
Chapter 2. Real Limits, Continuity and Differentiation

Limits of Sequences in R

2.1 Definition: For p ∈ Z, let Z≥p = {k∈Z | k ≥ p}. A sequence in a set A is a function
of the form x : Z≥p → A for some p ∈ Z. Given a sequence x : Z≥p → A, the kth term of
the sequence is the element xk = x(k) ∈ A, and we denote the sequence x by

(xk)k≥p = (xp, xp+1, xp+2, · · ·).
Note that the range of the sequence (xk)k≥p is the set {xk}k≥p = {xk|k ≥ p}.
2.2 Definition: Let (xk)k≥p be a sequence in R. For a ∈ R we say that the sequence
(xk)k≥p converges to a (or that the limit of (xk)k≥p is equal to a), and we write xk → a
(as k →∞), or we write lim

k→∞
xk = a, when

∀ 0<ε∈R ∃m∈Z≥p ∀ k∈Z≥p
(
k ≥ m =⇒ |xk − a| < ε

)
.

We say that the sequence (xk)k≥p converges (in R) when there exists a ∈ R such that
(xk)k≥p converges to a. We say that the sequence (xk)k≥p diverges (in R) when it does
not converge (to any a ∈ R). We say that (xk)k≥p diverges to infinity, or that the
limit of (xk)k≥p is equal to infinity, and we write xk → ∞ (as k → ∞), or we write
lim
k→∞

xk =∞, when

∀ r∈R ∃m∈Z≥p ∀ k∈Z≥p
(
k ≥ m =⇒ xk > r

)
.

Similarly we say that (xk)k≥p diverges to −∞, or that the limit of (xk)k≥p is equal to
negative infinity, and we write xk → −∞ (as k →∞), or we write lim

k→∞
xk = −∞ when

∀ r∈R ∃m∈Z≥p ∀ k∈Z≥p
(
k ≥ m =⇒ xk < r

)
.

2.3 Note: We shall assume that students are familiar with sequences and limits of se-
quences from first-year calculus. For example, students should know that if the limit of a
sequence exists then it is unique. Also, the limit does not depend on the first few terms
(indeed the first finitely many terms) and so we often omit the starting value p from our
notation and write the sequence (xk)k≥p as (xk). Students should also be able to calculate
limits using various limit rules, such as Operations on Limits, the Comparison Theorem
and the Squeeze Theorem (which can all be found in the Appendix).

2.4 Definition: Let (xk) be a sequence in R. For b ∈ R, we say that the sequence (xk)
is bounded above by b when the set {xk} is bounded above by b, that is when xk ≤ b
for all k, and we say that the sequence (xk) is bounded below by b when the set {xk} is
bounded below by b, that is when b ≤ xk for all k. We say (xk) is bounded above when
it is bounded above by some element b ∈ R, we say that (xk) is bounded below when it
is bounded below by some b ∈ R, and we say that (xk) is bounded when it is bounded
above and bounded below.

2.5 Definition: Let (xk)k≥p be a sequence in R. We say that (xk) is increasing (or
nondecreasing) when for all k, l ∈ Z≥p, if k ≤ l then xk ≤ xl. We say that (xk) is
strictly increasing when for all k, l ∈ Z≥p, if k < l then xk < xl. Similarly, we say that
(xk) is decreasing (or nonincreasing) when for all k, l ∈ Z≥p, if k ≤ l the xk ≥ xl and
we say that (xk) is strictly decreasing when for all k, l ∈ Z≥p, if k < l the xk > xl. We
say that (xk) is monotonic when it is either increasing or decreasing.
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2.6 Theorem: (Monotonic Convergence Theorem) Let (xk) be a sequence in R.

(1) Suppose (xk) is increasing. If (xk) is bounded above then xk → sup{xk}, and if (xk)
is not bounded above then xk →∞.
(2) Suppose (xk) is decreasing. If (xk) is bounded below then xk → inf{xk}, and if (xk) is
not bounded below then xk → −∞.

Proof: We prove Part 1 in the case that (xk)k≥p is increasing and bounded above, say
by b ∈ R. Let A = {xk|k ≥ p} (so A is the range of the sequence (xk)). Note that
A is nonempty and bounded above (indeed b is an upper bound for A). By the Least
Upper Bound Property of R, A has a supremum in R. Let a = sup{xk|k ≥ p}. Note
that a ≥ xk for all k ≥ p and a ≤ b, by the definition of the supremum. Let ε > 0. By
the Approximation Property of the supremum, we can choose an index m ≥ p so that the
element xm ∈ A satisfies a − ε < xm ≤ a. Since (xk) is increasing, for all k ≥ m we have
xk ≥ xm, so we have a− ε < xm ≤ xk ≤ a and hence |xk − a| < ε. Thus lim

k→∞
xk = a ≤ b.

2.7 Definition: For a, b ∈ R with a ≤ b we write

(a, b) =
{
x ∈ R

∣∣a < x < b
}
, [a, b] =

{
x ∈ R

∣∣a ≤ x ≤ b} ,
(a, b] =

{
x ∈ R

∣∣a < x ≤ b
}
, [a, b) =

{
x ∈ R

∣∣a ≤ x < b
}
,

(a,∞) =
{
x ∈ R

∣∣a < x
}
, [a,∞) =

{
x ∈ R

∣∣a ≤ x} ,
(−∞, b) =

{
x ∈ R

∣∣x < b
}
, (−∞, b] =

{
x ∈ R

∣∣x ≤ b} ,
(−∞,∞) = R .

An interval in R is any set of one of the above forms. In the case that a = b we have
(a, b) = [a, b) = (a, b] = ∅ and [a, b] = {a}, and these intervals are called degenerate
intervals. The nondegenerate intervals contain at least two points. The intervals ∅,
(a, b), (a,∞), (−∞, b) and (−∞,∞) are called open intervals. The intervals ∅, [a, b],
[a,∞), (−∞, b] and (−∞,∞) are called closed intervals. The intervals ∅, (a, b), (a, b], [a, b)
and [a, b] are bounded and the intervals (a,∞), [a,∞), (−∞, b), (−∞, b] and (−∞,∞)
are unbounded.

