

1 =1

M:

%

30



n n n n
Equating these gives n* =413 -6 > i2+4> i~ > 1 and so
i=1 i=1 i=1 =1

4N B3 =nt46>i?-4> i+ > 1
=1 =1 =1 =1

=n'+nn+1)2n+1)—2n(n+1)+n
=n*4+2n3 +n? =n%*(n +1)%,

as required.
3

5.12 Example: Find / x + 223 dx.
1

Solution: Let f(x) = x + 223. Then

3 n
/ z+ 222 dr = lim Zf(acn’i)Anﬂ-x
1 =1

n—00 4
oy 2.5 (2
_nh_{go;f(l—i_nl) (n)

:nli—{I;onl((lﬂL%i) +2(1+%¢)3> (2)

= Jim ST+ 2ie2 (14 2ik F 4 ) (2)

n n
=1

n

—dim SO (S4B 282 4 528

—nll_)II;o <n+n22+n3l+n4z>
=1

= Jim (g PO I TGRSV I TURVELES I A URSY >

=6+ 5+ 52+ =44,
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Basic Properties of Integrals

5.13 Theorem: (Linearity) Let f and g be integrable on |a,b] and let ¢ € R. Then f + g
and cf are both integrable on [a,b] and

/ab<f+g)=/abf+/abg
/abcf:c/abf.

Proof: The proof is left as an exercise.

and

5.14 Theorem: (Comparison) Let f and g be integrable on [a,b]. If f(z) < g(x) for all

x € [a,b] then
b b
/fé/ g-

Proof: The proof is left as an exercise.

5.15 Theorem: (Additivity) Let a < b < c and let f : [a,c] = R be bounded. Then f is
integrable on [a, ¢] if and only if f is integrable both on [a,b] and on [b, c], and in this case

b c c
Lreho=Lr
Proof: We omit the proof, which is quite difficult.

a a b
5.16 Definition: We define / f =0 and for a < b we define / f= —/ f.
a b a

5.17 Note: Using the above definition, the Additivity Theorem extends to the case
that a,b,c € R are not in increasing order: for any a,b,c € R, if f is integrable on

[min{a, b, c}, max{a,b, c}] then
[re[o=]1

5.18 Theorem: (Estimation) Let f be integrable on [a,b]. Then |f| is integrable on [a, b|

and , ,
[ o= [n

Proof: We omit the proof, which is quite difficult.
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The Fundamental Theorem of Calculus
5.19 Notation: For a function F', defined on an interval containing [a, b], we write

[F@)K = F(b) — F(a).

5.20 Theorem: (The Fundamental Theorem of Calculus)
(1) Let f be integrable on [a,b]. Define F : [a,b] — R by

0= 1= [ 10

Then F' is continuous on [a,b]. Moreover, if f is continuous at a point = € [a,b] then F is
differentiable at x and

F'(x) = f(z).
(2) Let f be integrable on [a,b]. Let F be differentiable on [a,b] with F' = f. Then
/f :F(b)—F(a).

Proof: (1) Let M be an upper bound for |f] on [a,b]. For a < z,y < b we have

MWy>—fww|:lAyf—1me - yf‘é |

y
/] s/
so given € > 0 we can choose § = 7 to get
ly—z| <d = |F(y)— F(z)| < Mly—z| < M§ =e.

M‘=M|y—fv|

Thus F is continuous on [a,b]. Now suppose that f is continuous at the point z € [a,b].
Note that for a < z,y < b with x # y we have

Fo) - F@) |
e ﬂ)‘

[ )

y—= y—x
- | [ o - s@)a
=—ql /xy‘f“)—f(x)\dt‘.

Given € > 0, since f is continuous at x we can choose § > 0 so that

ly—a| <0 = |f(y) — f(z)| <e

/ 0) @)\dt‘
[t = gmger—el=c.

and then for 0 < |y — x| < § we have

F(y)—F(w)_ (@)
y—x

_Iy xl

<
v — wl
and thus we have F'(z) = f(x) as required.
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(2) Let f be integrable on [a, b]. Suppose that F' is differentiable on [a, b] with F' = f. Let
€ > 0 be arbitrary. Choose 6 > 0 so that for every partition X of [a,b] with | X]| < § we

b n
/ f=) )N
@ i=1
sample points ¢; € [x;_1, ;] as in the Mean Value Theorem so that
F(z;) — F(z;—
Py P = Flai)
Ti— Ti—1

b n
JEED G
a i=1

have < € for every choice of sample points ¢; € [z;_1,x;]. Choose

that is f(t;)Ajx = F(x;) — F(x;—1). Then <€, and

n n

S ft)Air = (F(z;) — F(zi-1)

) = (}(xl) — F(z)) + (F(z2) = F(z1)) + -+ (F(n — 1) = F(zy,))
= —F(z)+ (F(z1) — F(z1)) + - + (F(zn-1) — F(zn-1)) + F(zy,)
= F(x,)— F(z) = F(b) — F(a).

and so < €. Since € was arbitrary,

b b
/f—(F(b)—F(a)) /f—(F(b)—F(a))‘=0-

5.21 Definition: A function F such that F/ = f on an interval is called an antiderivative
of f on the interval.

5.22 Note: If G’ = F' = f on an interval, then (G — F)' = 0, and so G — F' is constant
on the interval, that is G = F + ¢ for some constant c.

5.23 Notation: We write
/f:F—I—c , or /F(x)dx:F(x)—l-c

when F' is an antiderivative of f on an interval, so that the antiderivatives of f on the
interval are the functions of the form G = F' + ¢ for some constant c.

V3 dy
5.24 Example: Find / .
0 1 + .CI?2
Solution: We have T2 tan~! z + ¢, since %(tan_1 x) = Tr 22 and so by Part 2

of the Fundamental Theorem of Calculus, we have

/0 1:;2 = [tan*1$}0 =tan 1v/3 —tan"10 = %
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Chapter 6. Methods of Integration

Basic Integrals

6.1 Note: We have the following list of Basic Integrals

P+
/mpdx: +c, for p# —1 /sec2xdx:tanx+c
p+1
dz
— =In|z|+¢ secxtanx dr =secx + ¢
x
/exdx:em+c /tanxdx:1n|sec:1:\+c
/axdxz +c /secm dx =1In|secz + tanx| + ¢
Ina
dx _1
Inzdr=xnhx—x+c =tan x4+ c
1+ 22
/' d + dz in~'x+
sinz dr = —cosx + ¢ ———— =sin x+c
V1—1x2
/ dr = sinz + 4 ot
cosz dr =sinz + ¢ ———=sec x+c
xvr? —1

Proof: Each of these equalities is easy to verify by taking the derivative of the right side. For
example, we have /lnx dr = xInx—x+csince d—(a:lna:—a:) =1In x—}—x-%—l = Inz, and
x

. secx tanx
we have [ tanx dz = In|secz|+ ¢ since d—(ln |secz|) = ——— = tanx, and we have
x sec

secxrtanx + sec? x

d
/sec:c dx = In|secz+tan x|+ c since — (In |secz+tanzx|) = = sec .
dz secT + tanx

dz.

x2 =5
Nz

Solution: By the Fundamental Theorem of Calculus and Linearity, we have

4 2 4
7 =9 3/2 -1/2 4 4
/1 NG dgc:/1 23/ — 5p~ 2 gy = §x5/2—10x1/2}1:(%—20)—(%—10):%.

4
6.2 Example: Find/
1
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Substitution

6.3 Theorem: (Substitution, or Change of Variables) Let u = g(x) be differentiable on
an interval and let f(u) be continuous on the range of g(z). Then

[ Hotang @ ds = [ fw)du

and »
/ f(g )dm—/u_g(a) f(u)du.

Proof: Let F(u) be an antiderivative of f(u) so F'(u) = f(u) and / Flu (u) + .
Then from the Chain Rule, we have - F(g(x)) = F'(g(x))g/(x) = f(g(x))g/(x), and so
/f dx—F(g(x))—i—c:F(u)—i—c:/f(u)du

and

r=a

— [F(u)}z(_b:(a) = /ui(b) f(u) du.

g(a)

[ steng @ e = [Fa)]_ = Foo) - Fot)

6.4 Notation: For u = g(x) we write du = ¢'(x) dx. More generally, for f(u) = g(x) we
write f/(u)du = ¢’'(x) dz. This notation makes the above theorem easy to remember and

to apply.
6.5 Example: Find/ V2x + 3dx.
Solution: Make the substitution v = 2z + 3 so du = 2dx. Then

/\/293-1-361:1: :/%ul/Qdu = %u3/2 +c= %(2:5-1—3)3/2 +c.
(In applying the Substitution Rule, we used u = g(z) = 2z + 3 and f(u) = Vu = u'/?,
but the notation du = ¢'(x) dx allows us to avoid explicit mention of the function f(u) in
our solution).

6.6 Example: Find /at:egﬁ2 dx.

Solution: Make the substitution u = x° so du = 2z dx. Then

2 2
/aceﬂC dw:/%e“du:%e“—kc:%ew +c.
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Inz

6.7 Example: Find / —dx.
. 1
Solution: Let u =Inx so du = — dx. Then
|
/ﬂdac—/udu: Jut+c=3(lnz)? +ec.

6.8 Example: Find /tanx dx.

sin

Solution: We have tanx = . Let uw =cosz so du = —sinz dz. Then
cos T
sinxz dx —du
tanz dox = = [ — =—Inju|+c=—In|cosz| + ¢ =1n|secx| + c.
CcoST U
dx

6.9 E le: Find .
xample: Fin /x—k\/i

Solution: Let u = v/ so u?> = z and 2udu = dz. Then

/ dx B 2u du _/ 2du
r+vr ) wrtu ) u+l’
Now let v = u + 1 do dv = du. Then

d 2d 2
/:Jc—f—gi/E: u+“1 :/;dv:21n|v]—I—c:2ln|u—l—1]+c:21n(\/§+1)+c

2

d
6.10 Example: Find T
222 + 1
Solution: Let u = 222 + 1 so du = 4x dz. Then
9 1 9
rdr _ Zdu:/z11 _1/2du—[%u1/2]9:%—%:1,
=0 V 21’2 + 1 u=1 \/E 1 1
1
dx
6.11 E le: Find .
xample: Fin /0 1 322

Solution: Let u = v/3x so du = v/3dz. Then

L du V3
/ - / = %tan’lu} =L 1=
0 1+3a: 1+u 3 0 3 3v3
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Integration by Parts

6.12 Theorem: (Integration by Parts) Let f(x) and g(x) be differentiable in an interval.
Then

/ f(2)g (2) dx = f(z)g(z) - / g(2)f'(z) da

SO
b

/:_a f(zx)g'(z) dz = [f(x)g(x) — /g(x)f’(ac) dm]

r=a

d
Proof: By the Product Rule, we have d—f(x)g(sc) = f'(x)g(z) + f(z)g'(z) and so
T

[ F@@) + f@) @) do = Fa)go) +e.
which can be rewritten as
/ f(2)g (2) dx = f(z)g(z) - / o(@)f'(z) da

(We do not need to include the arbitrary constant ¢ since there is now an integral on both
sides of the equation).

