
Chapter 4. Sequences and Series of Functions

Pointwise Convergence

4.1 Definition: Let A ⊆ R, let f : A → R, and for each integer n ≥ p let fn : A → R.
We say that the sequence of functions (fn)n≥p converges pointwise to f on A, and we
write fn → f pointwise on A, when lim

n→∞
fn(x) = f(x) for all x ∈ A, that is when for all

x ∈ A and for all ε > 0 there exists m ≥ p such that for all integers n we have

n ≥ m =⇒ |fn(x)− f(x)| < ε .

4.2 Note: By the Cauchy Criterion for convergence, the sequence (fn)n≥p converges
pointwise to some function f(x) on A if and only if for all x ∈ A and for all ε > 0 there
exists m ≥ p such that for all integers k, ` we have

k, ` ≥ m =⇒
∣∣fk(x)− f`(x)

∣∣ < ε .

4.3 Example: Find an example of a sequence of functions (fn)n≥1 and a function f with
fn → f pointwise on [0, 1] such that each fn is continuous but f is not.

Solution: Let fn(x) = xn. Then lim
n→∞

fn(x) =

{
0 if x 6= 1

1 if x = 1 .

4.4 Example: Find an example of a sequence of functions (fn)n≥1 and a function f with
fn → f pointwise on [0, 1] such that each fn is differentiable and f is differentiable, but
lim
n→∞

fn
′ 6= f ′.

Solution: Let fn(x) = 1
n tan−1(nx). Then lim

n→∞
fn(x) = 0, and fn

′(x) =
1

1 + (nx)2
so

lim
n→∞

fn
′(x) =

{
0 if x 6= 0

1 if x = 0 .

4.5 Example: Find an example of a sequence of functions (fn)n≥1 and a function f with
fn → f pointwise on [0, 1] such that each fn is integrable but f is not.

Solution: We have Q ∩ [0, 1] = {a1, a2, a3, · · ·} where

(an)n≥1 =
(
0
1 ,

1
1 ,

0
2 ,

1
2 ,

2
2 ,

0
3 ,

1
3 ,

2
3 ,

3
3 ,

0
4 , · · · ,

4
4 , · · ·

)
.(

as an exercise, you can check that an = k
` where ` =

⌈ −3+√9−8n
2

⌉
and k = n − `2+`

2

)
.

For x ∈ [0, 1], let fn(x) =

{
0 if x /∈ {a1, a2, · · · , an}
1 if x ∈ {a1, a2, · · · , an} .

Then lim
n→∞

fn(x) =

{
0 if x /∈ Q
1 if x ∈ Q .

4.6 Example: Find an example of a sequence of functions (fn)n≥1 and a function f with
fn → f pointwise on [0, 1] such that each fn is integrable and f is integrable but

lim
n→∞

∫ 1

0

fn(x) dx 6=
∫ 1

0

f(x) dx .

Solution: Let f1(x) =

{
48
(
x− 1

2

)(
1− x

)
if 1

2 ≤ x ≤ 1,

0 otherwise .
For n ≥ 1 let fn(x) = nf1(nx).

Then each fn is continuous with

∫ 1

0

fn(x) dx = 1, and lim
n→∞

fn(x) = 0 for all x.
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Uniform Convergence

4.7 Definition: Let A ⊆ R, let f : A → R, and for each integer n ≥ p let fn : A → R.
We say that the sequence of functions (fn)n≥p converges uniformly to f on A, and we
write fn → f uniformly on A, when for all ε > 0 there exists m ∈ Z≥p such that for all
x ∈ A and for all integers n ∈ Z≥p we have

n ≥ m =⇒
∣∣fn(x)− f(x)

∣∣ < ε .

4.8 Theorem: (Cauchy Criterion for Uniform Convergence of Sequences of Functions)
Let (fn)n≥p be a sequence of functions on A ⊆ R. Then (fn) converges uniformly (to some
function f) on A if and only if for all ε > 0 there exists m ∈ Z≥p such that for all x ∈ A
and for all integers k, ` ∈ Z≥p we have

k, ` ≥ m =⇒
∣∣fk(x)− f`(x)

∣∣ < ε .

Proof: Suppose that (fn) converges uniformly to f on A. Let ε > 0. Choose m so that
for all x ∈ A we have n ≥ m =⇒

∣∣fn(x) − f(x)
∣∣ < ε

2 . Then for k, ` ≥ m we have∣∣fk(x)− f(x)
∣∣ < ε

2 and
∣∣f`(x)− f(x)

∣∣ < ε
2 and so∣∣fk(x)− f`(x)

∣∣ ≤ ∣∣fk(x)− f(x)
∣∣+
∣∣f`(x)− f(x)

∣∣ < ε
2 + ε

2 = ε .

Conversely, suppose that (fn) satisfies the Cauchy Criterion for uniform convergence, that
is for all ε > 0 there exists m such that for all x ∈ A and all integers n, ` we have

n, ` ≥ m =⇒
∣∣fn(x)− f`(x)

∣∣ < ε .

For each fixed x ∈ A, (fn(x)) is a Cauchy sequence, so (fn(x)) converges, and we can
define f(x) by

f(x) = lim
n→∞

fn(x) .

We know that fn → f pointwise on A, but we must show that fn → f uniformly on A.
Let ε > 0. Choose m so that for all x ∈ A and for all integers n, ` we have

n, ` ≥ m =⇒
∣∣fn(x)− f`(x)

∣∣ < ε
2 .