2.8 Theorem: (Nested Interval Theorem) Let I1, I2, I3, · · · be nonempty, closed bounded

intervals in R. Suppose that I1 ⊇ I2 ⊇ I3 ⊇ · · ·. Then
∞⋂
k=1

Ik 6= ∅.

Proof: For each k ≥ 1, let Ik = [ak, bk] with ak ≤ bk. For each k, since Ik+1 ⊆ Ik we have
ak ≤ ak+1 ≤ bk+1 ≤ bk. Since ak ≤ ak+1 for all k, the sequence (ak) is increasing. Since
ak ≤ bk ≤ bk−1 ≤ · · · ≤ b1 for all k, the sequence (ak) is bounded above by b1. Since (ak)
is increasing and bounded above, it converges. Let a = sup{ak} = lim

k→∞
ak. Similarly, (bk)

is decreasing and bounded below by a1, and so it converges. Let b = inf{bk} = lim
k→∞

bk.

Since ak ≤ bk for all k, by the Comparison Theorem we have a ≤ b, and so the interval
[a, b] is not empty. Since (ak) is increasing with ak → a, it follows (we leave the proof
as an exercise) that ak ≤ a for all k ≥ 1. Similarly, we have bk ≥ b for all k ≥ 1 and so

[a, b] ⊆ [ak, bk] = Ik. Thus [a, b] ⊆
∞⋂
k=1

Ik, and so
∞⋂
k=1

Ik 6= ∅.

2.9 Note: The above theorem does not hold for bounded open intervals. For example,

for Ik =
(
0, 1k

)
we have I1 ⊇ I2 ⊇ I3 ⊇ · · · but

∞⋂
k=1

Ik = ∅. The theorem also does not hold

for unbounded closed intervals. For example, consider Ik = [k,∞).
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2.10 Definition: Let (xk)k≥p be a sequence in a set A. Given a strictly increasing
function f : Z≥q → Z≥p, write kl = f(l) and let yl = xkl for all l ≥ q. Then the sequence
(yl)l≥q is called a subsequence of the sequence (xk)k≥p. In other words, a subsequence
of (xk)k≥p is a sequence of the form(

xkq , xkq+1
, xkq+2

, · · ·
)

with p ≤ kq < kq+1 < kq+2 < · · · .
Given a bijective function f : Z≥q → Z≥p, write kl = f(l) and let yl = xkl for l ≥ q. Then
the sequence (yl)l≥q is called a rearrangement of the sequence (xk).

2.11 Theorem: (Subsequences and Rearrangements) Let (xk) be a convergent sequence
in R with xk → a. Then

(1) every subsequence of (xk) converges to a, and
(2) every rearrangement of (xk) converges to a.

Proof: We shall prove Parts 1 and 2 simultaneously. Let f : Z≥q → Z≥p be an injective
map. Write kl = f(l) and let yl = xkl for k ≥ l. Let ε > 0. Choose m1 ∈ Z so that
k ≥ m1 =⇒ |xk − a| < ε. Since f is injective, there are only finitely many indices l with
p ≤ f(l) < m1. Choose m ∈ Z with m larger than every such index l. Then for l ≥ m we
have kl = f(l) ≥ m1 and so |yl − a| = |xkl − a| < ε.

2.12 Theorem: (Bolzano-Weirstrass Theorem in R) Every bounded sequence in R has a
convergent subsequence.

Proof: Let (xk) be a bounded sequence in R. Choose a, b ∈ R with a ≤ xk for all k and
xk ≤ b for all k. Then we have xk ∈ [a, b] for all k. We define a sequence of nonempty closed
intervals recursively as follows. Let I0 = [a0, b0] = [a, b]. Note that I0 =

[
a, a+b2

]
∪
[
a+b
2 , b

]
.

Let I1 = [a1, b1] be equal to one of the two intervals
[
a, a+b2

]
and

[
a+b
2 , b

]
, chosen in such a

way that there are infinitely many indices k with xk ∈ I1. Suppose we have chosen intervals
Ij = [aj , bj ] with bj − aj = 1

2j (b − a) for 1 ≤ j ≤ n, such that I0 ⊇ I1 ⊇ I2 ⊇ · · · ⊇ In
and such that for each index j, there are infinitely many indices k with xk ∈ Ij . Note that
In = [an, bn] =

[
an,

an+bn
2

]
∪
[
an+bn

2 , bn
]
. Let In+1 be equal to one of the two intervals[

an,
an+bn

2

]
and

[
an+bn

2 , bn
]
, chosen in such a way that there are infinitely many indices k

with xk ∈ In+1. In this way, we obtain a sequence (Ij)j≥0 of nonempty closed intervals.

By the Nested Interval Theorem,
∞⋂
j=0

Ij is not empty. Choose a point c with c ∈ In for

every n ≥ 0.
We shall now construct a subsequence of (xk) which converges to c. Since for each

j ≥ 0 there exist infinitely many indices k with xk ∈ Ij , we can construct a subsequence
of (xk) as follows. Choose k0 so that xk0 ∈ I0, then choose k1 > k0 so that xk1 ∈ I1, then
choose k2 > k1 with xk2 ∈ I2, and so on. In this way, we obtain a subsequence (xkj )j≥0
of (xk) with xkj ∈ Ij for all j ≥ 0. We claim that xkj → c as j → ∞. Let ε > 0 Choose
m ∈ Z so that 1

2m (b − a) < ε. For j ≥ m, since c ∈ [aj , bj ] ⊆ [a, b] and xkj ∈ [aj , bj ], it
follows that

|xkj − c| = max{xkj , c} −min{xkj , c} ≤ bj − aj = 1
2j (b− a) ≤ 1

2m (b− a) < ε.

