Chapter 5. Topology in Euclidean Space

Dot Product and Norm

5.1 Definition: For vectors z,y € R" we define the dot product of x and y to be
zey=yle=3 zyi.
i=1

5.2 Theorem: (Properties of the Dot Product) For all x,y,z € R™ and all t € R we have
(1) (Bilinearity) (z+y)+z=x-2+y-z, (tx)-y=1t(x-y)

ze(ytz)=az-y+ta-z, x-(ty) =tlx-y),
(2) (Symmetry) -y =y -z, and
(3) (Positive Definiteness) x - x > 0 with x - x = 0 if and only if z = 0.

Proof: The proof is left as an exercise.

5.3 Definition: For a vector x € R", we define the norm (or length) of x to be

2] = Ve -z = /T, 2.

We say that x is a unit vector when |z| = 1.

5.4 Theorem: (Properties of the Norm) Let xz,y € R™ and let t € R. Then

(1) (Positive Definiteness) |z| > 0 with |x| = 0 if and only if x = 0,

(2) (Scaling) |tz| = |t||z,

(3) |z £y = |o[* £ 2(z - y) + [y]*.

(4) (The Polarization Identities) z +y = 2 (Jz + y|* — [z* — [y[*) = 1 (lz + y|* — |z — y|?),
(5) (The Cauchy-Schwarz Inequality) |z - y| < |x||y| with |z - y| = |=| |y| if and only if the
set {x,y} is linearly dependent, and

(6) (The Triangle Inequality) | + y| < |z| + |y|.

Proof: We leave the proofs of Parts (1), (2) and (3) as an exercise, and we note that
(4) follows immediately from (3). To prove part (5), suppose first that {z,y} is linearly
dependent. Then one of z and y is a multiple of the other, say y = tx with ¢ € R. Then

@yl = o - (t2)] = [t(z - 2)| = [t] |2]* = |2[ [tz] = || |y].

Suppose next that {x,y} is linearly independent. Then for all ¢t € R we have x + ty # 0
and so

0# |z +ty* = (z+ty) - (z +ty) = 2> + 2t(z - y) + |y

Since the quadratic on the right is non-zero for all ¢ € R, it follows that the discriminant
of the quadratic must be negative, that is

Az - y)? —4lz*|y* < 0.

Thus (z - y)? < |z|?|y|* and hence |z - y| < |z||y|. This proves part (5).
Using part (5) note that

2
o +y* = [a]*+2(2 - y) +y1* < v +yl* + 20yl + [yl < |2l +202]lyl+y* = (J2]+]y])
and so |x + y| < |x| + |y|, which proves part (6).
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5.5 Definition: For points a,b € R", we define the distance between a and b to be
dist(a,b) = |b — al.

5.6 Theorem: (Properties of Distance) Let a,b,c € R"™. Then

(1) (Positive Definiteness) dist(a,b) > 0 with dist(a,b) = 0 if and only if a = b,

(2) (Symmetry) dist(a,b) = dist(b, a), and

(3) (The Triangle Inequality) dist(a,c) < dist(a, b) 4 dist(b, ¢).

Proof: The proof is left as an exercise.

5.7 Definition: For nonzero vectors 0 # u,v € R", we define the angle between v and

v to be O(u,v) = cos™! Tl € [0, ]. We say that u and v are orthogonal when u - v = 0.

As an exercise, determine (with proof) some properties of angles.

Open and Closed Sets

5.8 Definition: For a € R" and 0 < r € R, the sphere, the open ball, the closed ball,
and the (open) punctured ball in R™ centered at a of radius r are defined to be the sets
S(a,r) = {z € R"|dist(z,a) =7} = {z € R"||a — 2| =1},
B(a,r) = {x € R"|dist(z,a) <7} = {z € R"||a — z| < r},
B(a,r) ={z € R"|dist(x,a) <r}={ze R"Ha —z|<r},
B*(a,r) = {z € R*|0 < dist(z,a) <r} = {z e R*|0 < |a — 2| < r}.
5.9 Definition: Let A C R". We say that A is bounded when A C B(a,r) for some

a € R” and some 0 < r € R. As an exercise, verify that A is bounded if and only if
A C B(0,r) for some r > 0.