Let x ∈ A. Since lim
`→∞

f`(x) = f(x), we can choose ` ≥ m so that
∣∣f`(x)−f(x)

∣∣ < ε
2 . Then

for n ≥ m we have∣∣fn(x)− f(x)
∣∣ ≤ ∣∣fn(x)− f`(x)

∣∣+
∣∣f`(x)− f(x)

∣∣ < ε
2 + ε

2 = ε .

4.9 Theorem: (Uniform Convergence, Limits and Continuity) Suppose that fn → f
uniformly on A. Let x be a limit point of A. If lim

y→x
fn(y) exists for each n, then

lim
y→x

lim
n→∞

fn(y) = lim
n→∞

lim
y→x

fn(y) .

In particular, if each fn is continuous in A, then so is f .

Proof: Suppose that lim
y→x

fn(y) exists for all n. Let bn = lim
y→x

fn(y). We must show that

lim
y→x

f(y) = lim
n→∞

bn. We claim first that (bn) converges. Let ε > 0. Choose m so that

k, ` ≥ m =⇒
∣∣fk(y) − f`(y)

∣∣ < ε
3 for all y ∈ A. Let k, ` ≥ m. Choose y ∈ A so that∣∣fk(y)− bk

∣∣ < ε
3 and

∣∣f`(y)− b`
∣∣ < ε

3 . Then we have∣∣bk − b`| ≤ |bk − fk(y)
∣∣+
∣∣fk(y)− f`(y)

∣∣+
∣∣f`(y)− b`

∣∣ < ε
3 + ε

3 + ε
3 = ε .

By the Cauchy Criterion for sequences, (bn) converges, as claimed.
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Now, let b = lim
n→∞

bn. We must show that lim
y→x

f(x) = b. Let ε > 0. Choose m so that

when n ≥ m we have
∣∣fn(y)−f(y)

∣∣ < ε
3 for all y ∈ A and we have |bn−b| < ε

3 . Let n ≥ m.

Since lim
y→x

fn(y) = bn we can choose δ > 0 so that 0 < |y − x| < δ =⇒
∣∣fn(y) − bn

∣∣ < ε
3 .

Then when 0 < |y − x| < δ we have∣∣f(y)− b
∣∣ ≤ ∣∣f(y)− fn(y)

∣∣+
∣∣fn(y)− bn

∣∣+
∣∣bn − b∣∣ < ε

3 + ε
3 + ε

3 = ε .

Thus lim
y→x

f(x) = b, as required.

In particular, if x ∈ A and each fn is continuous at x then we have

lim
y→x

f(y) = lim
y→x

lim
n→∞

fn(y) = lim
n→∞

lim
y→x

fn(y) = lim
n→∞

fn(x) = f(x)

so f is continuous at x.

4.10 Theorem: (Uniform Convergence and Integration) Suppose that fn → f uniformly

on [a, b]. If each fn is integrable on [a, b] then so is f . In this case, if gn(x) =

∫ x

a

fn(t) dt

and g(x) =

∫ x

a

f(t) dt, then gn → g uniformly on [a, b]. In particular, we have

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

lim
n→∞

fn(x) dx .

Proof: Suppose that each fn is integrable on [a, b]. We claim that f is integrable on [a, b].
Let ε > 0. Choose N so that n ≥ N =⇒

∣∣fn(x) − f(x)
∣∣ < ε

4(b−a) for all x ∈ [a, b]. Fix

n ≥ N . Choose a partition X of [a, b] so that U(fn, X) − L(fn, X) < ε
2 . Note that since∣∣fn(x) − f(x)

∣∣ < ε
4(b−a) we have Mi(f) < Mi(fn) + ε

4(b−a) and mi(f) > mi(fn) − ε
4(b−a) ,

and so

U(f,X)− L(f,X) =
n∑
i=1

(
Mi(f)−mi(f)

)
∆ix <

n∑
i=1

(
Mi(fn)−mi(fn) + ε

2(b−a)

)
∆ix

= U(fn, X)− L(fn, X) + ε
2 <

ε
2 + ε

2 = ε .

Thus f is integrable on [a, b].

Now define gn(x) =

∫ x

a

fn(t) dt and g(x) =

∫ x

a

f(t) dt. We claim that gn → g

uniformly on [a, b]. Let ε > 0. Choose N so that n ≥ N =⇒
∣∣fn(t)− f(t)

∣∣ < ε
2(b−a) for all

t ∈ I. Let n ≥ N . Let x ∈ [a, b]. Then we have∣∣gn(x)− g(x)
∣∣ =

∣∣∣∣∫ x

a

fn(t) dt−
∫ x

a

f(t) dt

∣∣∣∣ =

∣∣∣∣∫ x

a

fn(t)− f(t) dt

∣∣∣∣
≤
∫ x

a

∣∣fn(t)− f(t)
∣∣ dt ≤ ∫ x

a

ε
2(b−a) dt = ε

2(b−a) (x− a) ≤ ε
2 < ε .

Thus gn → g uniformly on [a, b], as required.
In particular, we have lim

n→∞
gn(b) = g(b), that is

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

lim
n→∞

fn(x) dx .
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4.11 Theorem: (Uniform Convergence and Differentiation) Let (fn) be a sequence of
functions on [a, b]. Suppose that each fn is differentiable on [a, b],

(
fn
′) converges uniformly

on [a, b], and
(
fn(c)

)
converges for some c ∈ [a, b]. Then (fn) converges uniformly on [a, b],

lim
n→∞

fn(x) is differentiable, and

d

dx
lim
n→∞

fn(x) = lim
n→∞

d

dx
fn(x) .