Thus xkj → c as j →∞, as claimed.
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2.13 Definition: Let (xk)k≥p be a sequence in R. We say that (xk) is Cauchy when

∀ ε>0 ∃m∈Z≥p ∀ k, l∈Z≥p
(
k, l ≥ m =⇒ |xk − xl| < ε

)
.

2.14 Theorem: (The Completeness of R, or The Cauchy Criterion for Convergence in R)
For a sequence (xk) in R, the sequence (xk) converges if and only if it is Cauchy.

Proof: Let (xk) be a sequence in R. Suppose that (xk) converges, say xk → a. Let ε > 0
and choose m ∈ Z so that k ≥ m =⇒ |xk − a| < ε

2 . Then for k, l ≥ m we have

|xk − xl| = |xk − a+ a− xl| ≤ |xk − a|+ |a− xl| < ε
2 + ε

2 = ε.

Thus (xk) is Cauchy.

Now suppose that (xk) is Cauchy. We claim that (xk) is bounded. Since (xk) is
Cauchy, we can choose m ∈ Z so that k, l ≥ m =⇒ |xk − xl| < 1. In particular, for all
k ≥ m we have |xk − xm| < 1 and so |xk| = |xk − xm + xm| ≤ |xk − xm|+ |xm| < 1 + |xm|.
It follows that (xk) is bounded by b = max

{
|xp|, |xp+1|, · · · , |xm−1| , 1 + |xm|

}
.

Because (xk) is bounded, it has a convergent subsequence, by the Bolzano Weierstrass
Theorem. Let (xkj ) be a convergent subsequence of (xk) and let a = lim

j→∞
xkj . We claim

that the original sequence (xk) converges with lim
k→∞

xk = a. Let ε > 0. Since (xk) is

Cauchy, we can choose m ∈ Z so that k, l ≥ m =⇒ |xk − xl| < ε
2 . Since xkj → a we can

choose m0 ∈ Z so that j ≥ m0 =⇒ |xkj −a| < ε
2 . Choose an index j ≥ m0 so that kj ≥ m.

Then for all k ≥ m we have

|xk − a| = |xk − xkj + xkj − a| ≤ |xk − xkj |+ |xkj − a| < ε
2 + ε

2 = ε.

Thus xk → a, as claimed.

2.15 Definition: Let (xk)k≥p be a sequence in R. The series
∑
k≥p

xk is defined to be the

sequence (Sn)n≥k where Sn =
n∑
k=p

xk = xp + xp+1 + · · · + xn . The term Sn is called the

nth partial sum of the series
∑
k≥p

xk. The sum of the series, denoted by S =
∞∑
k=p

xk =

xp +xp+1 +xp+2 + · · · , is the limit of the sequence of partial sums, if it exists, and we say
the series converges when the sum exists and is finite.

2.16 Note: As with sequences, we assume students are familiar with series and various
tests for convergence.

2.17 Theorem: (Cauchy Criterion for Series) Let (xk)k≥p be a sequence. Then the series∑
xk converges if and only if

∀ ε>0 ∃ `∈Z≥p ∀m,n∈Z≥p
(
m>n≥` =⇒

∣∣∣ m∑
k=n+1

xk

∣∣∣ < ε
)
.

Proof: This follows from the Cauchy Criterion for the convergence of the sequence of
partial sums. Indeed (Sn) converges if and only if for all ε > 0 there exists ` ≥ p such that

m > n ≥ ` =⇒ |Sm − Sn| < ε, and we have |Sm − Sn| =
∣∣∣ m∑
k=p

xk −
n∑
k=p

xk

∣∣∣ =
∣∣∣ m∑
k=n+1

xk

∣∣∣.

4



Limit Inferior and Limit Superior

I may include a discussion of the limit supremum and limit infimum.
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Limits of Functions and Continuity in R

2.18 Definition: Let A ⊆ R. For a ∈ R, we say that a is a limit point of A when

∀ δ>0 ∃x∈A 0< |x− a|<δ.
When a ∈ A and a is not a limit point of A we say that a is an isolated point of A.

2.19 Definition: Let f : A ⊆ R→ R. When a is a limit point of A, we make the following
definitions.

(1) For b ∈ R, we say that the limit of f(x) as x tends to a is equal to b, and we write
lim
x→a

f(x) = b or we write f(x)→ b as x→ a, when

∀ ε>0 ∃ δ>0 ∀x∈A
(
0< |x− a|<δ =⇒ |f(x)− b|<ε

)
.

(2) We say the limit of f(x) as x tends to a is equal to infinity, and we write lim
x→a

f(x) =∞,

or we write f(x)→∞ as x→ a, when

∀ r∈R ∃ δ>0 ∀x∈A
(
0< |x− a|<δ =⇒ f(x)>r

)
.

(3) We say that the limit of f(x) as x tends to a is equal to negative infinity, and we
write lim

x→a
f(x) = −∞, or we write f(x)→ −∞ as x→ a, when

∀ r∈R ∃ δ>0 ∀x∈A
(
0< |x− a|<δ =⇒ f(x)<r

)
.

2.20 Note: We assume that students are familiar with limits of functions and are able to
calculate limits using various limit rules (such as Operations on Limits, and the Comparison
and the Squeeze Theorems) We also assume familiarity with one-sided limits lim

x→a+
f(x)

and lim
x→a−

f(x) as well as asymptotic limits lim
x→−∞

f(x) and lim
x→∞

f(x). Here is one theorem

that relates limits of functions and limits of sequences which students may not have seen.

2.21 Theorem: (Sequential Characterization of Limits of Functions) Let f : A ⊆ R→ R,
let a ∈ R be a limit point of A, and let b ∈ R. Then lim

x→a
f(x) = b if and only if for every

sequence (xk) in A \ {a} with xk → a we have f(xk)→ b.

