Chapter 3. The Riemann Integral

The Riemann Integral

3.1 Definition: A partition of the closed interval [a,b] is a set X = {xg, 21, -, %n}
with
a=Tog<T1 <To<---<xTp=>b.
The intervals [z;_1, z;] are called the subintervals of [a, ], and we write
Ajx =i — i

for the size of the i*! subinterval. Note that

iAix:b—a.
i=1

The size of the partition X, denoted by |X]| is
| X| =max {A;z|l <i<n}.

3.2 Definition: Let X be a partition of [a,b], and let f : [a,b] — R be bounded. A
Riemann sum for f on X is a sum of the form

S = Z f(tl)AZ.T for some t; € [.Ti_l,.ilii] .
=1

The points t; are called sample points.

3.3 Definition: Let f : [a,b] — R be bounded. We say that f is (Riemann) integrable
on [a,b] when there exists a number I with the property that for every e > 0 there exists
d > 0 such that for every partition X of [a,b] with |X| < § we have |S — I| < € for every
Riemann sum for f on X, that is

<eE€.

=1

for every choice of t; € [x;_1,x;] This number [ is unique (as we prove below); it is called
the (Riemann) integral of f on [a,b], and we write

I:/abf,orlz/abf(a:)dx.

Proof: Suppose that I and J are two such numbers. Let € > 0 be arbitrary. Choose
d1 so that for every partition X with |X| < 0; we have |S — I| < § for every Riemann
sum S on X, and choose J2 > 0 so that for every partition X with |X| < d2 we have
S — J| < § for every Riemann sum S on X. Let 6 = min{d;,d2}. Let X be any partition
of [a,b] with |X| < 6. Choose t; € [x;—1,x;] and let S = > f(t;)A;z. Then we have

=1
I —J|<|I—-8|+|S—J|<§+ 5 =e Since € was arbitrary, we must have I = J.



1 if z€Q
0 if z¢Q.

Solution: Suppose, for a contradiction, that f is integrable on [0, 1], and write I = fol f-
Let e = 5. Choose d so that for every partition X with |X| < & we have |S—1I| < 3 for every

Riemann sum S for f on X. Choose a partition X with | X| < . Let S1 = > f(t;) Az
i=1

3.4 Example: Let f(z) = { Show that f is not integrable on [0, 1].

where each ¢; € [r;_1,x;] is chosen with ¢; € Q, and let Sy = > f(s;)A;x where each
i=1
Si € [wi—1, ;] is chosen with s; ¢ Q. Note that we have |S; — I| < 5 and |S> — I| < 3.

Since each t; € Q we have f(t;) =1 and so S1 = > f(t;)Ax = > Az =1-0=1, and
i=1 i=1

since each s; ¢ Q we have f(s;) =0 and so So = > f(s;)A;z = 0. Since |S; — I| < 3 we
i=1

have |1 — I| < 3 and so 3 < I < 2, and since |Sy — I| < 3 we have |0 — I| < 1 and so

—% <I< %, giving a contradiction.

3.5 Example: Show that the constant function f(z) = c is integrable on any interval
b

[a,b] and we have / cdr=c(b—a).

a

Solution: The solution is left as an exercise.

3.6 Example: Show that the identity function f(z) = x is integrable on any interval
b

[a, b], and we have / z dr = (b* — a?).

a

Solution: Let € > 0. Choose § = ;2-. Let X be any partition of [a,b] with |X| < §. Let

b—a"

n n
t; € (w1, m;) and set S = > f(t;) Az = > t;A;x. We must show that |S—1(b?—a?)| < e.
i=1 i=1
Notice that
n n
(x; +xi—1)Ajx = Z(Cﬁz +xi)(x; —ximq) = Zﬂfiz —xiq?
i=1 i=1
= (.%’12 — $02) + (1'22 — .%'12) + -+ (ill'n_12 — ilfn_22) + ($n2 — l‘n_lz)
= 20>+ (zP =)+ F @no1? — a1 + 2p

— 5,2 — 2 = b2 — a2

n
=1

and that when ¢; € [z;_1,x;] we have }ti — %(ml + xi,l)’ < %(wZ —Tiq) = %Aix, and so

\S — 1% - a2)‘ — ;tzAiz -3 fjl(a:Z + a2 1)
— Z; (ti — 2 (@ + zi41)) Ajz
< é ‘tl — %(xZ —i—ale)‘Alx
< é LA A < é LoAz
= Z%_é(b —a)=¢€ -