5.10 Definition: For a set A C R"”, we say that A is open (in R"™) when for every a € A
there exists 7 > 0 such that B(a,r) C A, and we say that A is closed (in R™) when its
complement A° =R" \ A is open in R™.

5.11 Exercise: Show that in R, open intervals are open, and closed intervals are closed.

5.12 Example: Show that for a € R™ and 0 < r € R, the set B(a,r) is open and the set
B(a,r) is closed.

Solution: Let a € R™ and let » > 0. We claim that B(a,r) is open. We need to show that
for all b € B(a,r) there exists s > 0 such that B(b,s) C B(a,r). Let b € B(a,r) and note
that |b —a| < r. Let s = r — |b — a| and note that s > 0. Let x € B(b,s), so we have
|x — b] < s. Then, by the Triangle Inequality, we have

|t —al =]z —b+b—al<|z—bl+|b—a|<s+|b—a|l =7
and so = € B(a,r). This shows that B(b,s) C B(a,r) and hence B(a,r) is open.
Next we claim that B(a,r) is closed, that is B(a,r)¢ is open. Let b € B(a,r), that is
let b € R™ with b ¢ B(a,r). Since b ¢ B(a,r) we have |b—a| > r. Let s =|b—a|—1r > 0.
Let x € B(b, s) and note that |x — b| < s. Then we have
b—al=b—z+z—a|<|b—zx|+|x—a|] <s+ |z —a

and so |z —a| > |b—a| —s = r. Since [z —a| > r we have z ¢ B(a,r) and so = € B(a,)°.
This shows that B(b,s) C B(a,r)¢ and it follows that B(a,r)° is open and hence that
B(a,r) is closed.



5.13 Theorem: (Basic Properties of Open Sets)

(1) The sets () and R™ are open in R™.
(2) If S is a set of open sets then the union |JS = (Jycq U is open.
(3) If S is a finite set of open sets then the intersection (]S = (\;cg U is open.

Proof: The empty set is open because any statement of the form “for all x€() F” (where
F is any statement) is considered to be true (by convention). The set R™ is open because
given a € R™ we can choose any value of r > 0 and then we have B(a,r) C R™ by the
definition of B(a,r). This proves Part (1).

To prove Part (2), let S be any set of open sets. Let a € |JS = [JycgU. Choose
an open set U € S such that a € U. Since U is open we can choose r > 0 such that
B(a,r) C U. Since U € S we have U C |JS. Since B(a,r) C U and U C |JS we have
B(a,r) CJS. Thus |J S is open, as required.

To prove Part (3), let S be a finite set of open sets. If S = () then we use the convention
that (S = R”™, which is open. Suppose that S # ), say S = {U;,Us, - --,U,,} where each
Uy is an open set. Let a € (1S = (,—, Ug. For each index k, since a € Uy we can
choose 1, > 0 so that B(a,r;) C Ug. Let r = min{ry,re,---,7,}. Then for each index
k we have B(a,r) C B(a,r;) C Ug. Since B(a,r) C Uy for every index k, it follows that
B(a,r) C (= Ux =(S. Thus (S is open, as required.

5.14 Theorem: (Basic Properties of Closed Sets)

(1) The sets () and R™ are closed in R™.
(2) If S is a set of closed sets then the intersection (S = (g K is closed.
(3) If S is a finite set of closed sets then the union |JS = |Jxcg K is closed.

Proof: The proof is left as an exercise

Interior and Closure

5.15 Definition: Let A C R™. The interior and the closure of A (in R™) are the sets
AY = U {U C R"‘U is open, and U C A},
A= ﬂ {K - R"!K is closed and A C K}.