Proof: Suppose that lim
x→a

f(x) = b. Let (xk) be a sequence in A \ {a} with xk → a. Let

ε > 0. Since lim
x→a

f(x) = b, we can choose δ > 0 so that 0 < |x− a| < δ =⇒ |f(x)− b| < ε.

Since xk → a we can choose m ∈ Z so that k ≥ m =⇒ |xk − a| < δ. Then for k ≥ m, we
have |xk − a| < δ and we have xk 6= a (since the sequence (xk) is in the set A \ {a}) so
that 0 < |xk − a| < δ and hence |f(xk)− b| < ε. This shows that f(xk)→ b.

Conversely, suppose that lim
x→a

f(x) 6= b. Choose ε0 > 0 so that for all δ > 0 there

exists x ∈ A with 0 < |x − a| < δ and |f(x) − b| ≥ ε0. For each k ∈ Z+, choose xk ∈ A
with 0 < |xk − a| ≤ 1

k and |f(xk) − b| ≥ ε0. In this way we obtain a sequence (xk)k≥1 in
A \ {a}. Since |xk − a| ≤ 1

k for all k ∈ Z+, it follows that xk → a (indeed, given ε > 0
we can choose m ∈ Z with m > 1

ε and then k ≥ m =⇒ |xk − a| ≤ 1
k ≤

1
m < ε). Since

|f(xk)− b| ≥ ε0 for all k, it follows that f(xk) 6→ b (indeed if we had f(xk)→ b we could
choose m ∈ Z so that k ≥ m =⇒ |f(xk)− b| < ε0 and then we could choose k = m to get
|f(xk)− b| < ε0).
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2.22 Definition: Let f : A ⊆ R→ R. For a ∈ A, we say that f is continuous at a when

∀ ε>0 ∃ δ>0 ∀x∈A
(
|x− a|<δ =⇒ |f(x)− f(a)|<ε

)
.

We say that f is continuous (on A) when f is continuous at every point a ∈ A.

2.23 Note: Let f : A ⊆ R→ R and let a ∈ A. Verify, as an exercise, that

(1) if a is an isolated point of A then f is continuous at a, and
(2) if a is a limit point of A then f is continuous at a if and only if lim

x→a
f(x) = f(a).

2.24 Note: We assume the reader is familiar with continuity. In particular, we assume the
reader knows that every elementary function is continuous in its domain (an elementary
function is any function which can be obtained from the basic elementary functions x,
n
√
x, ex, lnx, sinx and sin−1 x using addition, subtraction, multiplication, division, and

composition of functions).

2.25 Theorem: (The Sequential Characterization of Continuity) Let f : A ⊆ R → R
and let a ∈ A. Then f is continuous at a if and only if for every sequence (xk) in A with
xk → a we have f(xk)→ f(a).

Proof: Suppose that f is continuous at a. Let (xk) be a sequence in A with xk → a. Let
ε > 0. Choose δ > 0 so that for all x ∈ A we have |x − a| < δ =⇒ |f(x) − f(a)| < ε.
Choose m ∈ Z so that for all indices k we have k ≥ m =⇒ |xk−a| < δ. Then when k ≥ m
we have |xk − a| < δ and hence |f(xk)− f(a)| < ε. Thus we have f(xk)→ f(a).

Conversely, suppose that f is not continuous at a. Choose ε0 > 0 so that for all δ > 0
there exists x ∈ A with |x−a| < δ and |f(x)−f(a)| ≥ ε0. For each k ∈ Z+, choose xk ∈ A
with |xk − a| ≤ 1

k and |f(xk) − f(a)| ≥ ε0. Consider the sequence (xk) in A (we remark
that the Axiom of Choice is being used here). Since |xk − a| ≤ 1

k for all k ∈ Z+, it follows
that xk → a. Since |f(xk)− f(a)| ≥ ε0 for all k ∈ Z+, it follows that f(xk) 6→ f(a).

2.26 Theorem: (Intermediate Value Theorem) Let I be an interval in R and let f : I → R
be continuous. Let a, b ∈ I with a ≤ b and let y ∈ R. Suppose that either f(a) ≤ y ≤ f(b)
or f(b) ≤ y ≤ f(a). Then there exists x ∈ [a, b] with f(x) = y.

Proof: We prove the theorem in the case that f(a) ≤ y ≤ f(b). If y = f(a) then we can
take x = a and if y = f(b) then we can take x = b. Suppose that f(a) < y < f(b). Let
A =

{
t ∈ [a, b]

∣∣f(t) ≤ y
}

. Note that A 6= ∅ (since a ∈ A) and A is bounded above (by b)
and so A has a supremum in R. Let x = supA. Since a ∈ A and x = supA we have x ≥ a.
Since b is an upper bound for A and x = supA we have x ≤ b. Thus x ∈ [a, b].

We claim that f(x) = y. Suppose, for a contradiction, that f(x) > y. Since x 6= a
(because f(a) < y but f(x) > y) we can choose δ1 > 0 so that (x − δ1, x] ⊆ [a, b]. Since
f is continuous at x with f(x) > y, we can choose δ2 so that for all t ∈ [a, b] we have
|t − x| < δ2 =⇒ f(t) > y. Let δ = min{δ1, δ2}. Since x = supA, by the Approximation
Property we can choose t ∈ A with x − δ < t ≤ x. Since t ∈ A we have f(t) ≤ y, but
since t ∈ (x− δ, x] we have f(t) > y, so we have obtained the desired contradiction. Now
suppose, for a contradiction, that f(x) < y. Since x 6= b (because f(b) > y but f(x) < y)
we can choose δ1 > 0 so that [x, x+ δ1) ⊆ [a, b]. Since f is continuous at x with f(x) < y
we can choose δ2 > 0 so that for all t ∈ [a, b] we have |t − x| < δ2 =⇒ f(t) < y. Let
δ = min{δ1, δ2} so that [x, x + δ) ⊆ [a, b] and for all t ∈ [x, x + δ) we have f(t) < y.
But then x + δ ∈ A so we cannot have x = supA, and we have obtained the desired
contradiction.