Proof: We claim that (fn) converges uniformly on [a, b]. Let ε > 0. Choose N so that when
n,m ≥ N we have

∣∣fn′(t)−fm′(t)∣∣ < ε
2(b−a) for all t ∈ [a, b] and we have

∣∣fn(c)−fm(c)
∣∣ < ε

2 .

Let n,m ≥ N . Let x ∈ [a, b]. By the Mean Value Theorem applied to the function
fn(x)− fm(x), we can choose t between c and x so that(

fn(x)− fm(x)− fn(c) + fm(c)
)

=
(
fn
′(t)− fm′(t)

)
(x− c) .

Then we have∣∣fn(x)− fm(x)
∣∣ ≤ ∣∣fn(x)− fm(x)− fn(c) + fm(c)

∣∣+
∣∣fn(c)− fm(c)

∣∣
=
∣∣fn′(t)− fm′(t)∣∣|x− c|+ ∣∣fn(c)− fm(c)

∣∣
< ε

2(b−a) (b− a) + ε
2 = ε .

Thus (fn) converges uniformly on [a, b].
Let f(x) = lim

n→∞
fn(x). We claim that f is differentiable with f ′(x) = lim

n→∞
fn
′(x) for

all x ∈ [a, b]. Fix x ∈ [a, b]. Note that

f ′(x) = lim
n→∞

fn
′(x) ⇐⇒ lim

y→x

f(y)− f(x)

y − x
= lim
n→∞

lim
y→x

fn(y)− fn(x)

y − x

⇐⇒ lim
y→x

lim
n→∞

fn(y)− fn(x)

y − x
= lim
n→∞

lim
y→x

fn(y)− fn(x)

y − x
so it suffices to show that

(
gn
)

converges uniformly on [a, b] \ {x}, where

gn(y) =
fn(y)− fn(x)

y − x
.

Let ε > 0. Choose N so that n,m ≥ N =⇒
∣∣fn′(t) − fm′(t)∣∣ < ε for all t ∈ [a, b]. Let

n,m ≥ N . Let y ∈ [a, b] \ {x}. By the Mean Value Theorem, we can choose t between x
and y so that (

fn(y)− fm(y)− fn(x) + fm(x)
)

=
(
fn
′(t)− fm′(t)

)
(y − x) .

Then ∣∣gn(y)− gm(y)
∣∣ =

∣∣∣∣fn(y)− fm(y)− fn(x) + fm(x)

y − x

∣∣∣∣ =
∣∣fn′(t)− fm′(t)∣∣ < ε .

Thus
(
gn
)

converges uniformly on [a, b] \ {x}, as required.
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Series of Functions

4.12 Definition: Let (fn)n≥p be a sequence of functions on A ⊆ R. The series of

functions
∑
n≥p

fn(x) is defined to be the sequence
(
Sl(x)

)
where Sl(x) =

l∑
n=p

fn(x). The

function Sl(x) is called the lth partial sum of the series. We say the series
∑
n≥p

fn(x)

converges pointwise (or uniformly) on A when the sequence {Sl} converges, pointwise (or
uniformly) on A. In this case, the sum of the series of functions is defined to be the
function

f(x) =

∞∑
n=p

fn(x) = lim
l→∞

Sl(x) .

4.13 Theorem: (Cauchy Criterion for the Uniform Convergence of a Series of Functions)

The series
∑
n≥p

fn(x) converges uniformly (to some function f) on A if and only if for every

ε > 0 there exists N ≥ p such that for all x ∈ A and for all k, ` ≥ p we have

` > k ≥ N =⇒

∣∣∣∣∣ ∑̀
n=k+1

fn(x)

∣∣∣∣∣ < ε .

Proof: This follows immediately from the analogous theorem for sequences of functions.

4.14 Theorem: (Uniform Convergence, Limits and Continuity) Suppose that
∑
n≥p

fn(x)

converges uniformly on A. Let x be a limit point of A. If lim
y→x

fn(y) exists for all n ≥ p,

then

lim
y→x

∞∑
n=p

fn(y) =
∞∑
n=p

lim
y→x

fn(y) .

In particular, if each fn(x) is continuous on A then so is

∞∑
n=p

fn(x).

Proof: This follows immediately from the analogous theorem for sequences of functions.

4.15 Theorem: (Uniform Convergence and Integration) Suppose that
∑
n≥p

fn(x) converges

uniformly on [a, b]. If each fn(x) is integrable on [a, b], then so is
∞∑
n=p

fn(x). In this case,

if we define gn(x) =

∫ x

a

fn(t) dt and g(x) =

∫ x

a

∞∑
n=p

fn(t) dt, then
∑
n≥p

gn(x) converges

uniformly to g(x) on A. In particular, we have∫ b

a

∞∑
n=p

fn(x) dx =

∞∑
n=p

∫ b

a

fn(x) dx .