5.16 Theorem: Let A C R™.

(1) The interior of A is the largest open set which is contained in A. In other words,
A® C A and A° is open, and for every open set U with U C A we have U C A°.

(2) The closure of A is the smallest closed set which contains A. In other words, A C A
and A is closed, and for every closed set K with A C K we have A C K.

Proof: Note that A is open by Part (2) of Theorem 5.13, because A° is equal to the union
of a set of open sets. Also note that A° C A because A° is equal to the union of a set of
subsets of A. Finally note that for any open set U with U C A we have U € S so that
U CJS = A" This completes the proof of Part (1), and the proof of Part (2) is similar.

5.17 Corollary: Let A C R™.

(1) (A%)° = A% and A = A.

(2) A is open if and only if A = A°
(3) A is closed if and only if A = A.

Proof: The proof is left as an exercise.



Interior Points, Limit Points and Boundary Points

5.18 Definition: Let A C R™. An interior point of A is a point a € A such that for
some r > 0 we have B(a,r) C A. A limit point of A is a point a € R™ such that for every
r > 0 we have B*(a,7) N A # (). An isolated point of A is a point a € A which is not a
limit point of A. A boundary point of A is a point a € R™ such that for every r > 0 we
have B(a,r) N A # () and B(a,r) N A # (. The set of limit points of A is denoted by A’.
The boundary of A, denoted by 0A, is the set of all boundary points of A.

5.19 Theorem: (Properties of Interior, Limit and Boundary Points) Let A C R"™.
(1) A° is equal to the set of all interior points of A.
(2) A is closed if and only if A" C A.
(3) A=AUA.
(4) 0A = A\ A°.
Proof: We leave the proofs of Parts (1) and (4) as exercises. To prove Part (2) note that
when a ¢ A we have B(a,r) N A= B*(a,r)N A and so
A is closed <= A€ is open
Vae A° Ir>0 B(a,r) C A°
VaeR" (a¢ A = 3r>0 Bla,r) C A°
VaeR" (a¢ A = Fr>0 Bla,r)NA=0)
VaeR" (a¢ A = Ir>0 B*(a,r) N A =10)
VaeR™ (Vr>0 B*(a,r) N A# 0 = ac A)
VaeR" (a € A’ = a € A)
A C A

(A

To prove Part (3) we shall prove that AU A’ is the smallest closed set which contains A.
It is clear that AU A’ contains A. We claim that A U A" is closed, that is (AU A’)¢ is
open. Let a € (AU A")°, that is let a € R™ with a ¢ A and a ¢ A’. Since a ¢ A’ we
can choose r > 0 so that B(a,7) N A = (). We claim that because B(a,7) N A = () it
follows that B(a,r) N A’ = (). Suppose, for a contradiction, that B(a,r) N A" # (. Choose
b € B(a,r) N A’. Since b € B(a,r) and B(a,r) is open, we can choose s > 0 so that
B(b,s) C B(a,r). Since b € A’ it follows that B(b,s) N A # (). Choose z € B(b,s) N A.
Then we have x € B(b,s) C B(a,r) and = € A and so x € B(a,r) N A, which contradicts
the fact that B(a,r) N A = (. Thus B(a,r) N A" = (), as claimed. Since B(a,r)N A =)
and B(a,r)NA" =0 it follows that B(a,r)N(AUA’) = () hence B(a,r) C (AU A")¢. Thus
proves that (AU A’)¢ is open, and hence AU A’ is closed.

It remains to show that for every closed set K with A C K we have AUA" C K. Let
K be a closed set in R™ with A C K. Note that since A C K it follows that A’ C K’
because if a € A’ then for all » > 0 we have B(a,r) N A # 0 hence B(a,r) N K # () and so
a € K'. Since K is closed we have K/ C K by Part (2). Since A’ C K’ and K’ C K we
have A’ C K. Since A C K and A’ C K we have AU A’ C K, as required. This completes
the proof of Part (3).