6.13 Notation: If we write u = f(z), du = f'(z)dx, v = g(x) and dv = ¢'(x) dx, then
the top formula in the above theorem becomes

/udv:uv—/vdu.

6.14 Note: To find the integral of a polynomial multiplied by an exponential function
or a trigonometric function, try Integrating by parts with u equal to the polynomial (you
may need to integrate by parts repeatedly if the polynomial is of high degree).

To integrate a polynomial (or an algebraic) function times a logarithmic or inverse
trigonometric function, try integrating by parts letting u be the logarithmic or inverse
trigonometric function.

To integrate an exponential function times a sine or cosine function, try integrating
by parts twice, letting v be the exponential function both times.

6.15 Example: Find /:csina: dx.

Solution: Integrate by parts using v = x, du = dxr, v = —cosz and dv = sinx dz to get

/xsinx dx:/udv:uv—/vdUZ—xcosa:—l—/cosx dr = —xcosz +sinz + c.

38



6.16 Example: Find /(a:2 + 1)e® da.

Solution: Integrate by parts using u = 22 + 1, du = 2z dz, v = %e% and dv = e?* dx to

get
/(132—1—1)62"“’6133:/udv:uv—/vdu: %(5172+1)62m—/$€2$d(13.

62m

N|—=

To find [ ze?* dx we integrate by parts again, this time using up = z, dus = dzx, vy =

and dvs = €2? dz to get

/(ac2 +1)e* dr = (2% + 1)e** — /xe% dz

(22 +1)e2* — (% re?® — /% 2z dx)

(22 +1)e** — <% re’® — i62m> +c

N[ —

N~

:i(2m2—2x+3)e2‘”+c

6.17 Example: Find /ln:c dx.

1
Solution: Integrate by parts using v = Inx, du = — dz, v = x and dv = dx to get
x

/lnx dw=xlnx—/1dw=xlnx—x+c.

4
6.18 Example: Find/ Vo lnz dr.
1

1
Solution: Integrate by parts using u = Inx, du = —dzx, v = %xg/z and dv = /2 dz to get
x

4 4 4
/ Vrlnz de = [§x3/21nm—/§x1/2dx] = {%xz)’plnx— gx?’/z
1 1 1
_ (16 32 2 4\ _ 16 28
= (¥n4—F) - (3Inl-3)=Fnd—F.
6.19 Example: Find /ex sinx dx
Solution: Write I = [ e”sinx dz. Integrate by parts twice, first using u; = e, du = e* dx,
v = —cosz and dv = sinx dx, and next using us = €%, dus = e*dx, vo = sinx and

dvy = cosx dx to get

I:—e:‘cosx-i—/excosx dx
= —e"cosx + <emsinx—/emsinx dx) :

= —¢e%cosx+eFsinz — 1

Thus 2] = —e® cosz + e*sinz + ¢ and so I = L (sinz — cosz)e” + d.
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6.20 Example: Let n > 2 be an integer. Find a formula for [ sin” z dx in terms of

/ sin” "2z dz, and hence find / sin? z dz and / sin* z dx.

Solution: Let I = /sin" xdr = /sin"_1 zsinz dz. Integrate by parts using v = sin” ! z,

du= (n—1)sin" 2z coszdr, v=—cosz and dv = sinz dz to get

I=—sin""tacosx + /(n —1)sin" ?zcos’z dx
= —sin" txcosx + /(n —1)sin" 2 z(1 — sin® z) da
= —sin" ' zcosz + (n—1) /sin”_Qxdx —(n—=1)I.
Add (n — 1)I to both sides to get n] = —sin" 'z cosz + (n — 1) /s.in”2 x dz, that is

/sin”x dr = —% sin" 'xcosz + "T_l sin" 2 x dx .

In particular, when n = 2 we get
. 2 1 1 1 1
/sm xdx_—§sma:cosw+§/1dx——§smsccosx+§x+c
and when n = 4 we get

/sin4x dx = —}lsin3xcosx+§/sin2x dxr = —isinsxcosx—%sinxcosx—l—%x—l—c.

6.21 Example: Let n > 2 be an integer. Find a formula for / sec x dx in terms of

/sec"2 x dx, and hence find /sec3 xr dr.

Solution: Let I = / sec" x dr = / sec" 2 xsec’x dr. Using Integrate by Parts with

u=sec" 2z, du = (n—2)sec" ?xtanx dzr, v =tanx and dv = tanx dz, we obtain

I =sec" ?ztanx — /(n —2)sec" 2 zrtan®z dx
=sec" 2ztanz — /(n —2)sec" 2 z(sec’z — 1) da
=sec" 2ztanz — (n — 2)I + (n — 2) /secn_2 x dx
Add (n—2)I to both sides to get (n—1)I = sec” 2z tanz + (n — 2) /sec”_2 x dx, that is

/secn x dx = ﬁ sec" 2 rtanx + Z—j sec" 2z dx.

In particular, when n = 3 we get

/SeC3£L‘ dx = %secxtanx+%/secx der = %secxtanx+%ln}secx+tanx +c
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Trigonometric Integrals

6.22 Note: To find /f(sin ) cos?™ Mz dx, write cos®™ !z = (1 —sin® 2)" cos = then try

the substitution v = sinx, du = cosx dx.

To find /f(cos z)sin®" 'z dx, write sin® ™'z = (1 — cos?z)"sinz then try the
substitution © = cosz, du = —sinx dx.
To find / sin®™ x cos®™ x d, try using the trigonometric identities sin® § = %—% cos 26

and cos®§ = 1 + % cos20. Alternatively, write cos®™ z = (1 — sin® z)" and use the formula
from Example 2.20.

To find /f(tan x) sec?™ 2 x dx, write sec?”t2 2 = (1 4 tan® )" sec? 2 dz and try the
substitution u = tan z, du = sec? = dz.

2
— 1 n
To find /f(sec x)tan®" 'z dx, write tan®" gz = M

secx

secrtanz dx and
try the substitution u = secx, du = secxtanz dz.
To find / sec?™ ™!z tan®" 2 dx, write tan?" x = (sec? z — 1) and use the formula from

Example 2.21.

w/3 1.3
6.23 Example: Find/ s1n2:1: dx.
0 cos? x
Solution: Make the substitution v = cosz so du = —sinz dx. Then
/3 sin® @ ™/3 (1 — cos? ) sin  dx 12 (1 —u?)du 12
2 dx = 2 = - 5 = - +1 du
0 cos? x 0 cos? x 1 U 1 U
1 1/2 1 1
:[5+u]1 — @2+ -a+1=1.

6.24 Example: Find /sinG:I: dx.

Solution: We could use the method of example 2.20, but we choose instead to use the
half-angle formulas. We have

/4 /4 3 /4
sin® z dx = (l —1cos 290) dx = L3 cos2x + 3 cos?2x — L cos® 22 dx
0 o 27 2 0 8 8 8 8

w/4
:/0 %—%(308290—#%(%—1—%008490)—%(l—sin22x)cos2mdm

w/4
:/ i—%COSZQZ—F13—GCOS4$—|—%811122$COSZZCCZ£C

/4
= [ix— isin2x+g’—4$in4x+ 4—188i113 23:]

0
57 1 1 _ 5r 11
64 11718 = 6a 48 -
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/4 sect

0 \/m
Solution: Make the substitution v = tan = so du = sec? z dz. Then
sect x /4 (tan2 z 4+ 1) sec? z dx Y(w? +1)du
Vi1, Vianz 11 /o Vut1

Now make the substitution v =u +1souw=v —1 and du = dv. Then

1 Zw—1)2+1 2
:j% %dv:/ 032 2912 12072 gy
u 1 1

2
= [%v5/2—‘—*v3/2+4v1/2]1= (242 _ 423 4 4 f9) — (2 -4 1 4)

_ (24-40460)v2 _ 6-20460 _ 441246
15) 5~ 15 -

6.25 Example: Find

w/4
6.26 Example: Find / tan x dx.
0

Solution: Note first that

4 2 2

tan? z = tan® a:(sec2 x—1)= tan? zsec? z — tan? z = tan? rsec’ x — sec?z + 1.

To find / tan® z sec® x dx, make the substitution v = tan 6, du = sec? 6 df to get

/taanseCQx dmz/quu: %u3+c: %tan3x+c.

Thus we have

/4 /4
/ tan? z dx = / tan® zsec’ z —sec?z + 1
0 0

I

— |1 3 _1 _ 2
—[gtan r—tanr +x =z -1+5=7—3.

6.27 Note: To find [ sin(ax)sin(bzx) dzx , /cos(a:c) cos(bx) dx , or /sin(ax) cos(bx) dx,
use one of the identities
cos(A — B) —cos(A+ B) = 2sin Asin B
cos(A — B) + cos(A + B) = 2cos Acos B
sin(A — B) + sin(A + B) = 2sin Acos B.

w/6
6.28 Example: Find / cos 3x cos 2x dx.
0

Solution: Since 2 cos 3z cos 2x = cos(3z — 2x) + cos(3z + 2x) = cos z + cos bz, we have

w/6

/6 /6
/0 cosZa:cosSxd.r:/o 5 (cosz+cosbz) do = [%Sinx—i—%sinSx]o = its =1
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Inverse Trigonometric Substitution

6.29 Note: To solve an integral involving /a2 + b?(x + ¢)2 or 1/(a® +b?(z +c)?), try the
substitution § = tan™! @ so that atand = b(x + ¢), asecd = \/a? + b?(x + ¢)? and
asec®0df = bdz.