7



2.27 Exercise: Let A ⊆ R. Show that A is an interval if and only if A has the intermediate
value property that for all a, b, x ∈ R with a < x < b, if a ∈ A and b ∈ A then x ∈ A.

2.28 Theorem: (Continuous Functions and Intervals) Let A be an interval in R and let
f : A→ R be continuous. Then the range B = f(A) is an interval in R.

Proof: If B = f(A) contains less than 2 points then it is a (degenerate) interval. Suppose
that B contains at least two points. Let u, v ∈ B and let y ∈ R with u < y < v. Since
B = f(A) we can choose a, b ∈ A with f(a) = u and f(b) = v. Since f(a) = u 6= v = f(b)
we have a 6= b. Since y lies between f(a) = u and f(b) = v, and since f is continuous,
it follows from the Intermediate Value Theorem that we can choose x between a and b
with f(x) = y. Since A is an interval in R, it has the intermediate value property (by
Exercise 2.27), and so we have x ∈ A. Since x ∈ A and y = f(x) we have y ∈ f(A) = B.
This proves that B has the intermediate value property, and so (by Exercise 2.27) B is an
interval, as required.

2.29 Definition: Let f : A ⊆ R → R. For a ∈ A, if f(a) ≥ f(x) for every x ∈ A, then
we say that f(a) is the maximum value of f and that f attains its maximum value at a.
Similarly for b ∈ A, if f(b) ≤ f(x) for every x ∈ A then we say that f(b) is the minimum
value of f (in A) and that f attains its minimum value at b. We say that f attains its
extreme values in A when f attains its maximum value at some point a ∈ A and f
attains its minimum value at some point b ∈ A.

2.30 Theorem: (Extreme Value Theorem) Let a, b ∈ R with a < b, and let f : [a, b]→ R
be continuous. Then f attains its extreme values in [a, b].

Proof: We prove that f attains its maximum. First we claim that f is bounded above.
Suppose, for a contradiction, that it is not. For each k ∈ Z+, choose xk ∈ [a, b] such that
f(xk) ≥ k. By the Bolzano Weierstrass Theorem, we can choose a convergent subsequence
(xkj ). Let p = lim

j→∞
xkj . Note that p ∈ [a, b] by Comparison (since xkj ≥ a for all j we

have p ≥ a, and since xkj ≤ b for all j we have p ≤ b). Since f(xkj ) ≥ kj and kj →∞ we
must have f(xkj )→∞ as j →∞. But by the Sequential Characterization of Continuity,
we should have f(xkj ) → f(p) ∈ R, so we have obtained the desired contradiction. Thus
f is bounded above, as claimed.

Since the range f([a, b]) is nonempty and bounded above, it has a supremum. Let
m = sup f([a, b]). By the Approximation Property of the supremum, for each k ∈ Z+

we can choose yk ∈ [a, b] such that m − 1
k ≤ f(yk) ≤ m. By the Bolzano Weierstrass

Theorem, we can choose a convergent subsequence (ykj ). Let c = lim
j→∞

ykj . Since we have

m − 1
kj
≤ f(ykj ) ≤ m and 1

kj
→ 0, we have f(ykj ) → m as j → ∞ by the Squeeze

Theorem. Since f is continuous at c, by the Sequential Characterization of Continuity
we have f(ykj ) → f(c), and so by the Uniqueness of Limits, we have f(c) = m. Thus f
attains its maximum value at c.

2.31 Definition: Let f : A ⊆ R → R. We say that f is uniformly continuous (on A)
when

∀ ε>0 ∃ δ>0 ∀ a∈A ∀x∈A
(
|x− a|<δ =⇒ |f(x)− f(a)|<ε

)
.

2.32 Example: Define f : (0,∞) → (0,∞) by f(x) = 1
x . Let ε = 1. Let δ > 0. If δ ≥ 1

then for x = 1
3 and a = 1 we have |x− a| = 2

3 < δ but |f(x)− f(a)| = 2 > ε. If 0 < δ < 1

then for x = δ
3 and a = δ we have |x − a| = 2

3δ < δ but |f(x) − f(a)| = 2
δ > 2 > ε. This

proves that f is not uniformly continuous (but f is continuous because it is elementary).
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2.33 Theorem: (Closed Bounded Intervals and Uniform Continuity) Let a, b ∈ R with
a < b and let f : [a, b]→ R. If f is continuous then f is uniformly continuous (on [a, b]).

Proof: Suppose, for a contradiction, that f : [a, b] → R is continuous but not uniformly
continuous on [a, b]. Choose ε > 0 so that for all δ > 0 there exist x, y ∈ [a, b] such
that |x − y| < δ but |f(x) − f(y)| ≥ ε. For each k ∈ Z+ choose xk and yk in [a, b] with
|xk−yk| ≤ 1

k and |f(xk)−f(yk)| ≥ ε. By the Bolzano Weierstrass Theorem, we can choose
a convergent subsequence (ykj ) of (yk). Let c = lim

j→∞
ykj . For all j we have |xkj −ykj | ≤ 1

kj

hence ykj− 1
kj
≤ xkj ≤ ykj + 1

kj
. Since ykj → c and 1

kj
→ 0 we have ykj± 1

kj
→ c and hence

xkj → c by the Squeeze Theorem. Since f is continuous at c and xkj → c and ykj → c, we
have f(xkj ) → f(c) and f(ykj ) → f(c) by the Sequential Characterization of Continuity.
Since f(xkj ) → c and f(ykj ) → c we have f(xkj ) − f(ykj ) → 0. But this implies that we
can choose j so that |f(xkj )− f(ykj )| < ε, giving the desired contradiction.