Connected Sets and Compact Sets

5.20 Definition: Let A C R™. For sets U,V C R", we say that U and V separate A
when

UNA£D, VNA#D, UNV =0and ACUUV.

We say that A is connected when there do not exist open sets U and V' in R™ which
separate A. We say that A is disconnected when it is not connected, that is when there
do exist open sets U and V' in R™ which separate A.

5.21 Theorem: The connected sets in R are the intervals, that is the sets of one
of the forms (a,b), [a,b), (a,b], [a,b], (a,0), [a,00), (—00,b), (—00,b], (—00,00) for
some a,b € R with a < b. We include the case that a = b in order to include the degener-
ate intervals ) = (a,a) and {a} = [a, a].

Proof: We use the fact that the intervals in R are the sets with the intermediate value
property (a set A C R has the intermediate value property when for all a,b, € A and
all z € R, if a <z < b then x € A). Let A C R. Suppose that A is not an interval. Then
A does not have the intermediate value property so we can choose a,b € A and u € R with
a<u<b Then U = (—oo,u) and V = (u, 00) separate A and so A is disconnected.

Suppose, conversely, that A is disconnected. Choose open sets U and V' which separate
A. Choose a € U and b € V. Note that a # b since U NV = (). Suppose that a < b (the
case that b < a is similar). Let u = sup (U N [a,b]). Note that u # a since we can choose
& > 0 such that [a,a+8) € U N [a,b] and then we have u = sup (U N [a,b]) > a + §. Note
that u # b since we can choose § > 0 such that (b—d,b] C V N [a,b] and then we have
u = sup (UN[a,b]) <b—4§since UNV = . Thus we have a < u < b. Note that u ¢ U
since if we had u € U we could choose § > 0 such that (u—d,u+d) C U N [a,b] which
contradicts the fact that u = sup (U N [a, b]). Note that u ¢ V since if we had u € V then
we could choose § > 0 such that (u—d,u+d) C V N a,b] which contradicts the fact that
u = sup (U N [a,b]) because UNV = . Since u ¢ U and u ¢ V and A C U NV we have
u ¢ A, so A does not have the intermediate value property, and so A is not an interval.

5.22 Definition: Let A C R™. An open cover of A is a set S of open sets in R™ such
that A C|JS. A subcover of an open cover S of A is a subset T' C S such that A C |JT.
We say that A is compact when every open cover of A has a finite subcover.

5.23 Exercise: Show that the set A = {%|n € Z+} is not compact, but that the set
B = AU {0} is compact.

5.24 Theorem: (The Nested Interval Theorem) Let Iy, 11,15, - be nonempty, closed
bounded intervals in R. Suppose that Iy 2 Iy D Iy D ---. Then (\y—, I # 0.

Proof: For each k > 1, let I}, = [ay, bi] with ap < bi. For each k, since I C I we have
ar < apt1 < brr1 < bgyi1. Since ap > ag4q for all k, the sequence (ay) is increasing. Since
ap < by <bp_1 <--- < by forall k, the sequence (ay) is bounded above by by. Since (ay) is
increasing and bounded above, it converges. Let a = sup{ay} = limg_, oo ax. Similarly, (bx)
is decreasing and bounded below by a;, and so it converges. Let b = inf{by } = limy_,cc k.
Fix m > 1. For all k > m we have a,, < by, < b1 < -+ < bg. Since ap < by for all £,
by the Comparison Theorem we have a < b, and so the interval [a, b] is not empty. Since
(ar) is increasing with ap — a, it follows (we leave the proof as an exercise) that ax < a
for all k£ > 1. Similarly, we have by > b for all £k > 1 and so [a,b] C [ag,bg] = I. Thus
la,b] € Nrey Ik, and so (g, I # 0.



5.25 Definition: A closed rectangle in R™ is a set of the form
R = [al,bl] X [az,bz] X oo X [an,bn]
= {(:L‘l,xg, cee Xp) € R”‘aj < x; <b; for all j}.