Proof: This follows immediately from the analogous theorem for sequences of functions.
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4.16 Theorem: (Uniform Convergence and Differentiation) Suppose that each fn(x) is

differentiable on [a, b],
∑
n≥p

fn
′(x) converges uniformly on [a, b], and

∑
n≥p

fn(c) converges for

some c ∈ [a, b]. Then
∑
n≥p

fn(x) converges uniformly on [a, b] and

d

dx

∞∑
n=p

fn(x) =
∞∑
n=p

d

dx
fn(x) .

Proof: This follows immediately from the analogous theorem for sequences of functions.

4.17 Theorem: (The Weierstrass M -Test) Suppose that fn is bounded with |fn(x)| ≤Mn

for all n ≥ p and x ∈ A, and
∑
n≥p

Mn converges. Then
∑
n≥p

fn(x) converges uniformly on A.

Proof: Let ε > 0. Choose N so that ` > k ≥ N =⇒
∑̀

n=k+1

Mn < ε. Let ` > k ≥ N . Let

x ∈ A. Then ∣∣∣∣∣ ∑̀
n=k+1

fn(x)

∣∣∣∣∣ ≤ ∑̀
n=k+1

∣∣fn(x)
∣∣ ≤ ∑̀

n=k+1

Mn < ε .

4.18 Example: Find a sequence of functions
(
fn(x)

)
n≥0, each of which is differentiable

on R, such that
∑
n≥0

fn(x) converges uniformly on R, but the sum f(x) =
∞∑
n=0

fn(x) is

nowhere differentiable.

Solution: Let fn(x) = 1
2n sin2(8nx). Since |fn(x)| ≤ 1

2n and
∑

1
2n converges,

∑
n≥0

fn(x)

converges uniformly on R. Let f(x) =
∞∑
n=0

fn(x). We claim that f(x) is nowhere differen-

tiable. Let x ∈ R. For each n, let m, an and bn be such that an = mπ
2·8n , bn = (m+1)π

2·8n and
x ∈ [an, bn). Note that one of fn(an) and fn(bn) is equal to 1

2n and the other is equal to 0
so we have

∣∣fn(bn)− fn(an)
∣∣ = 1

2n . Note also that for k > n we have fk(an) = fk(bn) = 0.

Also, for all k we have fk(x) = 1
2k

sin2(8kx), fk
′(x) = 4k sin(2 · 8kx), and

∣∣fk′(x)
∣∣ ≤ 4k, so

by the Mean Value Theorem,∣∣fk(bn)− fk(an)
∣∣ ≤ 4k|bn − an| .

Finally, note that if f ′(x) did exist, then we would have f ′(x) = lim
n→∞

f(bn)− f(an)

bn − an
, but∣∣∣∣f(bn)− f(an)

bn − an

∣∣∣∣ =

∣∣∣∣∣
∞∑
k=0

fk(bn)− fk(an)

bn − an

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=0

fk(bn)− fk(an)

bn − an

∣∣∣∣∣
≥
∣∣∣∣fn(bn)− fn(an)

bn − an

∣∣∣∣− n−1∑
k=0

∣∣∣∣fk(bn)− fk(an)

bn − an

∣∣∣∣
≥

1
2n

π
2·8n
−
n−1∑
k=0

4k = 2·4n
π −

4n−1
3 =

(
2
π −

1
3

)
4n + 1

3 →∞ as n→∞
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Power Series

4.19 Definition: A power series centred at a is a series of the form
∑
n≥0

an(x − a)n

for some real numbers an, where we use the convention that (x− a)0 = 1.

4.20 Example: The geometric series
∑
n≥0

xn is a power series centred at 0. It converges

when |x| < 1 and for all such x the sum of the series is
∞∑
n=0

xn =
1

1− x
.

4.21 Lemma: (Abel’s Formula) Let {an} and {bn} be sequences. Then we have

l∑
n=m

anbn +
l−1∑
p=m

(
p∑

n=m

an

)
(bp+1 − bp) =

(
l∑

n=m

an

)
bl .

Proof: We have
l−1∑
p=m

(
p∑

k=m

an

)
(bp+1 − bp) = am(bm+1 − bm) + (am + am+1)(bm+2 − bm+1)

+ (am + am+1 + am+2)(bm+3 − bm+2)

+ · · ·+ (am + am+1 + am+2 + · · ·+ al−1)(bl − bl−1)

= −ambm − am+1bm+1 − · · · − al−1bl−1
+ (am + am+1 + · · · al−1)bl − albl + albl

=

(
l∑

n=m

an

)
bl −

l∑
n=m

anbn .

4.22 Remark: Let (an) be a sequence in R. Recall that lim sup
n→∞

an = lim
n→∞

sn where

sn = sup{ak | k ≥ n} (with lim sup
n→∞

an =∞ when (an) is not bounded above).

4.23 Theorem: (The Interval and Radius of Convergence) Let
∑
n≥0

an(x−a)n be a power

series and let R =
1

lim sup
n→∞

n
√
|an|

∈ [0,∞]. Then the set of x ∈ R for which the power

series converges is an interval I centred at a of radius R. Indeed

(1) if |x− a| > R then lim
n→∞

an(x− a) 6= 0 so
∑
n≥0

nn(x− a)n diverges,

(2) if |x− a| < R then
∑
n≥0

an(x− a)n converges absolutely,

(3) if 0 < r < R then
∑
n≥0

an(x− a)n converges uniformly in [a− r, a+ r], and

(4) (Abel’s Theorem) if
∑
n≥0

an(x− a)n converges when x = a+R then the convergence is

uniform on [a, a+R], and similarly if
∑
n≥0

an(x− a)n converges when x = a−R then the

convergence is uniform on [a−R, a].
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Proof: To prove part (1), suppose that |x− a| > R. Then

lim sup
n→∞

n
√
|an(x− a)n| = |x− a| lim sup

n→∞

n
√
|an| > R · 1

R = 1 ,

and so lim
n→∞

an(x− a)n 6= 0 and
∑
an(x− a)n diverges, by the Root Test.