Differentiation in R

2.34 Definition: For a subset A ⊆ R, we say that A is open when it is a union of open
intervals. Let A ⊆ R be open, let f : A→ R. For a ∈ A, we say that f is differentiable
at a when the limit

lim
x→a

f(x)− f(a)

x− a
exists in R. In this case we call the limit the derivative of f at a, and we denote to by
f ′(a), so we have

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

We say that f is differentiable (on A) when f is differentiable at every point a ∈ A. In
this case, the derivative of f is the function f ′ : A→ R defined by

f ′(x) = lim
u→x

f(u)− f(x)

u− x
.

When f ′ is differentiable at a, denote the derivative of f ′ at a by f ′′(a), and we call
f ′′(a) the second derivative of f at a. When f ′′(a) exists for every a ∈ A, we say that
f is twice differentiable (on A), and the function f ′′ : A → R is called the second
derivative of f . Similarly, f ′′′(a) is the derivative of f ′′ at a and so on.

2.35 Remark: Note that

lim
x→a

f(x)− f(a)

x− a
= lim
h→0

f(a+ h)− f(a)

h
.

To be precise, the limit on the left exists in R if and only if the limit on the right exists in
R, and in this case the two limits are equal.

2.36 Note: The student should be familiar with derivatives from first year calculus, and
should be able to calculate the derivatives of elementary functions using differentiation
rules including the Product Rule, the Quotient Rule and the Chain Rule. We shall provide
proofs of some of the theorems whose proofs are often omitted in calculus courses.
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2.37 Exercise: Let A ⊆ R be open, let f : A → R, and let a ∈ A. Show that f is
differentiable at a with derivative f ′(a) if and only if

∀ ε>0 ∃ δ>0 ∀x∈A
(
|x− a|≤δ =⇒

∣∣f(x)−f(a)−f ′(a)(x− a)
∣∣ ≤ ε |x− a|).

2.38 Theorem: (Differentiability Implies Continuity) Let A ⊆ R be open, let f : A→ R
and let a ∈ A. If f is differentiable at a then f is continuous at a.

Proof: The proof is left as an exercise (the proof is often given in first year calculus).

2.39 Theorem: (Chain Rule) Let A,B ⊆ R be open, let f : A → B, let g : B → R and
let h = g ◦ f : A→ R. Let a ∈ A and let b = f(a) ∈ B. Suppose that f is differentiable at
a and g is differentiable at b. Then h is differentiable at a with

h′(a) = g′
(
f(a)

)
f ′(a).

Proof: We shall use the ε-δ formulation of the derivative given in Exercise 1.48. Note first
that for x ∈ A and y = f(x) ∈ B we have∣∣h(x)− h(a)− g′(f(a))f ′(a)(x− a)

∣∣
=
∣∣g(f(x))− g(f(a))− g′(f(a))f ′(a)(x− a)

∣∣
=
∣∣g(y)− g(b)− g′(b)f ′(a)(x− a)

∣∣
=
∣∣g(y)− g(b)− g′(b)(y − b) + g′(b)(y − b)− g′(b)f ′(a)(x− a)

∣∣
≤
∣∣g(y)− g(b)− g′(b)(y − b)

∣∣+ |g′(b)| |y − b− f ′(a)(x− a)|
=
∣∣g(y)− g(b)− g′(b)(y − b)

∣∣+ |g′(b)|
∣∣f(x)− f(a)− f ′(a)(x− a)

∣∣
and also

|y − b| =
∣∣f(x)− f(a)

∣∣ =
∣∣f(x)− f(a)− f ′(a)(x− a) + f ′(a)(x− a)

∣∣
≤
∣∣f(x)− f(a)− f ′(a)(x− a)

∣∣+ |f ′(a)| |x− a|.
Let ε > 0. Since g is differentiable at b, we can choose δ0 > 0 so that

|y − b| ≤ δ0 =⇒
∣∣g(y)− g(b)− g′(b)(y − b)

∣∣ ≤ ε
2(1+|f ′(a)|) |y − b|.

Since f is continuous at a (by Theorem 1.49), we can choose δ1 so that

|x− a| ≤ δ1 =⇒ |f(x)− f(a)| ≤ δ0 =⇒ |y − b| ≤ δ0.
Since f is differentiable at a we can choose δ2 > 0 and δ3 > 0 so that

|x− a| ≤ δ2 =⇒
∣∣f(x)− f(a)− f ′(a)(x− a)

∣∣ ≤ |x− a| and

|x− a| ≤ δ3 =⇒
∣∣f(x)− f(a)− f ′(a)(x− a)

∣∣ ≤ ε
2(1+g′(b)|) |x− a|.

Let δ = min{δ1, δ2, δ3}. Let x ∈ A and let y = f(x) ∈ B. Then when |x− a| ≤ δ we have∣∣h(x)− h(a)− g′(f(a))f ′(a)(x− a)
∣∣

≤
∣∣g(y)− g(b)− g′(b)(y − b)

∣∣+ |g′(b)|
∣∣f(x)− f(a)− f ′(a)(x− a)

∣∣
≤ ε

2(1+|f ′(a)|) |y − b|+ (1 + |g′(b)|) · ε
2(1+|g′(b)|) |x− a|

≤ ε
2(1+|f ′(a)|)

(∣∣f(x)− f(a)− f ′(a)(x− a)
∣∣+ |f ′(a)| |x− a|

)
+ ε

2 |x− a|

≤ ε
2(1+|f ′(a)|)

(
|x− a|+ |f ′(a)| |x− a|

)
+ ε

2 |x− a|

= ε
2 |x− a|+

ε
2 |x− a| = ε|x− a|.

Thus h is differentiable at a with h′(a) = g′(f(a))f ′(a), as required.
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2.40 Exercise: Let f : A ⊆ R → R. Show that f is strictly monotonic if and only if
f has the property that for all a, b, c ∈ A, if b lies strictly between a and c then f(b) lies
strictly between f(a) and f(c).

2.41 Theorem: (The Inverse Function Theorem) Let A be an interval in R, let f : A→ R
be injective and continuous, let B = f(A) (and note that f : A → B is bijective) and let
g = f−1 : B → A be the inverse function. Then

(1) the functions f and g are strictly monotonic and g is continuous, and

(2) if A is an open interval then so is B, and if f is differentiable at a ∈ A with f ′(a) 6= 0,
then g is differentiable at b = f(a) with g′(b) = 1

f ′(a) .