5.26 Theorem: (Nested Rectangles) Let Ry, Ro, R3,--- be closed rectangles in R™ with
Rl 2R2 2R3 2 ---. Then

o0
() Be # 0.
k=1
Proof: Let Ry = [ak.1,bk1] X [ak2,bk 2] X -+ X [akn,bk,n]. Since Ry O Ry O --- it follows
that for each index j with 1 < j < n we have [a1,,b1 ;] D [az2j,b2,] 2 ---. By the
Nested Interval Theorem, for each index j we can choose u; € () [ak,j,bk, ;]. Then for
. k=1
u = (u1,us, -, Up) we have u € [\ Rg.
k=1

5.27 Theorem: (Compactness of Rectangles) Every closed rectangle in R™ is compact.
Proof: Let R = I; x Iy x - -- x I, where I; = [aj,b;] with a; < b;. Let d be the diameter of
R, that is d=diam(R)=( Y (b; — aj)2)1/2

j=1
contradiction, that S does not have a finite subset which covers R. Let a1 ; = aj, b1 ; = b;,

L j=1;=la1;,b1 ;] and Ry = R= 111 x --- x I ,. Recursively, we construct rectangles

. Let S be an open cover of R. Suppose, for a

R =R, D Ry D R3 D ey with Rk = Ik,l X oo X I]gm where Ik,j = [ak,j,bkyj], and
di, = diam(Ry) = ( > (g, — ak,j)2)1/2 = 2,%1, such that the open cover S does not have
j=1

a finite subset which covers any of the rectangles R;. We do this recursive construction
as follows. Having constructed one of the rectangles Ry, we partition each of the intervals
It.; = [ak,j, bk, ;] into the two equal-sized subintervals [ay ;, %] and [ak’jTM’”,bk,j],
and we thereby partition the rectangle Ry into 2" equal-sized sub-rectangles. We choose
Rjy11 to be equal to one of these 2™ sub-rectangles with the property that the open cover
S does not have a finite subset which covers Ry, (if each of the 2" sub-rectangles could
be covered by a finite subset of S then the union of theses 2" finite subsets would be a

finite subset of S which covers Ry).

[o.¢]
By the Nested Rectangles Theorem, we can choose an element w € () Rj. Since
k=1
u € R and S covers R we can choose an open set U € S such that u € U. Since U is open

we can choose r > 0 such that B(u,r) C U. Since dy — 0 we can choose k so that dj < r.
Since u € Ry, and diamRy = dj, < r we have Ry C B(u,r) C U. Thus S does have a finite
subset, namely {U}, which covers Ry, giving the desired contradiction.

5.28 Theorem: Let A C K C R". If A is closed and K is compact then A is compact.

Proof: Suppose that A is closed in R™ and that K is compact. Let S be an open cover
of A. Let A°=TR"\ A. Since A C |JS we have |JS U {A°} = R" and so SU {A°} is an
open cover of K. Since K is compact, we can choose a finite subset T C S U {A°} with
K CUT. Since AC K CJT we also have A C |J (T'\ {A4°}). Thus the open cover S of
A does have a finite subcover, namely 7'\ {A¢}, and so A is compact, as required.



5.29 Theorem: (The Heine-Borel Theorem) Let A C R™. Then A is compact if and only
if A is closed and bounded.

Proof: Suppose that A is compact. Suppose, for a contradiction, that A is not bounded.
For each k € Z* let Uy = B(0,k) and let S = {Ug|k € Z*}. Then JS = R" so S
is an open cover of A. Let T be any finite subset of S. If T = () then |JT = () and
A Z |JT. Suppose that T £ ), say T = {Ukl,Ukz,---,Ukm} with k1 < ko < -+ < kyp,.
Since Uy, C Uy, C -+ C Uy,, we have YT = .-, Ui, = Uy,, = B(0, k). Since A is not
bounded we have A Z B(0, k,,) and so A € |JT. This shows that the open cover S has
no finite subcover T', which contradicts the fact that A is compact.