Upper and Lower Riemann Sums

3.7 Definition: Let X be a partition for [a,b] and let f : [a,b] — R be bounded. The
upper Riemann sum for f on X, denoted by U(f, X), is

U(f,X)= ZMZ A;x  where M; = sup{f(t)}t € [xi_l,xi]}
i=1

and the lower Riemann sum for f on X, denoted by L(f, X) is

L(f,X)= Zmi Ajz where m; = inf {f(t)|t € [wi—1, 2]}
i=1

3.8 Remark: The upper and lower Riemann sums U(f, X) and L(f, X) are not, in
general, Riemann sums at all, since we do not always have M; = f(t;) or m; = f(s;) for
any t;,s; € [x;—1,2;]. If f is increasing, then M; = f(z;) and m; = f(z;—1), and so in
this case U(f, X) and L(f, X) are indeed Riemann sums. Similarly, if f is decreasing then
U(f,X) and L(f,X) are Riemann sums. Also, if f is continuous then, by the Extreme
Value Theorem, we have M; = f(t;) and m; = f(s;) for some t;,s; € [z;—1,x;], and so in
this case U(f, X) and L(f, X) are again Riemann sums.

3.9 Note: Let X be a partition of [a,b], and let f : [a,b] — R. be bounded. Then
U(f,X)=sup {S{S is a Riemann sum for f on X} , and
L(f,X) = inf {S|S is a Riemann sum for f on X} .
In particular, for every Riemann sum S for f on X we have
L(f.X) < S < U(f,X)

Proof: We show that U(f, X) = sup {S|S is a Riemann sum for f on X} (the other state-
ment is proved similarly). Let 7 = {S ‘S is a Riemann sum for f on X } For S € T, say

S = > f(ti)A;xz where t; € [z;_1,x;], we have
i=1

S=3 f(t)Ai < 3 MiAgz = U(f, X).
=1 =1

Thus U(f, X) is an upper bound for 7 so we have U(f, X) > sup 7. It remains to show
that given any ¢ > 0 we can find S € T with U(f, X) — S < e. Let € > 0 be arbitrary.
Since M; = sup {f(t)‘t € [xi,l,xi]}, we can choose t; € [z;_1,2;] with M; — f(t;) < 7%
Then we have

n

U(f, X) -5 = i M;A;x — i f(tZ)AZI‘ = Z (Mz — f(t,))Azx < i bia Ajx=c¢
=1 =1 =1

i=1




3.10 Lemma: Let f : [a,b] — R be bounded with upper and lower bounds M and m.
Let X and Y be partitions of [a,b] such that Y = X U{c} for some ¢ ¢ X. Then

0<L(£,Y) — L(f, X) < (M —m)|X]| , and
0<U(f,X)-U(f,Y) < (M -m)|X].

Proof: We shall prove that 0 < L(f,Y) — L(f,X) < (M — m)|X]| (the proof that 0 <
Uf,X)-U(f,Y) < (M —m)|X]| is similar). Say X = {zg,x1, -, xn} and ¢ € [x;_1, x]
soY ={xg,x1, -, xi_1,¢,x;, -, }. Then

L(f,Y)—L(f,X) =ki(c —zi—1) + li(x; — ¢) —m(z; — xi—1)

where
ki =inf {f(t)|t € [wi—1,d]}, L =inf {f()|t € [c,x]} , m; =inf {f(t)|t € [wi—1,2:]}.
Since m; = min{k;,l;} we have k; > m; and l; > m;, so
L(f,Y)—L(f,X) > mi(c — zi—1) + mi(z; — ¢) —my(x; —z;-1) = 0.

Since k; < M and I; < M and m; > m we have

L(f,Y)—L(f,X) < M(c—zi—1) + M(x; —¢c) —m(x; —x;-1)

=M —-—m)(zx; —x;-1) < (M —m)|X].
3.11 Note: Let X and Y be partitions of [a,b] with X C Y. Then
L(f.X) < L(F.Y) < U(F.Y) < U(f.X).

Proof: If Y is obtained by adding one point to X then this follows from the above lemma.
In general, Y can be obtained by adding finitely many points to X, one point at a time.

3.12 Note: Let X and Y be any partitions of [a,b]. Then L(f, X) < U(f,Y).
Proof: Let Z = X UY. Then by the above note,
L(f,X) < L(f,Z) <U(f,Z2) <U(f,Y).