For an integral involving \/a? — b%(z + ¢)2, try the substitution § = sin™! —b(xjc) SO
that asin® = b(z + ¢), acosf = \/a? — b2(z + ¢)? and acosf df = bdx.
For an integral involving \/b2(m + 6)2 — a2, try the substitution 6 = sec—1 b(m;—c) 0

that asecf = b(z + ¢), atanf = \/b?(z + ¢)? — a? and asecftanddf = bdzx.
1
. dx
6.30 Example: Flnd/o m
Solution: Let 2sinf = /32 so 2cosf = /4 — 322 and 2cos 6 df = v/3dx. Then

! ©/3 2 cos 6 df /3
dx _ /3 cosvav . /s
/o (4—322)32 /0 (2cos0)3 /o a3 e’ 01l = LM tan 9] -

6.31 Example: Find

N

/ 5 da

1 22Vx?2+3 .

Solution: Let v/3 tanf = z so v/3 secd = vz2 + 3 and v/3 sec?20dl = dz, and also let
u = sin# so du = cosdf. Then

/ / V3 sec?6do _/”/41 sec 6 _/"/4lcos(9d9
xQ\/xQ x/6 3tan? 0+/3sect 7/6 3 tan?6 /6 3 sin” 9
1/V2 1/v2
:// R N S RV PSR §
1/2 3U2 3U 1/2 3 3 3

6.32 Example: Find

1?14
Tz @

Solution: Let 2sec = x so 2tanf = vVx2 — 4 and 2secftanf df = dx. Then

/ Vva? -4 /”/Stan O secdb /”/3tan29d9_/”/3sec26—1
0 0

sec? 6 sec 0 sec 0

do

/3
:/ secf — cos 0 d@—[ln|se€«9+tan9|—sme} zln(2+\/§)—\/7§.
0

3
6.33 Example: Find/ (42 — 2%)3/2 d.
2
Solution: Let 2sinf = x — 2 so 2cosf = V4x — x2 and 2cosf dO = dx. Then
3 /6 /6
/ (4z — 22)3/2 dx = / 16 cos* 0 df = / 4 (1 + cos20)*do
2 0 0
= /4+8cos29+4cos,229 df = /4+800829+2+200840 do

/6
- [60+4sin29+%sin49] —r+2V3+ B =g 08
0
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Partial Fractions

()

6.34 Note: We can find the integral of a rational function /

as follows:
g(x)
Step 1: use long division to find polynomials ¢(x) and r(z) with degr(z) < deg g(x) such
f(x) r(z)
that f(x) = g(z)q(x) 4+ r(z) for all x, and note that =q(x) + —= so
() = glaa(z) + r(a) P g+ o

5@ o~ oo+ ") g
[ ey e= [ o+ G e
(If deg f(x) < degg(x) then g(x) =0 and r(z) = f(x)).

Step 2: factor g(x) into linear and irreducible quadratic factors.

Step 3: write rgxg as a sum of terms so that for each linear factor (ax + b)* we have the
g(x
k terms
A A A
(ax +b)  (ax +b)? (ax + b)k

and for each irreducible quadratic factor (az? + bz + ¢)* we have the k terms
Bix + (4 Box + Cy Brx + Cy,

(ax? + bx + ) * (ax? + bx + ¢)? L (az? + bx + )k’
Loor(z) . . ) or(z) .. . ) .
Writing @) in this form is called splitting @) into its partial fractions decomposition.
gl gz

Step 4: solve the integral.

6.35 Example: If g(x) = z(x — 1)3(2? + 22 + 3)? then in step 3 we would write
r(z) A B C D Ex+ F Gr+ H
=4+ + + + + :
glz) = -1 (x—1)2 (z—-1)3 22+4+2x+4+3 (22+2x+3)?

and then solve for the various constants.

3
6.36 Example: Find/ (
2

-7 A B C
Solution: In order to get v = + + we need
(r—1)2(x+2) z—-1 (x—12 z+2

Az —1)(z+2)+Bz+2)+Cx - 1) =2 7.
Equating coefficients gives A+ C =0, A+ B—2C =1 and —2A+ 2B + C = —7. Solving

these three equations gives A =1, B = —2 and C = —1, and so we have
/3 x—7 p /3 A B C
€Tr =
9 (x—=1)2(z+2) s x—1 (z—1)2 x+42
3
1 2 1 3
- - - d :[1 D42 Iz 42
/230—1 @—12 z+2"" Bz —1)+ 35 — I+ )2

:(ln2+1—1n5)—(2—1n4):ln§—1.

44



V3.4 .3 1
6.37 Example: Find / I?)L dx.
1 T2+
4 .3 1 A2 1
Solution: Use long division of polynomials to show that “L =zr—1+ xs—k—a:—f—
x> +x x> +x

B C —z? 1
ST =~ weneed A(a? + 1) + (Ba + C)(x) =

—22 + 2 + 1. Equating coefficients gives A+ B = —1, C = 1 and A = 1. Solving these
three equations gives A =1, B = —2 and C' = 1. Thus

V3 4 3 V3
zt—z° +1 1 2z 1
LA L L d
/1 Bz /1 . +x x2+1+x2+1 “

A
Next, note that to get — +
x

V3

1
=(2-V3+Ilnv3-n4+%)— (1 -1-I2+7)

=23+ 4+ L.

= [% 2> —z+Inz—1In(z? + 1) + tan™! a:}

2 5 4 3 2
6.38 Example: Find [ :/1 & +x$2(jf_ 23’1 5)2590 2 e,
Solution: To get
é+§+ Cx+ D Ex+ F :x5+x4—2x3—2x2—5x—25
r  x?2 22-2x+4+5 (2?2 —-2x+5)? x?(x? — 2x 4+ 5)?

we need Az(z? —2x+5)?+ B(2? —22+5)? + (Cx+ D)(2?)(2? =22 +5) + (Ex + F)(2?) =
x® + 2 — 223 — 222 — 5z — 25. Expanding the left hand side then equating coefficients
gives the 5 equations

A+C=1, -4A+B—-20+D=1, 14A—4B+5C - 2D+ E = —2
—20A+14B+5D+F=-2, 25A—-20B=-5, 25B=-25
Solving these equations gives A = -1, B=—-1,C =2, D=2, E=2and FF = —18, so

21 1 21 4 2 22 — 18
I:/l _5_F+x2—2x+5+(:€2—2x+5}2 dx
21 1 22-2+44 2r — 2 — 16
/1 _5_P+x2—2x+5+(x2—2x+5)2
11 22 — 2 4 2z — 2 16
:/1 _5_F+x2—2x+5+x2—2x+5+(;U2_2;c+5)2_(x2_2$+5)2 dx

dx

1 1 1

We have / —dr =Inx+cand / — dx = ——+c. Make the substitution u = 2% — 2245,
T x x

du = (2z — 2) dx to get

2z — 2

/ (22 — 2) dx /du -1 N -1 n
= 5=—+c=——"7—"+c
(x?2 —2x 4+ 5)? u? u 2 —2x+5

Make the substitution 2tanf = x — 1, 2secf = V22 — 22 + 5, 2sec?2 0 df = dx to get

4dx 4-2sec?®0do
—— = [ = [ 2d0 =20+ c=2tan"! (&2
/x2—2x+5 / (2sech)? / te an! (%57) +e

and
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and

16 dz 16 - 2sec? 0 db 2df
— —_— e _ = 2 2 — 1 2
/ (22 — 22 +5)2 / (2sec)* 40 / sec2 / cos™ 0 df / +cos 26 df

=0+ 3 sin20+c=0+sinfcosh+c=tan' (1) + mg(—x2_331-|25 e

Thus we have

1 -1
I:[—lnx—l——+1n(x2—2x+5)+2tan_1x—
x
B 1 —tan_lx_l— 2(x — 1)
x2 —2x+5 2 x2—2x+5
| x2—2x+5+1 2e—1 el 2
- nh- -
x x  x?2—-2x+5 2 |,

_ 5 .1 3 11 1
=(Im3+5-2+tan'5) — (Ind+1-7)
:ln%—é—g—f—tan_l%.

sec® x dx

6.39 Example: Find/ .
secx — 1

Solution: Multiply the numerator and denominator by secx + 1 to get

3 3 4 3 4 3
sec® x dx sec® x(secx + 1 sec” x + sec® x sec” x sec” x

/ -/ < >dx:/ L U e
secx — 1 (sec?x — 1) tan® x tan® x tan® x

Make the substitution u = tanz, du = sec? x dx to get

sect x (tan? x + 1) sec? z dx u? +1
s—dx = 5 = 5— du
tan® x tan® x U

1 1
= 1—|——2du:u——+c:tanx—cotx—|—c.
U

8

u

Make the substitution v = sinx, dv = cosz dr and integrate by parts to get

sec® x dx cosz dx dv
s—dr= | —————5— = 2 N 2 2) .2
tan® x cosxsin” (1 —sin” z) sin” x (1-v?)wv

1 1 z z 1
= [ — 4+ — dv= 2 2 —d
/1—v2+v2 v /1—v+1+v+v2 v

1 1 1 1 14w 1
_—ilnll—v|+§ln\1+vl—;—l—c_§1n‘1_v -+
— 1l Lisinz _ _ 1y, (4sina)? — I |Lfsinz | _
=5lni=r> —cscx+c=5ln (cos2)? cscx + ¢ =In |~ cscx + c.

sec3
Thus | ———— dz = tanx — cotz + In|secx + tanz| — cscx + c.
secx — 1
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Improper Integration

6.40 Definition: Suppose that f : [a,b) — R is integrable on every closed interval
contained in [a,b). Then we define the improper integral of f on [a,b) to be

/abfztgrg/:f

provided the limit exists and, when the improper integral exists and is finite, we say
that f is improperly integrable on [a,b), (or that the improper integral of f on [a,b)
converges). In this definition we also allow the case that b = oo, and then we have

[r=m [

Similarly, if f : (a,b] — R is integrable on every closed interval in (a,b] then we define the
improper integral of f on (a,b] to be

[r=m [1

provided the limit exists, and we say that f is improperly integrable on (a,b] when the
improper integral is finite. In this definition we also allow the case that a = —oco. For a
function f : (a,b) — R, which is integrable on every closed interval in (a,b), we choose a
point ¢ € (a,b), then we define the improper integral of f on (a,b) to be

/abf=/:f+/cbf

provided that both of the improper integrals on the right exist and can be added, and we
say that f is improperly integrable on (a,b) when both of the improper integrals on
the right are finite. As an exercise, you should verify that the value of this integral does
not depend on the choice of c.
6.41 Notation: For a function F' : (a,b) — R write
-

F } — lim F(z)— lim F(z).