Next suppose, for a contradiction, that A is not closed. By Part (2) of Theorem 5.19,
it follows that A" ¢ A. Choose a € A’ with a ¢ A. For each k € Z* let Uy be the
open set Uy = E(a,%)c = {z € R"||z —a| > ;} and let S = {Ui|k € Z*}. Note that
US = R™\ {a} so S is an open cover of A. Let T be any finite subset of S. If T = 0
then YT = 0 so A € |JT (since A is not closed so A # (). Suppose that T # 0, say
T ={Uk,,Upy, -, Uy, } with ky < ks < -+ < ky,. Since Uy, C Ui, C --- C Uy,, we have
UT = U, Uk, = U, = B(a, ﬁ)c Since a € A’, we have B*(a, ﬁ) N A # () hence
E(a, ﬁ) NA#Dandso AL E(a, ﬁ)c, hence A € |JT'. This shows that the open cover
S has no finite subcover T, which again contradicts the fact that A is compact.

Suppose, conversely, that A is closed and bounded. Since A is bounded we can choose
r >0 so that A C B(0,7). Let R be the closed rectangle R = {z € R"||z;| < r for all k}.
Note that B(0,7) C R since when z = (x1,---,z,) € B(0,r), for each index k we have

k] = (22%) 7 < (i 2:2)? = |2 <.

i=1
Since A is closed and A C R and R is compact, A is compact by the above theorem.

1/2

Topology in Subsets of Euclidean Space

5.30 Definition: Let P C R"™. For a € P and 0 < r € R we define the open ball in P
and the closed ball in P centred at a of radius r to be the sets

Bp(a,r) ={z € P||z—a| <r} = B(a,r) NP,
Bp(a,r)={z € P||z —a| <r} =B(a,r) N P.

For A C P C R", we say A is open in P when for every a € A there exists » > 0 such
that Bp(a,r) C A, and we say A is closed in P when A° = P\ A is open in P.

5.31 Theorem: Let A C P C R"™.

(1) A is open in P if and only if there exists an open set U in R™ such that A =U N P.
(2) A is closed in P if and only if there exists a closed set K in R™ such that A = K N P.

Proof: To prove Part (1), suppose first that A is open in P. For each a € A, choose r, > 0
so that B(a,7q) NP C A, and let U = (J,c4 B(a,7q). Since U is equal to the union of
a set of open sets in R™, it follows that U is open in R". Note that A C U N P and,
since B(a,r,) N P C A for every a € A, we also have UN P = (U,cy Bla,re)) NP =
Uaea (Bla,74) N P) C A. Thus A = U N P, as required.

Suppose, conversely, that A = U N P with U open in R™. Let a € A. Since a € A =
U N P, we also have a € U. Since a € U and U is open in R™ we can choose > 0 so that
B(a,r) C U. Since B(a,r) CU and UNP = A we have B(a,ry) NP CUNP = A, as
required.



To prove Part (2), suppose first that A is closed in P. Let B be the complement of
Ain P, that is B= P\ A. Then B is open in P. Choose an open set U in R™ such that
B =UnNP. Let K be the complement of U in R™, that is K = R"\ U. Then A= KNP
since for z € R" we have z € A <= (zr € Pandz ¢ B) < (v € Pandz ¢ UNP)
< (z€Pandz¢U) < (r€PandzcK) < zc KNP.

Suppose, conversely, that K is a closed set in P with A = K N P. Let B be the
complement of A in P, that is B = P\ A, and let U be the complement of K in P,
that is U = P \ K, and note that U is open in P. Then we have B = U N P since
forz € P we have x € B < (z € Pandz ¢ A) < (v € Pandz ¢ KN P)
< (z€ePandz ¢ K) < (r€PandzecU) < =z € UnNP. Since U is open in
P and B = U N P we know that B is open in P. Since B is open in P, its complement
A= P\ Bis closed in P.