Proof: To prove Part 1, suppose that f is injective and continuous. Let a, b, c ∈ A with
a < b < c. Since f is injective and a 6= c, we have f(a) 6= f(c), so either f(a) < f(c) or
f(a) > f(c). Consider the case that f(a) < f(c). Suppose, for a contradiction, that
f(b) ≥ f(c). Note that since f is injective and b 6= c we have f(b) 6= f(c) and so
f(b) > f(c). Choose y with f(c) < y < f(b). Since f is continuous on [a, b] and on
[b, c], by the Intermediate Value Theorem, we can choose x1 ∈ [a, b] and x2 ∈ [b, c] with
f(x1) = y = f(x2). Since y 6= f(b) we cannot have x1 = b or x2 = b so we have x1 < b < x2
with f(x1) = f(x2), which contradicts the fact that f is injective. Thus we cannot have
f(b) ≥ f(c) so we have f(b) < f(c). A similar argument shows that we cannot have
f(b) ≤ f(a) so we must have f(b) > f(a). This proves that in the case that f(a) < f(c)
we have f(a) < f(b) < f(c). A similar argument shows that in the case that f(a) > f(c)
we have f(a) > f(b) > f(c). It follows that f is strictly monotonic, by Exercise 1.51. It is
easy to see that if f is strictly increasing then g is strictly increasing (indeed when u, v ∈ B
with u < v and a = g(u) and b = g(v), we must have a < b because if a = b then u = v
and if a > b then u > v since f is strictly increasing) and if f is strictly decreasing then g
is strictly decreasing.

To complete the proof of Part 1, it remains to show that g is continuous. Suppose that
f and g are strictly increasing (the case that f and g are strictly decreasing is similar). Let
b ∈ B and let a = g(b) so that f(a) = b. Since f and g are strictly increasing, it follows
that b is the left (or right) endpoint of B if and only if a is the left (or right) endpoint of
A. To show that g is continuous at b, it suffices to show that if b is not the right endpoint
of B then lim

y→b+
g(y) = g(b) and that if b is not the left endpoint then lim

y→b−
g(y) = g(b). We

shall prove the first of these two statements (the proof of the second is similar). Suppose
that b is not the right endpoint of B and hence a is not the right endpoint of A. Let
ε > 0 be small enough that a + ε ∈ A. Choose δ = f(a + ε) − b = f(a + ε) − f(a) and
note that δ > 0 since f is strictly increasing. Then for all y ∈ B, if b < y < b + δ then
a = g(b) < g(y) < g(b+ δ) = g(f(a+ ε)) = a+ ε. Thus lim

y→b+
g(y) = g(b), as required.

To prove Part 2, suppose that A is an open interval and that f is differentiable at
a ∈ A with f ′(a) 6= 0. Note that B is an interval by Theorem 1.39 and B is open because,
as mentioned above, if u ∈ B was a right or left endpoint of B then g(u) would be a right
or left endpoint of A. By Part 1, we know that g is continuous at b = f(a), and so as
y → b in B we have g(y)→ g(b) in A, and so for x = g(y) we have

g(y)− g(b)

y − b
=

x− a
f(x)− f(a)

=
1

f(x)−f(a)
x−a

−→ 1

f ′(a)
as y → b.
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2.42 Definition: Let f : A ⊆ R→ R and let a ∈ A. We say that f has a local maximum
value at a when ∃ δ>0 ∀x∈A

(
|x− a|≤δ =⇒ f(x)≤f(a)

)
. Similarly, we say that f has

a local minimum value at a when ∃ δ>0 ∀x∈A
(
|x− a|≤δ =⇒ f(x)≥f(a)

)
.

2.43 Theorem: (Fermat’s Theorem) Let A ⊆ R be open, let f : A → R, and let a ∈ A.
Suppose that f is differentiable at a and that f has a local maximum or minimum value
at a. Then f ′(a) = 0.

Proof: The proof is left as an exercise (you probably saw the proof in first year calculus).

2.44 Theorem: (Mean Value Theorems) Let a, b ∈ R with a < b.

(1) (Rolle’s Theorem) If f : [a, b]→ R is differentiable in (a, b) and continuous at a and b
with f(a) = 0 = f(b) then there exists a point c ∈ (a, b) such that f ′(c) = 0.

(2) (The Mean Value Theorem) If f : [a, b] → R is differentiable in (a, b) and continuous
at a and b then there exists a point c ∈ (a, b) with

f ′(c) =
f(b)− f(a)

b− a
.

(3) (Cauchy’s Mean Value Theorem) If f, g : [a, b] → R are differentiable in (a, b) and
continuous at a and b, then there exists a point c ∈ (a, b) such that

f ′(c)
(
g(b)− g(a)

)
= g′(c)

(
f(b)− f(a)

)
.

Proof: To Prove Rolle’s Theorem, let f : [a, b]→ R be differentiable in (a, b) and continuous
at a and b with f(a) = 0 = f(b). If f is constant, then f ′(x) = 0 for all x ∈ [a, b], so we
can choose any c ∈ (a, b) and we have f ′(c) = 0. Suppose that f is not constant. Either
f(x) > 0 for some x ∈ (a, b) or f(x) < 0 for some x ∈ (a, b). Suppose that f(x) > 0 for
some x ∈ (a, b) (the case that f(x) < 0 for some x ∈ (a, b) is similar). By the Extreme
Value Theorem, f attains its maximum value at some point, say c ∈ [a, b]. Since f(x) > 0
for some x ∈ (a, b), we must have f(c) > 0. Since f(a) = f(b) = 0 and f(c) > 0, we have
c ∈ (a, b). By Fermat’s Theorem, we have f ′(c) = 0. This completes the proof of Rolle’s
Theorem.