To prove part (2), suppose that |x− a| < R. Then

lim sup
n→∞

n
√
|an(x− a)n| = |x− a| lim sup

n→∞

n
√
|an| < R · 1

R = 1 ,

and so
∑∣∣an(x− a)n

∣∣ converges, by the Root Test.

To prove part (3), fix 0 < r < R. By part (2),
∑∣∣an(x−a)n

∣∣ converges when x = a+r,
that is

∑
|anrn| converges. Let x ∈ [a− r, a+ r]. Then |an(x−a)n| ≤ |anrn| and

∑
|anrn|

converges, and so
∑
|an(x− a)n| converges uniformly by the Weierstrass M -Test.

Now let us prove part (4). Suppose that
∑
an(x − a)n converges when x = a + R,

that is
∑
anR

n converges. Let ε > 0. Choose N so that l > m > N =⇒

∣∣∣∣∣
l∑

n=m

anR
n

∣∣∣∣∣ < ε.

Then by Abel’s Formula and using telescoping we have∣∣∣∣∣
l∑

n=m

an(x− a)n

∣∣∣∣∣ =

∣∣∣∣∣
l∑

n=m

anR
n
(
x−a
R

)n∣∣∣∣∣
=

∣∣∣∣∣
(

l∑
n=m

anR
n

)(
x−a
R

)l − l−1∑
p=m

(
p∑

n=m

anR
n

)((
x−a
R

)p+1 −
(
x−a
R

)p)∣∣∣∣∣
≤

∣∣∣∣∣
l∑

n=m

anR
n

∣∣∣∣∣ (x−aR )l
+

l−1∑
p=m

∣∣∣∣∣
p∑

n=m

anR
n

∣∣∣∣∣ ((x−aR )p − (x−aR )p+1
)

< ε
(
x−a
R

)l
+ ε
((

x−a
R

)m − (x−aR )l)
= ε

(
x−a
R

)m
< ε .

4.24 Definition: The number R in the above theorem is called the radius of conver-
gence of the power series, and the interval I is called the interval of convergence of
the power series.

4.25 Example: Find the interval of convergence of the power series
∑
n≥1

(3− 2x)n√
n

.

Solution: First note that this is in fact a power series, since
(3− 2x)n√

n
= (−2)n√

n

(
x− 3

2

)n
,

and so
∑
n≥1

(3− 2x)n√
n

=
∑
n≥0

cn(x− a)n, where c0 = 0, cn = (−2)n√
n

for n ≥ 1 and a = 3
2 .

Now, let an =
(3− 2x)n√

n
. Then

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣ (3− 2x)n+1

√
n+ 1

√
n

(3− 2x)n

∣∣∣∣ =
√

n
n+1 |3 − 2x|,

so lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |3 − 2x| . By the Ratio Test,
∑
an converges when |3 − 2x| < 1 and

diverges when |3− 2x| > 1. Equivalently, it converges when x ∈ (1, 2) and diverges when
x /∈ [1, 2]. When x = 1 so (3 − 2x) = 1, we have

∑
an =

∑
1√
n

, which diverges (its a

p-series), and when x = 2 so (3− 2x) = −1, we have
∑
an =

∑ (−1)n√
n

which converges by

the Alternating Series Test. Thus the interval of convergence is I = (1, 2 ].
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Operations on Power Series

4.26 Theorem: (Continuity of Power Series) Suppose that the power series
∑
an(x−a)n

converges in an interval I. Then the sum f(x) =
∞∑
n=0

an(x− a)n is continuous in I.

Proof: This follows from uniform convergence of
∑
an(x− a)n in closed subintervals of I.

4.27 Theorem: (Addition and Subtraction of Power Series) Suppose that the power series∑
an(x− a)n and

∑
bn(x− a)n both converge in the interval I. Then

∑
(an + bn)(x− a)n

and
∑

(an − bn)(x− a)n both converge in I, and for all x ∈ I we have( ∞∑
n=0

an(x− a)n

)
±

( ∞∑
n=0

bn(x− a)n

)
=
∞∑
n=0

(an ± bn)(x− a)n .

Proof: This follows from Linearity.

4.28 Theorem: (Multiplication of Power Series) Suppose the power series
∑
an(x− a)n

and
∑
bn(x − a)n both converge in an open interval I with a ∈ I. Let cn =

n∑
k=0

akbn−k.

Then
∑
cn(x− a)n converges in I and for all x ∈ I we have

∞∑
n=0

cn(x− a)n =

( ∞∑
n=0

an(x− a)n

)( ∞∑
n=0

bn(x− a)n

)
.

Proof: This follows from the Multiplication of Series Theorem, since the power series
converge absolutely in I.

4.29 Theorem: (Division of Power Series) Suppose that
∑
an(x− a)n and

∑
bn(x− a)n

both converge in an open interval I with a ∈ I, and that b0 6= 0. Define cn by

c0 = a0
b0

, and for n > 0, cn = an
b0
− bnc0

b0
− bn−1c1

b0
− · · · − b1cn−1

b0
.