3.13 Definition: Let f : [a,b] — R be bounded. The upper integral of f on [a,b],
denoted by U(f), is given by

U(f) =inf {U(f, X)‘X is a partition of [a,b]}
and the lower integral of f on [a,b], denoted by L(f), is given by

L(f) =sup {L(f,X)’X is a partition of [a,b]} .
3.14 Note: The upper and lower integrals of f both exist even when f is not integrable.
3.15 Note: We always have L(f) < U(f).

Proof: Let € > 0 be arbitrary. Choose a partition X; so that L(f) — L(f,X1) < § and
choose a partition Xy so that U(f, X2) — U(f) < §. Then

U(f) = L(f) = (U(f) = U(f, X2)) + (U(f, X2) = L(f, X1)) + (L(f, X1) — L())
>—-5+0—-35=—¢.
Since € was arbitrary, this implies that U(f) — L(f) > 0.

4



3.16 Theorem: (Equivalent Definitions of Integrability) Let f : [a,b] — R be bounded.
Then the following are equivalent.

(1) f is integrable on [a, b].

(2) For all € > 0 there exists a partition X such that U(f, X) — L(f, X) <

(3) L(f) = U(f).

Proof: (1) = (2). Suppose that f is integrable on [a, b] with [ = f; f. Let € > 0. Choose
d > 0 so that for every partition X with [X| < § we have |S — I| < { for every Riemann
sum S on X. Let X be a partition with |X| < 0. Let S; be a Riemann sum for f on X
with |U(f, X)— 51| < §, and let S; be a Riemann sum for f on X with |S; — L(f, X)| < §.
Then
[U(f, X) = L(f, X)| < |U(f, X) = 51| + [S1 = I + [I = Sa| +[S2 — L(f, X))
<E+EHE+E=e.

(2)==(3). Suppose that for all € > 0 there is a partition X such that U(f, X)—L(f, X) <€
Let € > 0. Choose X so that U(f, X) — L(f, X) < €. Then

U(f) = L(f) = (U(f) = U(f, X)) + (U(f. X) = L(f, X)) + (L(f, X) = L(]))
<0+e+0=c¢e.
Since 0 < U(f) — L(f) < € for every € > 0, we have U(f) = L(f).

(3) = (1). Suppose that L(f) = U(f) and let I = L(f) = U(f). Let ¢ > 0. Choose
a partition Xg of [a,b] so that L(f) — L(f,Xo) < § and U(f, Xo) —U(f) < §. Say
Xo = {xo, 21, -, x,} and set § = m, where M and m are upper and lower
bounds for f on [a,b]. Let X be any partition of [a,b] with |X| < . Let Y = X, U X.
Note that Y is obtained from X by adding at most n — 1 points, and each time we add
a point, the size of the new partition is at most |X| < §. By lemma 3.10, applied n — 1
times, we have
0<U(f, X)-U(,Y) < (n=1)(M -m)|X| < (n—-1)(M—m)d = % , and
0<L(f,Y) = L(f,X) < (n = )(M —m)|X| < (n = 1)(M —m)d =
Now let S be any Riemann sum for f on X. Note that L(f, Xo) < L(f, Y) < L(f) =
Uf) <U(f,Y)<U(f,Xo) and L(f,X) < S <U(f,X), so we have

S—I<U(f,X)-I1=U(f,X)-U(f) = (U}, X) - U(f, >) (U,Y)=U(f))
< (U, X)=U(f,Y)) + (U(f, X0) = U(f)) < 5+ § =
and
I—-S=1-L(fX)=L(f) - L(f,X) = (L(f) = L(f.Y)) + (L(f L(f, X))
S(L(f) L(f, Xo)) + (L(f,Y) — <f,X>)< +5=e.



Evaluating Integrals of Continuous Functions

3.17 Theorem: (Continuous Functions are Integrable) Let f : [a,b] — R be continuous.
Then f is integrable on [a, b].

Proof: Let € > 0. Since f is uniformly continuous on [a,b], we can choose 6 > 0 such
that for all z,y € [a,b] we have |z —y| < § = |f(x) — f(y)| < ;5. Let X be any
partition of [a,b] with |X| < 0. By the Extreme Value Theorem we have M; = f(¢;) and
m; = f(s;) for some t;,s; € [x;—1,x;]. Since |t; — s;| < |z; — x;-1| < |X| = I, we have
|Mi —mi| = [f(t:) — f(s:)| < 55 Thus

U, X) — L(£, X) = 3 Midjz — 3 milz = 33 (M — mi) Az < 5 3" Ar = .
= = i=1

1=1 1=1 1=1

3.18 Note: Let f be integrable on [a,b]. Let X,, be any sequence of partitions of [a, b]
with lim |X,| = 0. Let S,, be any Riemann sum for f on X,,. Then {S,,} converges with
n—oo

b
lim Sn:/ f(x)dx.

n—oo

Proof: Write I = ff f. Given € > 0, choose § > 0 so that for every partition X of [a, b]
with |X| < 6 we have |S — I| < € for every Riemann sum S for f on X, and then choose
N so that n > N = |X,,| <. Then we have n > N = |S,, — I| < e.