(7], = Jim P = fim, P(z)
We use similar notation when F': [a,b) — R and when F': (a,b] — R.

6.42 Note: Suppose that f : (a,b) — R is integrable on every closed interval contained
in (a,b) and that F' is differentiable with F' = f on (a,b). Then

[

A similar result holds for functions defined on half-open intervals [a,b) and (a, b].

Proof: Choose ¢ € (a,b). By the Fundamental Theorem of Calculus we have
/ /f—i—/f-hm/f—i—hm/f
8—>CL
=l - F 1 F(t
lim (F(c) = F(s)) + lim (F(t) -

— lim F(t) — lim F(s) = [F(a:)]

t—b— s—at
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1 1
6.43 Example: Find / d_a: and find / d_ac
o 7T 0o VT

Solution: We have

Olci_x = [Inx}; =0—(—00) =00

and

/1%=[2ﬁ];:2—0:2.

1
d
6.44 Example: Show that / —j converges if and only if p < 1.
o T

Solution: The case that p = 1 was dealt with in the previous example. If p > 1 so that
p— 1> 0 then we have
1

1
de _ | -1 :(_L>_(_OO):OO
A I
and if p < 1 so that 1 —p > 0 then we have

) < () 0=

o P L=plo+

> d
6.45 Example: Show that / —z converges if and only if p > 1.
1 X

Solution: When p = 1 we have

[mi—i:/looéz[lnx}:o:oo—():oo.

When p > 1 so that p — 1 > 0 we have

7%= [=mam], -0 ()=

1
and if p < 1 so that 1 — p > 0 then we have

[ -] - - () -

1
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6.46 Example: Find/ e *dx.
0

Solution: We have -
/ _xd:c— —e—m] —0—(-1)=1.
0 0

1

6.47 Example: Find/ Inzdx.
0

Solution: We have

/Olnxdx:[azlnx—x] =(-1)—(0)=—-1,

0+

Inz P .
since ’Hopital’s Rule gives lim zlnx = lim — = lim —*— = lim —z = 0.
z—0t z—0t r—0t — o3 z—0t

IS

6.48 Theorem: (Comparison) Let f and g be integrable on closed subintervals of (a,b),
and suppose that 0 < f(z) < g(x) for all z € (a,b). If g is improperly integrable on (a,b)

then so is f and then we have
b b
/ f< / g
a a
b

On the other hand, if / f diverges then / g diverges, too. A similar result holds for
functions f and g defined on half-open intervals.

Proof: The proof is left as an exercise.
/2
6.49 Example: Determine whether / vsecx dxr converges.

Solution: For0 <z < Z

\/ <
secx m

Letu:l—;az so that du———d:v Then

/ ﬁd"’”‘/

which is finite. It follows that / vsecx dxr converges, by comparison.
0

w12 — [_7Tu1/2}0:7T
1

o0
6.50 Example: Determine whether / e~ dr converges.
0

< 1
— 14 x2

Solution: For 0 < u we have e“ > 1+u, so for 0 < x we have e’ > 1422, so e’

< dx R
2:[tan x] =3,
o l+=z 0

(e.]
. . . — 2 .
which is finite, we see that / e~ % dx converges, by comparison.
0

Since

49



6.51 Theorem: (Estimation) Let f be integrable on closed subintervals of (a,b). If | f| is
improperly integrable on (a,b) then so is f, and then we have

/abf s/abm-

A similar result holds for functions defined on half-open intervals.

Proof: The proof is left as an exercise.

6.52 Example: Show that / S dx converges.
0 Xz
1 oo -
Solution: We shall show that both of the integrals / e dx and / S dx converge.
: o T 7
Since lim ¥ — 1, the function f defined by f(0) =1 and f(z) = Y for 2> 0s

x—0t T
continuous (hence integrable) on [0, 1]. By part 1 of the Fundamental Theorem of Calculus,
1

the function / f(x) dx is a continuous function of r for r € [0, 1] and so we have

1 1 .
sin x _ sin x
dr = lim dr = lim f )dx = f
0 x r—0+ r x r—0+

1 .
. ) sin x
which is finite, so / —— dx converges.
0o X

Integrate by parts using u = %, du = —x% dx, v = —sinz and dv = cosz dx to get

. o0
* sinx CcOS T > cosx > cosx
de = | — - 5— dx = cos(1) — 5 d.
1 X X 1 1 X 1 X

) CoS T 1 > dx cos T
Since 5| < — and — converges, we see that dx converges too, by
x x 1z 1

COS T

[o.@]
comparison. Thus / dx also converges by the Estimation Theorem.
1

22
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Chapter 7. Series

Series

7.1 Definition: Let {a,},>r be a sequence. The series Zan is defined to be the
n>k
sequence {S;};>r where
!
S = Zan:ak+ak+1+"'+al'

n=~k

The term S is called the {*" partial sum of the series Z an. The sum of the series,
n>k
denoted by

00
S = Zan:ak+ak+1+ak+2+--- ,
n=k
is the limit of the sequence of partial sums, if it exists, and we say the series converges
when the sum exists and is finite.

7.2 Example: (Geometric Series) Show that for a # 0, the series Z a, converges if and
n>k
only if |r| < 1, and that in this case

(e o]
" ar®
E ar = .
1—r
n==k

Solution: The [*} partial sum is

oo
S = Zar” =ar® + ar* Tt + a2+ art.
n=~k
When r = 1 we have S; = a(l — k + 1) and so llim S; = £o0o (+o00 when a > 0 and
—00
—o00 when a < 0). When 7 # 1 we have rS; = ar**t! + ar**2 + ... 4 ar! + ar'*!, so
S — 1S =ark — arlt! = ark(l — rl_kH) and so

ark(1 — rl=k+1)

S, =
: 1—r
When r > 1, llim rI=F Tl = o0 and so llim S; = 400 (+00 when a > 0 and —oco when
— 00 — 00
a < 0). When r < —1, lim rl=**1 does not exist, and so neither does lim S;. When
l—o0 N l—o0
ar
Ir| < 1, we have lim '~ =0 and so lim S; = , as required.
l—o00 l—o00 1—r
o 3n—|—1
7.3 Example: Find Z CP
n=-—1

Solution: This is a geometric series. By the formula in the previous example, we have
3y —

[e%e] 3n+1 0 o 2 6 - 4

3.3 W 637
2: 2n—1:§: —1,n:§: 1) T {_3 T 1 T 9=
5 5 1 6(3) 1(4) 43 32
1

n=—1 n—=— n=-—1

(00

o1



1
n2 +2n’

7.4 Example: (Telescoping Series) Find Z
i=1

Solution: We use a partial fractions decomposition. The {*®

l 1 Lo/ 1 l
R e R O Caee ) R CRE)

partial sum is

since all the other terms cancel. Thus the sum of the series is
5= Jm si=3(1+4) =1
7.5 Theorem: (First Finitely Many Terms do Not Affect Convergence) Let {ay},>i be a
sequence. Then for any integer m > k, the series Z an converges if and only if the series
n>k
Z an converges, and in this case

n>m

oo oo
D an=(ak+arii - Fam1)+ Y an.
n==k n=m

l !
Proof: Let S; = Z a, and let T = Z a,. Then for all [ > m we have

n==k n=m
Sy = (ar + aps1+ -+ am_1) + 1,

and so {9} converges if and only if {71}} converges, and in this case

lim S; = (ak+ak+1+---+am,1) + lim T;.
l—o0

[— o0

7.6 Note: Since the first finitely many terms do not affect the convergence of a series, we

often omit the subscript n > k in the expression Z a, when we are interested in whether
n>k
or not the series converges. On the other hand, we cannot omit the subscript n = k£ when

(o @)
we are interested in the value of the sum Z Q.

n==k

7.7 Definition: When we approximate a value x by the value y, the (absolute) error in
our approximation is |z — y|.

7.8 Note: If Z an converges and [ > k then, by the above theorem, so does Z ap. If

n>k n>l+1

00 l
we approximate the sum S = Z a, by the [*'partial sum S; = Z an, then the error in

n==k n==k
our approximation is

oo
1S=S|=|> an
n=Il+1
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7.9 Theorem: (Linearity) If ) a, and )b, are convergent series then
[e.e] oo

(1) for any real number ¢, Y ca,, converges and Z cay =c Z ay , and

n=~k n=k
(2) the series Y (ay + b,) converges and Z(an +b,) = Z an + Z by, -
n=k n=k n==k

Proof: This follows immediately from the Linearity Theorem for sequences.

7.10 Theorem: (Series of Positive Terms) Let Y a,, be a series.

(1) If a,, > 0 for all n > k then either ) a,, converges or Z ap = 00.

n=~k
%)

(2) If a,, <0 for all n > k then either ) a,, converges or Z ap = —00.

n=~k
Proof: This follows from the Monotone Convergence Theorem for sequences. Indeed if
a, > 0 for all n > k, then {S;} is increasing (since S;41 = S; + a;41 > S for all [). Either
{S:} is bounded above, in which case {S;} converges hence ) a,, converges, or {S;} is

[ee]
unbounded, in which case lim S; = oo hence 5 ay, = 00.
n—oo k
n=
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Convergence Tests

7.11 Theorem: (Divergence Test) If > a,, converges then lim a, = 0. Equivalently, if

n—oo

lim a, either does not exist, or exists but is not equal to 0, then ) a,, diverges.
n—oo

Proof: Suppose that > a, converges, and say Z a, = S. Let S; be the [*'partial sum.