Then there is an open interval J with a ∈ J such that
∑
cn(x − a)n converges in J and

for all x ∈ J ,

∞∑
n=0

cn(x− a)n =

∞∑
n=0

an(x− a)n

∞∑
n=0

bn(x− a)n
.

Proof: Choose r > 0 so that a+ r ∈ I. Note that
∑
|anrn| and

∑
|bnrn| both converges.

Since |anrn| → 0 and |bnrn| → 0 and b0 6= 0, we can choose M so that M ≥
∣∣∣anrnb0

∣∣∣ and

M ≥
∣∣∣ bnrnb0

∣∣∣ for all n. Note that |c0| =
∣∣∣a0b0 ∣∣∣ ≤M and since c1 = a1

b0
+ b1c0

b0
we have

|c1r| ≤
∣∣∣a1rb0 ∣∣∣+

∣∣∣ b1rb0 ∣∣∣ |c0| ≤M +M2 = M(1 +M) .

Suppose, inductively, that |ckrk| ≤M(1 +M)k for all k < n. Then since

an = bnc0 + bn−1c1 + · · ·+ b1cn−1 + b0cn ,
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we have

|cnrn| ≤
∣∣∣anrnb0

∣∣∣+
∣∣∣ bnrnb0

∣∣∣ |c0|+ ∣∣∣ bn−1r
n−1

b0

∣∣∣ |c1r|+ · · ·+ ∣∣∣ b1rb0 ∣∣∣ |cn−1rn−1|
≤M +M2 +M2(1 +M) +M2(1 +M)2 +M2(1 +M)3 + · · ·+M2(1 +M)n−1

= M +M2

(
(1 +M)n − 1

M

)
= M(1 +M)n .

Bu induction, we have |cnrn| ≤M(1 +M)n for all n ≥ 0. Let J1 =
(
a− r

1+M , a+ r
1+M

)
.

Let x ∈ J1 so |x− a| < r
1+M . Then for all n we have

|cn(x− a)n| = |cnrn| ·
1

(1 +M)n
·
∣∣∣∣ x− a
r/(1 +M)

∣∣∣∣n ≤M ∣∣∣∣ x− a
r/(1 +M)

∣∣∣∣n
and so

∑
|cn(x− a)n| converges by the Comparison Test.

Note that from the definition of cn we have an =
n∑
k=0

ckbn−k, and so by multiplying

power series, we have( ∞∑
n=0

cn(x− a)n

)( ∞∑
n=0

bn(x− a)n

)
=
∞∑
n=0

an(x− a)n

for all x ∈ I ∩ J1. Finally note that f(x) =

∞∑
n=0

bn(x− a)n is continuous in I and we have

f(0) = b0 6= 0, and so there is an interval J ⊂ I ∩ J1 with a ∈ J such that f(x) 6= 0 in J .

4.30 Theorem: (Composition of Power Series) Let f(x) =
∞∑
n=0

an(x − a)n in an open

interval I with a ∈ I, and let g(y) =
∞∑
m=0

bm(y − b)m in an open interval J with b ∈ J

and with a0 ∈ J . Let K be an open interval with a ∈ K such that f(K) ⊂ J . For
each m ≥ 0, let cn,m be the coefficients, found by multiplying power series, such that
∞∑
n=0

cn,m(x−a)n = bn

( ∞∑
n=0

an(x−a)n− b
)m

. Then
∑
m≥0

cn,m converges for all m ≥ 0, and

for all x ∈ K,
∑
n≥0

( ∞∑
m=0

cn,m

)
(x− a)n converges and

∞∑
n=0

( ∞∑
m=0

cn,m

)
(x− a)n = g

(
f(x)

)
.

Proof: We shall omit the proof. The proof would be fairly long and technical unless we first
introduced some additional machinery. Both the proof and the statement of the theorem
would become more elegant if we first defined and studied differentiation of complex-valued
functions of a complex variable. This is done, for example, in PMATH 352.
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4.31 Theorem: (Integration of Power Series) Suppose that
∑
an(x − a)n converges in

the interval I. Then for all x ∈ I, the sum f(x) =

∞∑
n=0

an(x− a)n is integrable on [a, x] (or

[x, a]) and ∫ x

a

∞∑
n=0

an(t− a)n dt =
∞∑
n=0

∫ x

a

an(t− a)n dt =
∞∑
n=0

an
n+ 1

(x− a)n+1 .

Proof: This follows from uniform convergence.

4.32 Theorem: (Differentiation of Power Series) Suppose that
∑
an(x − a)n converges

in the open interval I. Then the sum f(x) =
∞∑
n=0

an(x− a)n is differentiable in I and

f ′(x) =
∞∑
n=1

nan(x− a)n−1 .

Proof: We claim that the radius of convergence of
∑
an(x − a)n is equal to the radius

of convergence of
∑
nan(x − a)n−1. Let R be the radius of convergence of

∑
an(x − a)n

and let S be the radius of convergence of
∑
nan(x − a)n−1. Fix x ∈ (a − R, a + R) so

|x − a| < R and
∑∣∣an(x − a)n

∣∣ converges. Choose r, s with |x − a| < r < s < R. Since

lim
n→∞

(r/s)n

(1/n)
= 0, we can choose N so that n ≥ N =⇒

(
r
s

)n
< 1

n . Then for n ≥ N we

have ∣∣nan(x− a)n
∣∣ =

∣∣n ( rs)n (x−ar )n ansn∣∣ ≤ 1 · 1 · |ansn| .