3.19 Note: Let f be integrable on [a,b]. If we let X,, be the partition of [a,b] into n
equal-sized subintervals, and we let .S,, be the Riemann sum on X, using right-endpoints,
then by the above note we obtain the formula

b n
/ flx)dz = nli_)n;O Z f(zn,i)An iz, where 2, ; = a + b_T“i and A, ;z = b_T“ )
a i=1

2
3.20 Example: Find/ 2% dx.
0

Solution: Let f(x) = 2%. Note that f is continuous and hence integrable, so we have

2 n n n
/ 2" dx = lim Zf(acnﬂ-)An’ix = li_)m Zf (%) (%) = li_)m ZZQi/" (%)
0 i=1 e e

n—oo
. 2.4Ym 41 ,
= lim . , by the formula for the sum of a geometric sequence
n—00 n 41/n 1
- ( lim 6-41/”)( lim ;) 6 lm T —6lim "
- \nSoo n—oo n, (41/n — 1) T p—oo 41/n _ 1 T ao047 — 1
1
=6 lim ——— I’Hopital’ 1
6$1rr%) YT by I’'Hopital’s Rule
- 6 _ 3
" In4 " In2°



3.21 Lemma: (Summation Formulas) We have

. n(n+1 (2n—i—1 = n?(n+ 1)
zﬁ—” 2: ZZ Z: =— 1

Proof: These formulas could be proven by induction, but we give a more constructive
n n n
proof. It is obvious that > 1 =1+41+---1=n. Tofind }_ 4, consider Y. (i — (i —1)?).

i=1 i=1 n=1
On the one hand, we have

z:jl(ﬂ—(z’—lﬂ):(12_02)+(22_12)+...+((n_1)2_(n_2)2)+(n2_(n_1>2)

:—02-1-(12—12)+(22—22)+...+((n_1)2_(n_1)2)+n2
and on the other hand,

S (2~ (i - 1)%) = i(e’?—u?—%ﬂ»:i@i—”:?éi‘él

=1 1 =1

n n
23 i=n*+> 1=n’+n=n(n+1),
/ i=1

as required. Next, to find " i?, consider Y (i® — (i — 1)®). On the one hand we have

n=1 i=1
2 (== = (1P =0)+ (2 =1+ (3 =2+ + (0 = (n = 1))
i=1
=0+ -1)+ 2 -2°)++((n-1)° = (n—1)°) +n°
= n3
and on the other hand,

S (= (i — 1))

I

s
I
—

(i — (® = 3i% + 3i — 1))

I
M=

(3i2—3i+1)=3> 2 =3 i+ 1.

s
Il
—
-
Il
—_
.
I
MR
-
Il
MR

n n n
Equating these gives n® =3 > i? =3 Y i+ > 1 and so

=1 =1 =1

n n n
6> i2=2n3+6>i—-2> 1=2n34+3n(n+1)-2n=n(n+1)2n+1)
=1 =1 =1
n

as required. Finally, to find > i3, consider (i4 — (i — 1)4). On the one hand we have
i=1 i=1

Z (24_(2_1>4) :714,
i=1
(as above) and on the other hand we have

> (it = (= 1)*) = 3 (43 — 6 +4z—1)_4zz —6> 2 +4>i— > 1.
i=1 i=1 i=1 i=1

1 =1

M:

%



n n n n
Equating these gives n* =413 -6 > i2+4> i~ > 1 and so
i=1 i=1 i=1 =1

4N B3 =nt46>i?-4> i+ > 1
=1 =1 =1 =1

=n'+nn+1)2n+1)—2n(n+1)+n
=n*4+2n3 +n? =n%*(n +1)%,

as required.
3

3.22 Example: Find / x + 223 dx.
1

Solution: Let f(x) = x + 223. Then

3 n
/ z+ 222 dr = lim Zf(acn’i)Anﬂ-x
1 =1

n—00 4
oy 2.5 (2
_nh_{go;f(l—i_nl) (n)