Then lim S; =S5 = lim S;_1, and we have q; _Sl —S5;_1, and so
l—o0

hmal_thl—thl 1=5—-5=0.

l—o00
7.12 Example: Determine whether 3 e'/™ converges.

Solution: Since lim /™ =¢¥ =1, S el/™ diverges by the Divergence Test.

n— oo

7.13 Note: The converse of the Divergence Test is false. For example, as we shall see in
Example 6.27 below, > 1 diverges even though lim 1 =0.

n— o0

7.14 Theorem: (Integral Test) Let f(x) be positive and decreasing for x > k, and let
a, = f(n) for all integersn > k. Then > a,, converges if and only if / f(x) dx converges,
k

and in this case, for anyl > k we have

Proof: Let T, be the m'" partial sum for Z ap, S0 Tp, = Z a,. Note that since
n>l+1 n=I[l+1
is decreasing, it is integrable on any closed interval. Also, for each n > [ we have
g g y

ay, = f()<f()forallx€[n—1n] so/ f(x da:>/ ap dx = a, and so
T,, = Z Z fda:—/f da:</f
n=I[+1 n=Il+1Y"" 1
Since f(n) = a, is positive, the sequence {T,} is increasing. If / f converges, then
k

{T,,} is bounded above by / f(z)dz, and so it converges with lim 7T, < / f(x)dx.
m— 00

! l
Similarly, for each n > [ we have a, = f(n) > f(z) for all x € [n,n + 1] so that

n+1 n+1
/ f(z)dz < / andx = a, and so

n+1 m-+1
T = Z apn, > Z / f(x)da::/ f(x)dx.
n=Il+1 n=l+1"" I+1

() m+1 [ee] o0
If f converges, then lim T,, > lim flx)dz = f(x)dz. If/ f =

k m—o0 m—o0 1+1 1+1 k

m—+1

then lim f(z)dr = 00, and so lim T,, = oo too, by Comparison.
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1
7.15 Example: (p-Series) Show that the series E — converges if and only if p > 1. In
n
n>1
particular, the harmonic series Y 1 diverges.

1 1
Solution: If p < 0 then lim — = oo and if p = 0 then lim — = 1, so in either case
n—oo NP n—oo NP

Z diverges by the Divergence Test. Suppose that p > 0. Let a, = ﬁ for integers
n 2 1 and let f(z) = 2L for real numbers « > 1. Note that f(z) is positive and decreasing

for x > 1 and a,, = f(n) for all n > 1. Since we know that / f(x) dx converges if and
1

only if p > 1, it follows from the Integral Test that > a,, converges if and only if p > 1.

1
7.16 Example: Approximate S = Z —— so that the error is at most 100

Solution: We let a,, = 557 and f(z) = 51 so that we can apply the Integral Test. If we
choose to approximate the sum S by the {*"partial sum S;, then the error is

17 1
F=s-S= < [ amde= |- 5] =5
n=Il+1 l

and so to insure that £ < —0 we can choose [ so that 1 < 100, that is [ > 50. Since it
would be tedious to add up the first 50 terms of the serles we take an alternate approach.
The Integral Test gives us upper and lower bounds: we have

f()dx<S S < / f(x

I+1
1
<S5-5 <=
w+U—S 1S
S+t <S< S+4-
PTouyn 7 PP ar

If approximate S using the midpoint of the upper and lower bounds, that is if we make
the approximation S = S; + % <% + ﬁ), then the error F will be at most half of the
difference of the bounds:

1 1 _ 1
B < (ﬂ - 2(z+1)> — 4(+1) -

N[ +—

To get E < 55 we want 4l(l1+1) < 145, that is [ (I + 1) > 25, and so we can take [ = 5.

Thus we estimate

~ 1(1 4y 1y_ 11,1 .1 ;1 . 1 . 1 _ 5929
S_S5+2(10+12)_2+8+18+32+5O+20+Q4_7200'

(Incidentally, the exact value of this sum is 7{—; )
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7.17 Theorem: (Comparison Test) Let 0 < a,, < b,, for alln > k. Then if > b, converges
then so does > a,, and in this case,

00 00
Z a, < Z b, .
n=~k n==k

l l
Proof: Let S; = Z a, and let T; = Z by,. Since 0 < a,, b, for all n, the sequences {S;}
n=~k n=k
and {T;} are increasing. Since a,, < b, for all n we have S; < T; for all [. Suppose that

> b, converges with say Z b, = T so that lim {Tl} =T. Then S; <T; < T for all I, so

n==k

{S;} is increasing and bounded above, hence convergent, and lim S; < lhm T;.
[— 00 — 00

7.18 Example: Determine whether Z converges.

\/n+

Solution: Note that 0 < T 3+1 < \/%3 = n31/2 for alln > 1, and # converges since it

is a p-series with p = 5, and so ) \/711374_1 also converges, by the Comparison Test.

7.19 Example: Determine whether Z tan% converges.
n>1

Solution: For 0 < z < 5 we have x < tanx, so for n > 1 we have 0 < - < tan . Since the
harmonic series Z dlverges the series Ztan — also diverges by the Comparlson Test.

7.20 Example: Approximate S = Z — so that the error is at most 100.
L1
Solution: If we make the approximation S = S; = Z - then the error is
‘= nl
o0

1
E=8-8=) -
n:H—ln'

1 1 1 1
= T T o o

1 1 1 1
= 03D (1 Tt Tt tem T tmoeas T )

1 1 1 1

_oa b
= F0! 1
R
_ 142
= Dt
where we used the Comparison Test and the formula for the sum of a geometric series. To
get B < m we can choose [ so that % < 100 By trial and error, we find that we

can take [ = 4, so we make the approximation
S8 =1+14+1+1+5=2.

(Incidentally, we shall see later that the exact value of this sum is e).
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7.21 Theorem: (Limit Comparison Test) Let a, > 0 and let b, > 0 for all n > k.
Suppose that lim dn _ r. Then

n— oo n
(1) if r = 00 and ) a,, converges then so does » . by,
(2) if r =0 and ) b,, converges then so does ) a,, and
(3) if 0 < r < oo then ) a, converges if and only if Y b, converges.

Proof: If lim % = oo, then for large n we have ‘g—" > 1 so that a,, > b,, and so if ) a,
n—oo ’n

converges, then so does »_ b, by the Comparison Test. If lim %= =

n—oo b"
have “" < 180 a, < by, and so if Y b, converges then so does > a,, by the Comparison

Test. Suppose that hm ‘;Z =r with 0 < r < co. Choose N so that when n > N we have

0 then for large n we

= —r‘ < § so that § < Z” < 3T and hence

0 < 50n <an§ﬁb .

If > ay converges, then ) £b, converges by the Comparison Test, and hence ) b, con-
verges by linearity. If )b, converges, then ) 37"b converges by linearity, and hence so
does > a,, by the Comparison Test.

7.22 Example: Determine whether » \/% converges.

Solution: Note that we cannot use the Same argument that we used earlier to show that
> ﬁ converges, because NG %’>+1 < 3/2 but \/ L — > 3/2 \/Ne use a different approach.
3/2
_ 1 = i T g o
Let a, = i1 and let b, = 3/2 Then lim 2° bn = nh_)ngo N nh—{go ﬂ 1,
and > b, = > # converges (its a p-series with p = %), and so Y a, converges too, by
the Limit Comparison Test.

57



7.23 Theorem: (Ratio Test) Let a,, > 0 for all n > k. Suppose lim ntl _ ). Then

n—00 QU
(1) if r < 1 then ) a,, converges, and
(2) if r > 1 then lim a, =00 50 ) a, = 0.
n—oo

Proof: Suppose that lim “2*: = < 1. Choose s with r < s < 1, and then choose N so

n—oo 9n
that when n > N we have ag—:l < s and hence a,,11 < sa,. Fix k> N. Then ay < sag,
42 < Sap41 < s2ay, k43 < SQp42 < s3ay, and so on, so we have a, < b, = s" *a;, for
all n > k. Since ) b, is geometric with ratio s < 1, it converges, and hence so does > a,,
by the Comparison Test.
Now suppose that nli—>Holo G’Z—:l =1 > 1. Choose s with 1 < s < r, then choose N so

that when n > N we have a;“ > s and hence a, 41 > sa,. Fix k > N. Then as above

n

an > by, = s" *aqy, for all n > k, and lim b,, = oo, so lim a, = oo too.
n—oo n—oo
7.24 Example: Determine whether » % converges.
. n n+1
Solution: Let a,, = ‘Z—, Then % = h . % = HLH — 0 as n — oo, and so Y a,

converges by the Ratio Test.

7.25 Note: If lim % =1, then ) a,, could converge or diverge. For example, if a,, = %

n—oo
. . 2
then “2+ = 7 — lasn — ocoand ) a, diverges, but if b, = = then bg“ = (n’}r—l)Q —1

as n — oo and ) _ b, converges.

7.26 Theorem: (Root Test) Let a,, > 0 for all n > k. Suppose that lim {/a,, = r. Then
n—oo
(1) if r < 1 then ) a,, converges, and
(2) if r > 1 then lim a, = 00 50 ) a, = 0.
n—oo

Proof: The proof is left as an exercise. It is similar to the proof of the Ratio Test.
2

n
7.27 Example: Determine whether » (nLH) converges.

n2 n n
Solution: Let a, = ( n ) . Then /a,, = <L> = e"ln(n_ﬂ), and by I'Hopital’s Rule

n_—|—1 n+1
In (5%) 1 2
we have lim nln (L> — lim — 2 gy @D g, T —1, and so
n—oo n+1 T—00 % T— 00 —9%2 T— 00 (x —+ 1)2
lim /a, =e ! < 1. Thus > a, converges by the Root Test.

n—oo
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7.28 Definition: A sequence {ay},>k is said to be alternating when either we have
an = (=1)"|a,| for all n > k or we have a,, = (—1)""1|a,| for all n > k.