Since
∑
|ansn| converges,

∑∣∣nan(x − a)n
∣∣ converges by the Comparison Test, and so∑∣∣nan(x− a)n−1

∣∣ converges by Linearity. Thus R ≤ S.

Now fix x ∈ (a−S, a+ s) so that |x− a| < S and
∑∣∣nan(x− a)n−1

∣∣ converges. Then∑∣∣nan(x−a)n
∣∣ converges by Linearity, and

∣∣an(x−a)n
∣∣ ≤ ∣∣nan(x−a)n

∣∣ so
∑∣∣an(x−a)n

∣∣
converges by Comparison. Thus S ≤ R and so R = S as claimed.

The theorem now follows from the uniform convergence of
∑
nan(x− a)n−1.

4.33 Example: We have 1
1+x =

∞∑
n=0

(−1)nxn for |x| < 1. By Integration of Power Series,

lnx =
∞∑
n=0

(−1)n
n+1 x

n+1 =
∞∑
n=1

(−1)n
n xn for |x| < 1. In particular, we can take x = 1

2 to get

ln 3
2 =

∞∑
n=1

(−1)n
n·2n and we can take x = − 1

2 to get ln 1
2 =

∞∑
n=1

−1
n·2n , that is ln 2 =

∞∑
n=1

1
n·2n .

Let us also argue that we can also take x = 1. Note that the series
∞∑
n=1

(−1)n+1

n xn

diverges when x = −1 (by the Integral Test) and converges when x = 1 (by the Alternating

Series Test), so the interval of convergence is (−1, 1]. Thus the sum f(x) =
∞∑
n=1

(−1)n+1

n xn

is defined for −1 < x ≤ 1. We know already that f(x) = ln(1 + x) for −1 < x < 1. By
Abel’s Theorem, the series converges uniformly on [0, 1], so by the Continuity of Power

Series Theorem, the sum f(x) =
∞∑
n=0

(−1)n+1

n xn is continuous on [0, 1] and in particular

f(x) is continuous at x = 1. Since f(x) = ln(1+x) for |x| < 1 and and since both f(x) and

ln(1 + x) are continuous at 1 it follows that f(1) = ln 2. Thus we have ln 2 =
∞∑
n=1

(−1)n+1

n .
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Taylor Series

4.34 Theorem: Suppose that f(x) =
∞∑
n=0

an(x− a)n in an open interval I centred at a.

Then f is infinitely differentiable at a and for all n ≥ 0 we have

an =
f (n)(a)

n!
,

where f (n)(a) denotes the nth derivative of f at a.

Proof: By repeated application of the Differentiation of Power Series Theorem, for all
x ∈ I, we have f ′(x) =

∑∞
n=1 nan(x − a)n−1, f ′′(x) =

∑∞
n=2 n(n − 1)an(x − a)n−2 and

f ′′′(x) =
∑∞
n=3 n(n− 1)(n− 2)an(x− a)n−3, and in general

f (k)(x) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)an(x− a)n−k

and so f(a) = a0, f ′(a) = a1, f ′′(a) = 2 · 1 a2 and f ′′′(a) = 3 · 2 · 1 a3, and in general

f (n)(a) = n! an

4.35 Definition: Given a function f(x) whose derivatives of all order exist at x = a, we
define the Taylor series of f(x) centered at a to be the power series

T (x) =
∑
n≥0

an(x− a)n where an =
f (n)(a)

n!

and we define the lth Taylor Polynomial of f(x) centered at a to be the lth partial sum

Tl(x) =
l∑

n=0

an(x− a)n where an =
f (n)(a)

n!

4.36 Example: Find the Taylor series centered at 0 for f(x) = ex.

Solution: We have f (n)(x) = ex for all n, so f (n)(0) = 1 and an = 1
n! for all n ≥ 0. Thus

the Taylor series is

T (x) =
∞∑
n=0

1
n! x

n = 1 + x+ 1
2!x

2 = 1
3!x

3 + 1
4!x

4 + · · · .

4.37 Example: Find the Taylor series centered at 0 for f(x) = sinx.

Solution: We have f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = − cosx, f ′′′′(x) = sinx and so
on, so that in general f (2n)(x) = (−1)n sinx and f (2n+1)(x) = (−1)n cosx. It follows that

f (2n)(0) = 0 and f (2n+1)(0) = (−1)n, so we have a2n = 0 and a2n+1 = (−1)n
(2n+1)! . Thus

T (x) =
∞∑
n=0

(−1)n
(2n+1)!x

2n+1 = x− 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + · · · .
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4.38 Example: Find the Taylor series centered at 0 for f(x) = (1 + x)p where p ∈ R.

Solution: f ′(x) = p(1+x)p−1, f ′′(x) = p(p−1)(1+x)p−2, f ′′′(x) = p(p−1)(p−2)(1+x)p−3,
and in general

f (n)(x) = p(p− 1)(p− 2) · · · (p− n+ 1)(1 + x)p−n ,

so f(0) = 1, f ′(0) = p, f ′′(0) = p(p−1), and in general f (n)(0) = p(p−1)(p−2) · · · (p−n+1),

and so we have an = p(p−1)(p−2)···(p−n+1)
n! . Thus the Taylor series is

T (x) =
∞∑
n=0

(
p
n

)
xn = 1 + px+ p(p−1)

2! x2 + p(p−1)(p−2)
3! x3 + p(p−1)(p−2)(p−3)

4! x4 + · · ·

where we use the notation(
p
0

)
= 1 , and for n ≥ 1,

(
p
n

)
= p(p−1)(p−2)···(p−n+1)

n!