:nli—{I;onl((lﬂL%i) +2(1+%¢)3> (2)

= Jim ST+ 2ie2 (14 2ik F 4 ) (2)

n n
=1

n

—dim SO (S4B 282 4 528

—nll_)II;o <n+n22+n3l+n4z>
=1

= Jim (g PO I TGRSV I TURVELES I A URSY >

=6+ 5+ 52+ =44,



Basic Properties of Integrals

3.23 Theorem: (Linearity) Let f and g be integrable on [a,b] and let ¢ € R. Then f + g
and cf are both integrable on [a,b] and

/ab<f+g)=/abf+/abg
/abcf:c/abf.

Proof: The proof is left as an exercise.

3.24 Theorem: (Comparison) Let f and g be integrable on [a,b]. If f(z) < g(z) for all

x € [a,b] then
b b
/ fé/ g

Proof: The proof is left as an exercise.

3.25 Theorem: (Additivity) Let a < b < ¢ and let f : [a,c] — R be bounded. Then f is
integrable on [a, ¢] if and only if f is integrable both on [a,b] and on [b, c], and in this case

/f+/ /f

Proof: Suppose that f is integrable on [a,c]. Choose a partition X of [a,c| such that
U(f,X)— L(f,X) < e. Say that b € [:1:1_1,&:1] and let Y = {xg,x1, -+, 2;_1,b} and
Z = {b,x;,xit1, -, x,} so that Y and Z are partitions of [a,b] and of [b,c]. Then we
have U(f,Y)— L(f,Y) < U(f, X U{b}) — L(f, X U{b}) < U(f, X) — L(f, X) < € and also
U(f,Z) _L(f7Z) < U(faXU{b}) _L(vaU{b}) < U(faX) _L(faX) < € and so f is
integrable both on [a,b] and on [b, c|.
Conversely, suppose that f is integrable both on [a, b] and on [b.c]. Choose a partition
Y of [a, b] SO that U(f,Y)— L(f,Y) < £ and choose a partition Z of [b,c| such that

2
U(f, ) < £. Let X =Y UZ. Then X is a partition of [a,c] and we have

U(f. X )= (U(1,Y) + U, 2)) — (L(£.Y) + L(f. 2)) < c.

NOW suppose that f is integrable on [a,c| (hence also on [a,b] and on [b,c]) with

L = / fy I = / fand I = / f. Let € > 0. Choose 6 > 0 so that for all partitions

X1, X9 and X of [a, b] b, c] anda[a,c] respectively with | X;| < 6, |X2| < and | X]| < 0,
we have [S1 — I1| < g, [S2 — I3 < § and |S — I| < § for all Riemann sums Sy, S> and
S for f on X, X5 and X respectively. Choose partitions X; and X, of [a,b] and [b, ]
with | X7]| < ¢ and | X3] < 0. Choose Riemann sums S; and Sy for f on X; and Xo. Let
X = X; U X, and note that | X| < ¢ and that S = S; + 53 is a Riemann sum for f on X.
Then we have

}I—(I1+12)| = |(I—S)+(S1—I1)+(52—]2)| < |I—S|+|S1—I1|+’52—12| S<ststs=e

and



a a b
3.26 Definition: We define / f =0 and for a < b we define / f= —/ f.
a b a

3.27 Note: Using the above definition, the Additivity Theorem extends to the case
that a,b,c € R are not in increasing order: for any a,b,c € R, if f is integrable on

[min{a, b, c}, max{a,b, c}] then
[re[s=]1

3.28 Theorem: (Integration and Absolute Value) Let f be integrable on [a,b]. Then |f|
is integrable on [a,b] and
b
< / f]-

Proof: Let € > 0. Choose a partition X of [a,b] such that U(f, X) — L(f,X) < e. Write
M;(f) = sup { f($)[t € [wi1, 2]} and M;(|f]) = sup {|f(t)[|t € [i—1, 2]}, and similarly
for m;(f) and m;(|f]).
When 0 < m;(f) < M;(f) we have M;(|f]) = M;(f) and m;(|f|) = m;(f). When
0,

m;(f) < 0 < M;(f) we have M;(|f]) = max{M;(f),—m;(f)} and m;(|f]) > 0, and so
Mi(f1) =mq(|f]) < max {M;(f), —=mi(f)} < Mi(f)—mi(f). When m,(f) < M( ) < 0we
have M;(|f[) = —m;(f) and m;(|f]) = —M;(f), and so M;(|f[) —m(|f]) = Mi(f) —mi(f).
In all three cases we have
Mi(1f]) — mi(|f]) < Mi(f) —mi(f)
and so
U(f>X>_L(f7X)