7.29 Theorem: (Aternating Series Test) Let {a,}n>r be an alternating series. If {|a,|}

is decreasing with hm lan| =0 then Y a, converges, and in this case
n— n>k

< lak|.

oo
> o
n==~k

Proof: To simplify notation, we give the proof in the case that k = 0 and a,, = (—1)"|a,]|.
!

Suppose that {|a,|} is decreasing with |a,| — 0. Let S} = Zan. We consider the
n=0

sequences {S} and {Sy_1} of even and odd partial sums. Note that since {|a,|} is

decreasing, we have

Sop — So1—1 = |ag| — |agi—1| <0
SO {Sgl} is decreasing, and we have
Sar = lao| — |ar| + |az| — lag| + -+ - + [agi—2| — [azi—1] + [az]
= (lao| — laal) + (laz| — las]) +--- + (lazi—2| = |azgi—1]) + |ax]
> |ao| — |ai |

and so {Sy} is bounded below by |ag| — |a1]. Thus {S} converges by the Monotone
Convergence Theorem. Similarly, {Sgl 1} is increasing and bounded above by |ag|, so it
also converges, and we have hm Sar—1 < |ag|-

Finally we note that since |an| — 0, taking the limit on both sides of the equality

lag;| = So; — Sa1—1 gives 0 = hm So; — hm Soi_1. and so we have lim Sy = hm Sor_1.
l— o0
It follows that {Sl} converges and we have lhm S; = hrn So; = hm So_1 < |a0|
—00
, (=)™ Inn
7.30 Example: Determine whether g ——~——— converges.

n>2 \/ﬁ

(—=1)"Inn

1
N Let f(z) = T o that lan| = f(n). Note that

NI

F(z) = %-ﬁ—lnx-ﬁ _2—Inx
o o 9x3/2 7

T

Solution: Let a, =

so we have f'(z) < 0 for > e?. Thus f(z) is decreasing for z > €2, and so {|a,|} is
decreasing for n > 8. Also, by I’'Hopital’s Rule, we have
1 1
lim f(z)= lim —= = lim —— = lim 2 =0

and so |a,| — 0 as n — oo. Thus ) a, converges by the Alternating Series Test.
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(=2)" : 1
so that the error is at most ===

oo
7.31 Example: Approximate the sum S = Z @n)! 5000 -

n=0

(=2)"
(2n)! "

lans1| 27T (2n)! 2 1

Solution: Let a,, = Note that

lan]  (2n+2)! 2°  (2n+2)2n+1) (n+1)2n+1)

l@nt1] lant1]

<1 for all n > 0, we know that {|a,|} is decreasing. Since lim
an| n—oo lanl

know that ) |a,| converges by the Ratio Test, and so |a,| — 0 by the Divergence Test.
This shows that we can apply the Alternating Series Test.
!

Since =0, we

If we approximate S by the [*'partial sum S; = Z a,, then by the Alternating Series

n=0
Test, the error is
0 2H4
E=\|5-5= an| < la = —.
| = 22 an| < lan] (20 +2)!
n=I[+1
To get £ < ﬁ we can choose [ so that % < ﬁ. By trial and error we find that we

can take [ = 3. Thus we make the approximation
~ _ 2 2 23 1 1 _ 7
S'Z:E% =1- §'+'ZT'— ET“l'_:l+'6 +‘§6 = 75 -
(We shall see later that the exact value of this sum is cos \/5)

7.32 Definition: A series ) a, is said to converge absolutely when > |a,| converges.

n>k n>k
The series is said to converge conditionally if >  a, converges but »_ |a,| diverges.
n>k n>k

7.33 Example: For 0 < p < 1, the p-series > n—lp diverges, but since {nip} is decreasing
—1)™ . .
towards 0, > ( np) Con(verg)es by the Alternating Series Test. Thus for 0 < p < 1, the
—1)n

npb

alternating p-series Z converges conditionally.

7.34 Theorem: (Absolute Convergence Implies Convergence) If 3 |a,| converges then
so does > ay.

Proof: Suppose that > |a,| converges. Note that —|a,| < a,, < |a,| so that
0 <an+lan| < 2|ay,| for all n.

Since Y |a,| converges, Y 2|a,| converges by linearity, and so >_ (an, + |an|) converges by
the Comparison Test. Since Y |a,| and Y (ay + |as,|) both converge, 3 a,, converges by
linearity.

1mmn

7.35 Example: Determine whether Z > 5
n

converges.

sinn -
Solution: Let a, = —5~. Then |a,| = Lsinn]
n
with p = 2), > |a,| converges by the Comparison Test, and hence ) a,, converges too,
since absolute convergence implies convergence.

1 . 1 . .
< -5. Since ) -5 converges (its a p-series

n2
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Multiplication of Series

7.36 Theorem: (Multiplication of Series) Suppose that » |a,| converges and Y by,
n>0 n>0

converges and define ¢,, = Z axbn—k. Then > ¢, converges and
k=0 n>0

S (Gee) (B)-

Proof: Let A; = Z an, By = Z by, C; = i Cny, A = § an, B = i b,, K = i |an,|
and £, = B — B;. Then we have " = e =
C) = apby + (aob1 + a1bg) + (apbz + a1by + azbg) + - - - + (apby + - - - + abo)
=aoB+a1Bi-1+aBj_2+ -+ a; By
=ay(B—E)+a1(B—E;_1)+ -+ a(B— Ep)
= AB— (@B + a1Ej—1 + - + a1 Ep)
and so

‘AB—Cl‘ S ‘(A—AZ)B| + ‘aoEl —I—alEZ_l —|—-'~—|—CLZE0’ .

Let € > 0. Choose m so that j > m = E; < 5%. Let E = max {|Ey|,---,|Emn|}. Choose
l
L > m so that when [ > L we have ) |a,| < 3% and we have [4; — A||B| < §. Then

n=l—-m
for I > L,
|Gt — AB| < |(A1 = A)B| + |aoEr + -+ - + a1—m-1Ems1| + |@1—mEm + - - - + a1 Ep|
l—m—1 l
<it(Z )+ (X Jal)E

n=0 n=l—-m+1

<s+K3xt+s5F=¢.

7.37 Example: Find an example of sequences {ay, } >0 and {b, },,>0 such that »_ a, and
n>0

> b, both converge, but > ¢, diverges where ¢,, = > agbp_-

n>0 n>0 k=0

(=D"

vn+1

n
Cn = Z akbn—k ==

k=0 Z \/ k+1)(n—k+1)
Recall that for p,q > 0 we have \/pg < 1(p+ ¢) (indeed (p +q)% —4pg =p* —2pq + ¢* =
(p—q)? > 0,50 (p+q)* > 4pg). In particular \/(k+1)(n—k+1) < 2(n+2) and so

- 2(n+1 . . .
len| = >0 n%r? = % Thus nlgrolo len| # 0 so > ¢, diverges by the Divergence Test.

Solution: Let a,, = b, =

for n > 0, and let
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Chapter 8. Power Series

Power Series

8.1 Definition: A power series centred at a is a series of the form
ch(ac—a)” =co+ci(xr—a)+cr—a) +ez(z—a)+---
n>0

for some real numbers c¢,,, where we use the convention that (z —a)? = 1.

8.2 Example: The geometric series Z x" is a power series centred at 0. It converges
n>0
when |z| < 1 and for all such x the sum of the series is

i 1
nz_%xnzl—x'

8.3 Theorem: (The Interval and Radius of Convergence) Let Z cn(z —a)" be a power
n>0

series. Then the set of x € R for which the power series converges is an interval I centred

at a. Indeed there exists a (possibly infinite) number R € [0, co] such that

(1) if |x — a| < R then Z cn(z —a)™ converges absolutely, and
n>0

(2) if |[r — a| > R then Z cn(z —a)™ diverges.
n>0

Proof: We prove parts (1) and (2) together by showing that for all » > 0, if > c¢,r"
converges then > ¢, (z — a)™ converges absolutely for all z € R with |x — a| < r (we can
then take R to be the least upper bound of the set of all such r). Let r > 0. Suppose
that »_ ¢,r™ converges. Let x € R with |z — a] < r. Choose s with |z —a| < s < 7.
Since Y ¢, 7" converges, we have ¢, 7™ — 0 by the Divergence Test. Choose N > 0 so that
lenr™ <1 for all n > N. Then for n > N we have
lz—a|™  |Jx—al* "
. < <

=,

n’ rn orn

en (@ —a)| = |er

/rTL
and the series ) (f)n converges (its geometric with positive ratio 2 < 1), and so the series
> ‘cn(x — a)”‘ converges too, by the Comparison Test.

8.4 Definition: The number R in the above theorem is called the radius of convergence
of the power series, and the interval I is called the interval of convergence of the power
series.
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-2
8.5 Example: Find the interval of convergence of the power series Z \/_ac)
n>1
(B—2x)" (g 3\
—9 o
and so Z: )" ch(x—a)”, where ¢y = 0, ¢, = (% forn > 1 and a =
n>1 n>0

%. Then

Solution: First note that this is in fact a power series, since

N

Now, let a, =

. 3 — o)+
ant1| _ | ?) vn = |3 —2x] — |3 — 2| as n — oo.
an Vn+1 (3—2x)" n+

By the Ratio Test, Y a, converges when |3 — 2z| < 1 and diverges when [3 — 2z| > 1.
Equivalently, it converges when z € (1,2) and diverges when x ¢ [1,2]. When z = 1 so
(3 —2z) =1, we have > a, = > \/Lﬁ, which diverges (its a p-series), and when z = 2 so
(3 —2z) = —1, we have > a, =), % which converges by the Alternating Series Test.
Thus the interval of convergence is I = (1,2].