4.39 Theorem: (Taylor) Let f(x) be infinitely differentiable in an open interval I with
a ∈ I. Let Tl(x) be the lth Taylor polynomial for f(x) centered at a. Then for all x ∈ I
there exists a number c between a and x such that

f(x)− Tl(x) =
f (l+1)(c)

(l + 1)!
(x− a)l+1 .

Proof: When x = a both sides of the above equation are 0. Suppose that x > a (the
case that x < a is similar). Since f (l+1) is differentiable and hence continuous, by the
Extreme Value Theorem it attains its maximum and minimum values, say M and m.
Since m ≤ f (l+1)(t) ≤M for all t ∈ I, we have∫ t1

a

mdt ≤
∫ t1

a

f (l+1)(t) dt ≤
∫ t1

a

M dt

that is
m(t1 − a) ≤ f (l)(t1)− f (l)(a) ≤M(t1 − a)

for all t1 > a in I. Integrating each term with respect to t1 from a to t2, we get

1
2m(t2 − a)2 ≤ f (l−1)(t2)− f (l)(a)(t2 − a) ≤ 1

2M(tt − a)2

for all t2 > a in I. Integrating with respect to t2 from a to t3 gives

1
3!m(t3 − a)3 ≤ f (l−2)(t3)− f (l−2)(a)− 1

2f
(l)(a)(t3 − a)3 ≤ 1

3!M(t3 − a)3

for all t3 > a in I. Repeating this procedure eventually gives

1
(l+1)!m(tl+1 − a)l+1 ≤ f(tl+1)− Tl(tl+1) ≤ 1

(l+1)!M(tl+1 − a)l+1

for all tl+1 > a in I. In particular 1
(l+1)!m(x− a)l+1 ≤ f(x)− Tl(x) ≤ 1

(l+1)!M(x− a)l+1,
so

m ≤
(
f(x)− Tl(x)

) (l+1)!
(x−a)l+1 ≤M .

By the Intermediate Value Theorem, there is a number c ∈ [a, x] such that

f (l+1)(c) =
(
f(x)− Tl(x)

) (l + 1)!

(x− a)l+1

.
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4.40 Theorem: The functions ex, sinx and (1 + x)p are all exactly equal to the sum of
their Taylor series centered at 0 in the interval of convergence.

Proof: First let f(x) = ex and let x ∈ R. By Taylor’s Theorem, f(x) − Tl(x) =
ecxl+1

(l + 1)!
for some c between 0 and x, and so∣∣f(x)− Tl(x)

∣∣ ≤ e|x||x|l+1

(l + 1)!
.

Since
∑ e|x||x|l+1

(l + 1)!
converges by the Ratio Test, we have lim

l→∞

e|x||x|l+1

(l + 1)!
= 0 by the Diver-

gence Test, so lim
l→∞

(
f(x)− Tl(x)

)
= 0, and so f(x) = lim

l→∞
Tl(x) = T (x).

Now let f(x)= sinx and let x ∈ R. By Taylor’s Theorem, f(x)−T (x) =
f (l+1)(c)xl+1

(l + 1)!
for some c between 0 and x. Since f (l+1)(x) is one of the functions ± sinx or ± cosx, we
have

∣∣f (l+1)(c)
∣∣ ≤ 1 for all c and so∣∣f(x)− T (x)

∣∣ ≤ |x|l+1

(l + 1)!
.

Since
∑ |x|l+1

(l + 1)!
converges by the Ratio Test, lim

l→∞

|x|l+1

(l + 1)!
= 0 by the Divergence Test,

and so we have and f(x) = T (x) as above.
Finally, let f(x) = (1 + x)p. The Taylor series centered at 0 is

T (x) = 1 + px+ p(p−1)
2! x2 + p(p−1)(p−2)

3! x3 + p(p−1)(p−2)(p−3)
4! x4 + · · ·

and it converges for |x| < 1. Differentiating the power series gives

T ′(x) = p+ p(p−1)
1! x+ p(p−1)(p−2)

2! x2 + p(p−1)(p−2)(p−3)
3! x3 + · · ·

and so
(1 + x)T ′(x) = p+

(
p+ p(p−1)

1!

)
x+

(
p(p−1)

1! + p(p−1)(p−2)
2!

)
x2

+
(
p(p−1)(p−2)

2! − p(p−1)(p−2)(p−3)
3!

)
x3 + · · ·

= p+ p·p
1! x+ p·p(p−1)

2! x2 + p·p(p−1)(p−2)
3! x3 + · · ·

= p T (x) .

Thus we have (1 +x)T ′(x) = pT (x) with T (0) = 1. This DE is linear since we can write it

as T ′(x)− p
1+xT (x) = 0. An integrating factor is λ = e

∫
− p

1+x dx = e−p ln(1+x) = (1 + x)−p

and the solution is T (x) = (1+x)−p
∫

0 dx = b(1+x)p for some constant b. Since T (0) = 1

we have b = 1 and so T (x) = (1 + x)p = f(x).
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