Thus |f| is integrable on [a, b).
Again, let € > 0. Choose a partition X on [a,b] and choose values t; € [x;_1,z;] so

that , ,
o= [ o] < 5 ma (S isise = 1

n
Note that by the triangle inequality we have

> f(ti)Aix
/abf —/abm:< bf‘—

i=1
a i=1
n b
+ (Z | f(t:)| Az —/ |f|>
i=1 a

n
i=1
<s+0+5=c¢

€

€
—and <3

< ST f(t)]Asz, and so
i=1

Ai.’E

b
Since - / |f] <0, as required.
a

[

b b
/f|—/|f]<eforeverye>0,wehave
a a

10



The Fundamental Theorem of Calculus

3.29 Notation: For a function F', defined on an interval containing [a, b], we write

[F@)K = F(b) — F(a).

3.30 Theorem: (The Fundamental Theorem of Calculus)
(1) Let f be integrable on [a,b]. Define F : [a,b] — R by

0= 1= [ 10

Then F' is continuous on [a,b]. Moreover, if f is continuous at a point = € [a,b] then F is
differentiable at x and

F'(x) = f(z).
(2) Let f be integrable on [a,b]. Let F be differentiable on [a,b] with F' = f. Then
/ f= :F(b) — Fl(a).
Proof: (1) Let M be an upper bound for |f] on [a,b]. For a < z,y < b we have

F(y) - F(x)| = /ayf—/;f - yf‘é /

y
|1 s/
so given € > 0 we can choose § = 7 to get
ly—z| <d = |F(y)— F(z)| < Mly—z| < M§ =e.

Mw:Mw—x

Thus F' is continuous (indeed uniformly continuous) on [a,b]. Now suppose that f is
continuous at the point = € [a, b]. Note that for a < z,y < b with z # y we have

Fly) = Fx) o =L f
‘ D= )‘— et (@)

L)

y—z y—x
- | [ o - )
SW—x|Lﬁﬂﬂ—f@Mﬁw

Given € > 0, since f is continuous at x we can choose d > 0 so that

ly —a| <6 = |f(y) - fz)] <e

S -
L/Eﬁ’ wiﬂdy_ﬂze'

and then for 0 < |y — x| < § we have

Fly) — F(x) )
y—x

<

w-w
and thus we have F’'(z) = f(x) as required.



(2) Let f be integrable on [a, b]. Suppose that F' is differentiable on [a, b] with F' = f. Let
€ > 0 be arbitrary. Choose 6 > 0 so that for every partition X of [a,b] with | X]| < § we

b n
/ f=) )N
@ i=1
sample points ¢; € [x;_1, ;] as in the Mean Value Theorem so that
F(z;) — F(z;—
Py P = Flai)
Ti— Ti—1

b n
JEED G
a i=1

have < € for every choice of sample points ¢; € [z;_1,x;]. Choose

that is f(t;)Ajx = F(x;) — F(x;—1). Then <€, and

n n

S ft)Air = (F(z;) — F(zi-1)

) = (}(xl) — F(z)) + (F(z2) = F(z1)) + -+ (F(n — 1) = F(zy,))
= —F(z)+ (F(z1) — F(z1)) + - + (F(zn-1) — F(zn-1)) + F(zy,)
= F(x,)— F(z) = F(b) — F(a).

and so < €. Since € was arbitrary,

b b
/f—(F(b)—F(a)) /f—(F(b)—F(a))‘=0-

3.31 Definition: A function F'such that F’ = f on an interval is called an antiderivative
of f on the interval.

3.32 Note: If G’ = F’ = f on an interval, then (G — F) = 0, and so G — F' is constant
on the interval, that is G = F + ¢ for some constant c.

3.33 Notation: We write
/f:F-I-c,or /f(m)dx:F(a:)-l-c

when F' is an antiderivative of f on an interval, so that the antiderivatives of f on the
interval are the functions of the form G = F' + ¢ for some constant c.

V3 dy
3.34 Example: Find / .
0 1 + .CI?2
d
Solution: We have Tr a2 tan~! z + ¢, since %(tan_1 x) = Tr 22 and so by Part 2

of the Fundamental Theorem of Calculus, we have

/0 1:;2 = [tan*1$}0 =tan 1v/3 —tan"10 = %
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