8.6 Note: An argument similar to the one used in the above example, using the Ratio

Test, can be used to show that if lim exists (finite or infinite) then the radius of

n—oo | Cp
convergence of the power series Y ¢, (z — a)™ is equal to
1 Cn
R=———=lim
. Cn+1 n—00 | Cn+1
llm + n—+
n—oo | Cp

Indeed if we let R = lim

and write a,, = ¢,(x — a)™ then we have

n—00 | Cp41
vl _ Jenn(e Zo ] _Jensn |y, gy Ly
|an| }Cn(aj - a)n‘ Cn R

and so by the Ratio Test, if |z — a| < R then ) |a,| converges while if |z — a|] > R then
|ayn| — o0 so Y a, diverges. Thus R must be equal to the radius of convergence.
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9. Operations on Power Series

9.1 Theorem: (Continuity of Power Series) Suppose that the power series Y c,(z — a)”

converges in an interval I. Then the sum f(x g en(x )" is continuous in I.

Proof: We omit the proof

9.2 Theorem: (Addition and Subtraction of Power Series) Suppose that the power series
> an(x—a)™ and Y b, (x —a)™ both converge in the interval I. Then  (a, + by)(x —a)™
and > (a, — by)(x — a)™ both converge in I, and for all x € I we have

(Zanx—a ) (Zb T —a) ):i(anibn)(az—a)"

n=0

Proof: This follows from Linearity.
9.3 Theorem: (Multiplication of Power Series) Suppose the power series Y a,(x — a)”

and > b,(x — a)™ both converge in an open interval I with a € I. Let ¢, = > axbn_k.
k=0
Then ) c¢p(xz —a)™ converges in I and for all x € I we have

5t (e (S ie-ar).

n=0 n=0

Proof: This follows from the Multiplication of Series Theorem, since the power series
converge absolutely in 1.

9.4 Theorem: (Division of Power Series) Suppose that Y a,(z — a)™ and > b,(x — a)"
both converge in an open interval I with a € I, and that by # 0. Define c,, by

=20 — 4n __ bnco _ bn_1c1 L bicn_1
co = 32, and forn >0, ¢, = 3~ = - o

Then there is an open interval J with a € J such that ) ¢,(z — a)™ converges in J and
for all x € J,

n=0 Z by (x —a)”

Proof: We omit the proof.
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9.5 Theorem: (Composition of Power Series) Let f(x Z (x —a)" in an open
interval I with a € I, and let g(y) = Z bm(y — b)™ in an open interval J with b € J

m=0
and with ag € J. Let K be an open interval with a € K such that f(K) C J. For
each m > 0, let ¢, ,, be the coefficients, found by multiplying power series, such that

Z cnm(z—a)" = by, ( Z an(x—a)” — b) . Then Y ¢y m converges for all m > 0, and

n=0 n=0 m=0
for all x € K, Z < > cn,m) (x — a)™ converges and
n>0 =0
> (X enm)@—a) =o(f(@)).
n=0 ™M=

Proof: We omit the proof.

9.6 Theorem: (Integration of Power Series) Supoose that ) ¢, (x —a)™ converges in the
o0

interval I. Then for all x € I, the sum f(z) = ch(x — a)" is integrable on [a, x| (or

[x,a]) and "

/cht—a dt = Z/ en(t —a)™ dt = Z +1($—a)"+1.

=0

Proof: We omit the proof

9.7 Theorem: (Differentiation of Power Serjes) Suppose that Y ¢, (x — a)™ converges in

the open interval I. Then the sum f(z Z cn(x — a)" is differentiable in I and
n=0

oo
= chn(a: —a)" !,
n=1

Proof: We omit the proof
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1

9.8 E le: Find i tred at 0 wh i = = d
xample: Find a power series centred at 0 whose sum is f(z) OB an

find its interval of convergence.

Solution: We have

1 1 1 1 :
fz) = R
(ac—l—l)(ac—i—Q) z+1 2+2 1+ 1+§
1 :c
=2 -2 (09" =D (1 Z Fera”
=0 n=0 n=0
Z 2n1+1) "
Since Z(— converges if and only if |x| < 1 and Z (-2) " converges when |z| < 2,
= n=0
it follows from Linearity the the sum of these two series converges if and only if |z| < 1.
1
9.9 Example: Find a power series centred at —4 whose sum is f(z) = oS —— and
find its interval of convergence.
Solution: We have
f(z) 1 1 1 1 1
€Tr) = = — = —
(+1D)(z+2) x+1 z+2 (x+4)-3 (x+4)—2
1 1 00 0o
_ 3 2 _ 1 (z+4\" 1 (z+4
o 1_96_+4+1_1‘_+4 _2_5(%) +Z§(%)
3 2 n=0 n=
=2 (g = g) @+ )"
n=0

oo
Since Z —% % converges when |z + 4| < 3 and Z 1 x_+4)n converges if and only if

|z + 4| < 2, it follows that their sum converges if and only if | +4| < 2.

b
(1—=z)*

Solution: We provide three solutions. For the first solution, we multiply two power series.
For |z| < 1 we have
1 1
flw) = -2z 1—x
=(l+z+2*+2°+ ) (14+a+2>+2°+ )
=1+(1+Dz+0+1+D2* + (1 +1+1+ D)2+
=142z 432" +42° + -

= Z(n + 1)z
n=0

9.10 Example: Find a power series centred at 0 whose sum is f(z) =
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1
For the second solution, we note that f(z) = T2 a2 and we use long division.
—2r+x

142z + 322 +42% + 5zt + - -
1— 2z + 22 )1+Ox+0x2+0x3+0x4—---

1— 22+ 22
2r — 2
2r — 42 + 223
3x2 — 223
322 — 623 + 3a4
43 — 8xt + - -
4a3 — 8zt + - -
Srt + .-
) . 1 1 . .
For the third solution, we note that / = and we use differentiation.
(1—-2)? 1-—=z
1
1_x:1+x2—|—x3+:1:4—|—:1;5—|—-~
d 1 d

9.11 Example: Find a power series centred at 0 whose sum is In(1 + ).

Solution: For |z| < 1 we have
1
1+

1n(1+:c):/1—x+x2—ac3++--- dz

=l-z4+a>-2>+ .

— 1,2, 1.3 _ 1.4, |
=ct+x—z2°+ 3T 77+

Putting in z = 0 gives 0 = ¢, and so

oo
n=1

9.12 Example: Find a power series centred at 0 whose sum is f(z) = tan=!z.

Solution: For |z| < 1 we have
1
1+ a2

tanlx:/l—m2+x4—m6+--- dx

=1—-a?+a2*—25+...

— 1,3, 1.5 1.7, ..
=ctr—3z2’+zx zx'+

Putting in = 0 gives 0 = ¢, and so

—~ (2n +1)
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Chapter 9. Taylor Series

Taylor Series

o0

9.1 Theorem: Suppose that f(z) = Z cn(x —a)™ in an open interval I centred at a.

n=0
Then f is infinitely differentiable at a and for all n > 0 we have

ARG

Cp — I
n:

9

where f(")(a) denotes the n'" derivative of f at a.

Proof: By repeated application of the Differentiation of Power Series Theorem, for all

x € I, we have
oo
= Z nep(z—a) !
n=1

"(x) =Y n(n—1)cy(z—a)" >
f(@) = nn—-1)(n-2)c,(x—a)"?,

and in general

F®) (z) Znn—l (n—k+1)cp(z—a)"F
n=k

and so f(a) = co, f'(a) =c1, f"(a) =2-1cg and f"(a) =3 -2 1c3, and in general
f™(a)=n!c

9.2 Definition: Given a function f(z) whose derivatives of all order exist at x = a, we
define the Taylor series of f(x) centred at a to be the power series

f"(a)

n!

T(z) = Z cn(x—a)®  where ¢, =
n>0

and we define the [** Taylor Polynomial of f(z) centred at a to be the I*" partial sum

l (n)
Ti(x) = Z cn(x—a)®  where ¢, = [ (a)

n!

9.3 Example: Find the Taylor series centred at 0 for f(z) =

Solution: We have f(™(z) = e® for all n, so f(™)(0) =1 and ¢, = & for all n > 0. Thus
the Taylor series is

O
E:L n _ 1.2 _ 1,3, 1.4, |
= _1+:c+2!w =51 2° + g2 +
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9.4 Example: Find the Taylor series centred at 0 for f(z) = sinz.

Solution: We have f’(z) = cosz, f"(z) = —sinz, f"(x) = —cosz, f""(z) = sinx and so

on, so that in general f®™(z) = (=1)"sinz and f***+1)(z) = (—1)" cos z. It follows that

£ (0) = 0 and f(Q”“)(O) = (—1)", so we have cg, = 0 and cgp, 41 = (gm—)l)' Thus
(2n-1|—)1)'x2n+1 == g2° + g’ = gl e

9.5 Example: Find the Taylor series centred at 0 for f(x) = cosx.

Solution: We have f'(x) = —sinz, f”(x) = —cosz, f"(x) = sinz, f"’(x) = cosz and so

on, so that in general f*™(z) = (—=1)"cosz and "tV (z) = (=1)"*'sinz. It follows
that £ (0) = (—=1)" and f*+D(0) = 0, so we have ¢y, = ((2 )), and cop,+1 = 0. Thus
P = 3 B o1 ety et et
n=0

9.6 Example: Find the Taylor series centred at 0 for f(z) = (1 4 z)? where p € R.
Solution: J(x) = p(1-+a)? ™, f7(2) = plp=1) (14272, £7(2) = plp—1)(p—2)(1+2)~
and in general

f @) =pe-1)E-2)@-n+ )1 +z)",

) =
so f(0) =1, f'(0 ) p, f’ (12 p(p—1), and in general f(")( ) =p(p—1)(p—2)--- (p—n-+1),

and so we have ¢, 2) b=+ Thus the Taylor series is
T(x):Z(p> _1+px+p(p D2 4 plp= 1)(p 2) 3 4 plo= 1)(p 2)(P=3) 4 4 ..
n=0

where we use the notation
(P)=1,andforn>1, (?) = plp=1)(p=2)(p=n+1)

n!
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9.7 Theorem: (Taylor) Let f(x) be infinitely differentiable in an open interval I with
a € I. Let Tj(z) be the I** Taylor polynomial for f(z) centred at a. Then for all x € T
there exists a number ¢ between a and x such that

(+1) (o
f(x) = Ti(x) = f(l+—1()') _a)itL,

Proof: When x = a both sides of the above equation are 0. Suppose that x > a (the
case that x < a is similar). Since f(*1) is differentiable and hence continuous, by the
Extreme Value Theorem it attains its maximum and minimum values, say M and m.
Since m < fU+1(t) < M for all t € I, we have

t1 t1 t1
/ mdtg/ f(l“)(t)dtg/ M dt

m(ty —a) < fO(t1) = fP(a) < M(t —a)

that is

for all t; > a in I. Integrating each term with respect to t; from a to to, we get
smlta —a)® < fEV(ts) — fO(a)(tz — a) < 5M(t — a)®
for all £t > a in I. Integrating with respect to ¢ from a to t3 gives
gmlts —a)® < fU72(t) = fU172)(a) = 5/ (a)(ts — a)® < 5 M(ts — a)®
for all 3 > a in I. Repeating this procedure eventually gives
i — @)™ < fte) = Ti(te) < M (e — a)' !

for all ¢;41 > a in I. In particular ﬁm(aj —a) Tt < f(z) - Ti(z) < (Hll)!M(a: —a)tt,
S0

m < (f(x) = Ti(e)) g Chgter < M.