To prove the Mean Value Theorem, suppose that f : [a, b] → R is differentiable in

(a, b) and continuous at a and b. Let g(x) = f(x) − f(a) − f(b)−f(a)
b−a (x − a). Then g is

differentiable in (a, b) with g′(x) = f ′(x) − f(b)−f(a)
b−a and g is continuous at a and b with

g(a) = 0 = g(b). By Rolle’s Theorem, we can choose c ∈ (a, b) so that g′(c) = 0, and then

g′(c) = f(b)−f(a)
b−a , as required.

Finally, we use the Mean Value Theorem to Prove Cauchy’s Mean Value Theorem.
Suppose f, g : [a, b] → R are both differentiable in (a, b) and continuous at a and b.
Let h(x) = f(x)

(
g(b) − g(a)

)
− g(x)

(
f(b) − f(a)

)
. Then h is differentiable in (a, b) and

continuous at a and b with h(a) = f(a)g(b) − g(a)f(b) = h(b). By the Mean Value

Theorem, we can choose c ∈ (a, b) so that h′(c) = h(b)−h(a)
b−a = 0, and then we have

f ′(c)
(
g(b)− g(a)

)
− g′(c)

(
f(b)− f(a)

)
= 0, as required.

2.45 Corollary: Let a, b ∈ R with a < b. Let f : [a, b] → R. Suppose that f is
differentiable in (a, b) and continuous at a and b. If f ′(x) > 0 for all x ∈ (a, b) then f is
strictly increasing on [a, b].

Proof: The proof is left as an exercise (the proof is often given in first year calculus).
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2.46 Theorem: (l’Hôpital’s Rule) Let A be a nonempty open interval in R. Let a ∈ A, or
let a be an endpoint of A. Let f, g : A \ {a} → R. Suppose that f and g are differentiable
in A \ {a} with g′(x) 6= 0 for all x ∈ A \ {a}. Suppose either that lim

x→a
f(x) = 0 = lim

x→a
g(x)

or that lim
x→a

g(x) = ±∞. Suppose that lim
x→a

f ′(x)

g′(x)
= u ∈ R. Then lim

x→a

f(x)

g(x)
= u.

Similar results hold for limits x → a+, x → a−, x → ∞ and x → −∞ and also when the
limit is u = ±∞.

Proof: We give the proof for x→ a+ (assuming that a ∈ A or a is the left endpoint of A)
with u ∈ R. Suppose first that lim

x→a+
f(x) = 0 = lim

x→a+
g(x). Choose b ∈ A with a < b.

Extend the maps f and g to obtain maps f, g : [a, b] → R by defining f(a) = 0 = g(a).
Note that f and g are continuous at a since lim

x→a+
f(x) = 0 and lim

x→a+
g(x) = 0. Let (xk)

be a sequence in (a, b ] with xk → a. For each index k, by Cauchy’s Mean Value Theorem
we can choose ck ∈ (a, xk) so that f ′(ck)

(
g(xk) − g(a)

)
= g′(ck)

(
f(xk) − f(a)

)
. Since

f(a) = 0 = g(a), this simplifies to f ′(ck)g(xk) = g′(ck)f(xk) and so we have f(xk)
g(xk)

= f ′(ck)
g′(ck)

.

Since a < ck < xk and xk → a, we have ck → a by the Squeeze Theorem. Since

lim
x→a+

f ′(x)

g′(x)
= u and ck → a, we have f(xk)

g(xk)
= f ′(ck)

g′(ck)
→ u by the Sequential Characterization

of Limits. We have shown that for every sequence (xk) in (a, b ] with xk → a we have

f(xk)
g(xk)

→ u. By the Sequential Characterization of limits, it follows that lim
x→a+

f(x)

g(x)
= u.

Now suppose that lim
x→a+

g(x) = ∞. Since lim
x→a+

g(x) = ∞ we can choose b ∈ A with

b > a so that g(x) > 0 for all x ∈ (a, b ]. Let (xk) be a sequence in (a, b ] with xk → a. For
each pair of indices k, l, by Cauchy’s Mean Value Theorem we can choose ckl ∈ (a, xk) so
that f ′(ckl)

(
g(xk) − g(xl)

)
= g′(ckl)

(
f(xk) − f(xl)

)
. Divide both sides by g′(ckl)g(xl) to

get
f ′(ckl)

g′(ckl)

g(xk)

g(xl)
− f ′(ckl)

g′(ckl)
=
f(xk)

g(xl)
− f(xl)

g(xl)
.

so we have
f(xl)

g(xl)
=
f ′(ckl)

g′(ckl)
+
f(xk)

g(xl)
− f ′(ckl)

g′(ckl)

g(xk)

g(xl)
.

Let ε > 0. Since lim
x→a

f ′(x)

g′(x)
= u we can choose δ > 0 so that |x−a| ≤ δ =⇒

∣∣∣ f ′(x)g′(x) −u
∣∣∣ ≤ ε

3 .

Since xk → a we can choose m ∈ Z+ so k ≥ m =⇒ |xk − a| ≤ δ. Note that when k, l ≥ m,

since ckl lies between xk and xl we also have |ckl−a| ≤ δ so
∣∣∣ f ′(ckl)
g′(ckl)

−u
∣∣∣ ≤ min

{
1, ε3

}
. Fix

k ≥ m. Choose l large enough so that
∣∣∣ f(xk)
g(xl)

∣∣∣ ≤ ε
3 and

∣∣∣ f ′(ckl)
g′(ckl)

g(xk)
g(xl)

∣∣∣ ≤ ε
3 . Then we have∣∣∣f(xl)

g(xl)
− u
∣∣∣ ≤ ∣∣∣f ′(ckl)

g′(ckl)
− u
∣∣∣+
∣∣∣f(xk)

g(xl)

∣∣∣+
∣∣∣f ′(ckl)
g′(ckl)

g(xk)

g(xl)

∣∣∣ ≤ ε.
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