(x—a)t+1

By the Intermediate Value Theorem, there is a number ¢ € [a, x| such that

FIH () = (f(z) - ﬂ(m))%
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9.8 Theorem: The functions e”, sinz, cosz and (1+ x)? are all exactly equal to the sum
of their Taylor series centred at 0 in the interval of convergence.

GC,ZL’H_l

(+ 1)

Proof: First let f(x) = e* and let x € R. By Taylor’s Theorem, f(z) — T;(z) =

for some ¢ between 0 and x, and so
e|w|\x|l+1

€|x||$|l+1 €|x||:L’|l+1
——— —— converges by the Ratio Test, we have lim —————— = 0 by the Diver-
I+ 1) l—oo (14 1)!

gence Test, so ll_i)m (f(z) = Ti(z)) =0, and so f(z) = ll_i>m Ti(z) =T(x).

Since

f(l+1)(c) il

I+ 1)!
for some ¢ between 0 and . Since f(!*Y(z) is one of the functions +sinx or + cosz, we
have |f("*D(c)| <1 for all ¢ and so

Now let f(x)= sinx and let x € R. By Taylor’s Theorem, f(x)—T(x) =

|l+1

= 0 by the Divergence Test,

Since Z

and so we have and f(z) = T(x) as above.
Let f(z) = cosz. For all x € R we have

; converges by the Ratio Test, llim
—00

f(z) =cosz = Lsinx
di(x_l'x + '3‘35_ )

which is the sum of its Taylor series, centred at 0.
Finally, let f(x) = (1 4 z)P. The Taylor series centred at 0 is

T(z) =1+ pz + p(ple)xz + p(p—13)!(p—2) 3+ p(p—l)(%2)(p—3) A

and it converges for |z| < 1. Differentiating the power series gives

T’(x) =p+ 17(10171)m + p(p—12)!(p—2)x2 + p(p—l)(%f)(z?—?») e BT

and so

(14 2)T(z) = <p I p(pﬂl)> T+ (p(p;l) n p(p—12)!(p—2)> 22

_|_
i p(p*12)!(p*2) _ p(pfl)(p?;?)(p%)) 234

T+ pp(p' 1) 2 + p~p(p—31!)(p—2)w3 4o

Thus we have (1+x)T"(x) = pT'(z) with T'(0) = 1. This DE is linear since we can write it

as T'(z) — % T(z) = 0. An integrating factor is A = R (14+x)7?
and the solution is T'(z) = (1+x)~? / 0dx = b(1+4x)? for some constant b. Since T(0) = 1

we have b =1 and so T'(x) = (1 + z)? = f(z).
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10. Applications

10.1 Example: Let f(z) =sin (12?). Find the 10" derivative f(10)(0).

Solution: We have
f(x) =sin (% a:Q)

- () - (a9 + 4 (422)° -

=508 — g+ et =
We have c1g = 53 and so f19(0) = 10l ¢yg = 5% = 102816 —5.9.7.3 =945.
—2z2
— 2
10.2 Example: Find lim ¢ cos £t 5
220 (tan™'z — In(1 + z))
Solution: We have
e~ 2" _ cos2x B (1—(22%) + 5 (222)? —--+) = (1 — 5 (22)* + £ (2z)* — - -+)
(tan*lx—ln(1+x))2 B 1,3 4 1.5 1,3 1,3 ?
((93—556 +5® =) = (2 — g2t + 3w —'")>
_ (1—222+22* - ) — (1—22%+ 224 —--)
(b2 =3 )
4,4
_ 3T 1
—W—§+clx+---—>§asx—>0.

10.3 Example: Approximate the value of \/Lg so the error is at most ﬁ.

Solution: We have
_ 2 3 4
e BT RO TE O L
=1- % + 2212! - 2313! + 2414! -

~7 -1, 1 _q_ 1,1 1 _ 29
Sl-gtmag—wa=l-2Fts - wm=%&

with absolute error F < 577 = =L, by the Alternating Series Test.

2441 T 384>
10.4 Example: Approximate the value of /e so the error is at most Wlo'
Solution: We have
Ve=e? =140+ 50 +5G) +4 () +5G) +-
=1+ % + 2212! + 2313! + 2414! + 2515! +o
S s el s B

with absolute error

1 1 1 1 1
E= yiq 55 T tarm tasg T

1 (1 1 1 1
2741 (2_5 T 265 T res T awsres )

1 1 1 1 1
< 2441 (2-5 + 9257 + 3555 T o T )
D l =1 . 100_ _5 - 1
T34 _ 1 T 384 9 1728 100 *
10

where we used the Comparison Test and the formula for the sum of a geometric series.
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10.5 Example: Approximate the value of In2 so the error is at most %
Solution: We provide two solutions. For both solutions, we use the fundtion
f@)=In(l14+2z)=2—L1a?+ 23— 2% + -
For the first solution, we put in x = 1 to get
1n2:f(1):1—%+%_%+...
ST T S

with absolute error £ < =5 by the Alternating Series Test. It would be cumbersome to add
up the 49 terms 1n the above alternating sum, so we provide a second solution in which
we put in x = —5. We have

ln2:—ln§ —f(
_ 1
~ 1 1 1
=3 T2y T3

with absolute error

2 3 4
D= (D D D
L+ ot e + o
+ 1

5 6
1411
4-24_2+8+24

_ 1 1 1 1
E= 525 T Gov T 727 T 85 T
1 1 1 1
S5 trm Tre teest
1
_ 525 _ 2 _ 1
T 7_1 7 525 80
=3

by the Comparison Test and the formula for the sum of a geometric series.

10.6 Example: Approximate the value of 10%/3 so the error is at most ﬁ.

Solution: We use the function

fl@)=0+z)?2 =1+ @x(%)g'—%) e (%)(—i)(—%) 254 (%)(_%)En—%)(_@ A
We have
107 = (8+2)° =4(1+ )" =41 (3)
a4 D BEH L OCHED , BEYEHED L)

_ 8 81 814 _ 8147 , .

=4+ 12-11 122-21 + 123- 3' 124-4! +

~ — _ 167
4"’121'_1222' 4+ 6_36

with absolute error £ < 82:} g, = 32 357 Py the Alternating Series Test.
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10.7 Example: Approximate the value of 7 so the error is at most %
Solution: We provide two solutions. For both solutions we use the function

f(a:):tan_l.fc:a:—éx?’—k%x‘r’—%a:7—|—~-

For the first solution, we put in x = 1 to get
7T:4.1:4f(1):4(1_l_|_l_l_|_...>g4(1_l+l_l+...+ﬁ)

with absolute error E < 201 by the Alternating Series Test. It would be cumbersome to
add up the 100 terms in the alternating sum, so we provide a second solution in which we
put in x = \/Lg We have

with absolute error £ < 2‘4; = 21\8/3 by the Alternating Series Test. We remark that in

order to make this approximation, we must first approximate /3.

10.8 Example: Approximate the value of sin (100) so the error is at most 1000
Solution: We use the function
f@)=sine =2 — g 2%+ F2°— -
We put in z = 10° = {5 to get
in(107) = /() = & -5 () + 4 (%) - =%
with absolute error F < % (%)3 by the Alternating Series Test. We remark that in order
to make this approximation, we must first approximate 7.

1%

1
10.9 Example: Approximate the value of / =2* 4 so the error is at most 100
0

Solution: We have

1
_ 1.3 1 .5 1,7 1,9
_[x_§x+5-2!$_773!5’3+9.4!37_ }0
-1 -1, 1 1 , 1 _
=1 3T 521 — 73 T oa
~ 1 1 _ 26

1 - 3T 50 731 7 35

with absolute error £ < QL = 216 by the Alternating Series Test.
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sin x

V2
10.10 Example: Approximate the value of / dx so the error is at most %.
0

T

(=2)"
(2n)!

oo
10.11 Example: Find the exact value of the sum Z

n=0

Solution: We have

0 _9)n 0 1 n\/i?ﬂ

n=0

-2
10.12 Example: Find the exact value of the sum Z (nw
n=1

Solution: Note first that

n—-2 = n il 2
(3 (3 ()
The second sum on the right is geometric with first term —% and ratio —%, so we have

(=3 1+1

n=1

To find the first sum on the right, we begin with the fact that for |z| < 1 we have

=l+a+a’+2°+a'+ -

1—2z
Differentiate both sides to get

1
— X
Multiply both sides by x to get
ﬁ:x+2x2+3m3+4x4+
— T

Thus we obtain the formula

;nxnz (I—LQ for all x| < 1.

x)
Put inx:—% to get
00 1
" o _ 73 _ 3
_ 2 16
S (1)

Thus we have

Sler

00 n B o) n - (o) 9 o L
Z (_3)n - Z (_3)n Z (_3)n 16 +3

n=1 n=1 n=1



oo

10.13 Example: Find the exact value of the sum Z

2.5-8-----(3n+2)

e 5n !
Solution: We have
2 nrd) s () () ()
n=0 5" nl n=0 n! "
— (=3) (=5) (=5) - (=257
=22_:0 L 5 ). (-
—2(1-3) 7 2 ()

76