5.32 Theorem: Let A C P C R™. Define A to be connected in P when there do not
exists sets E, ' C P which are open in P and which separate A. Define A to be compact

in P when for every set S of open sets in P such that A C | S there exists a finite subset
T C S such that A C|JT. Then

(1) A is connected in P if and only if A is connected in R™, and
(2) A is compact in P if and only if A is compact in R™.

Proof: We prove. Part (1) and leave the proof of Part (2) as an exercise. Suppose that
A is not connected in R™. Choose open sets U and V in R™ which separate A, that is
UNA#0,VNA#D, UNV=0and ACUUV. Let E=UNP and F =V N P. Note
that E and F' are open in P and FE and F separate A.

Suppose, conversely, that there exist sets E, ' C P which are open in P and which
separate A, that is ANE #0, ANF #0, ENF =0 and A C EUF. Choose open sets
U,V CR" such that E=U NP and FF =V N P. Note that it is possible that U NV # ()
and so U and V might not separate A in R™. For this reason, we shall construct open
subsets Uy C U and Vi C V which do separate A in R™. For each a € E choose r, > 0
such that B(a,2r,) C U and then let Uy = |J,cp B(a,r,). Note that Uy is open in R”
(since it is a union of open sets in R™) and that we have E C Uy C U. Similarly, for each
b € F choose s, > 0 so that B(b,2s,) C V, and then let Vo = J,cp B(b, sp). Note that
Vo is open in R™ and F' C Vi C V. We claim that the open sets Uy and Vj separate A in
R™. Since E C Uy and F C Vo wehave ) # ANE C ANUy, 0 # ANF C ANV, and
ACEUF CUyUYV,. It remains to show that Uy NV = (). Suppose, for a contradiction,
that Up NV # 0. Choose z € UgNVp. Since x € Up = |J,cp B(a,ra) we can choose a € E
such that x € B(a,r,). Similarly, we can choose b € F' so that x € B(b,s;). Suppose
that r, > sp (the case that s, > r, is similar). By the Triangle Inequality, it follows that
b—a|l <|b—z|+|z—al < sy +r, < 2r, and so we have b € B(a,2r,) C U. Since
be FCPandbeU wehave be UNP = E. Thus we have b € EN F which contradicts
the fact that £ N F = (), and so Uy NV = (), as required.

5.33 Corollary: A set A C R"™ is connected (in R™) if and only if the only subsets of A
which are both open and closed in A are the sets ) and A.

Proof: We leave it as an exercise to show that this follows from the above theorem by
taking A = P.



Limits of Sequences

5.34 Definition: For p € Z, let Z>, = {n € Zn > p} = {p,p+1,p+2,---}. For a set
A, a sequence in A is a function = : Z>, — A for some p € Z. We write (z,)n>p to
denote the sequence z : Z>, — A given by z(n) = x,, where z,, € A foralln > p. A
subsequence of the sequence (z,),>, is a sequence of the form (y)r>4 With yr =
for some p < np < npy for all k > gq.

k

5.35 Definition: Let (z,),>, be a sequence in R™. We say the sequence (z,),>p is
bounded when

Ir>0VneZsy |ay| <.

For a € R™, we say that the sequence (z,),>, converges to a and write lim x,, = a (or
- n— oo

Tn — @) when
Ve>0 3N €Z>p Vne€ Zsp(n > N = |z, —a| <e).

We say the sequence (x,,),>, diverges to oo and write lim xz,, = co (or z,, — 00) when
- n— oo

Vr>0 3N € Zsp Vn€Zsp(n>N = |z,| > 7).

We say that the sequence (z,),>, converges when it converges to some point a € R™
and otherwise we say that it diverges.

5.36 Theorem: (Convergent Sequences are Bounded) Let (xy,),>, be a sequence in R™.
If (xy,)n>p converges in R™ then (xy,),>, is bounded.

Proof: Suppose that (z,)n,>p converges in R™. Let a = lim z, € R™ Choose N > p

n—oo

such that n > N = |z, —a| < 1. For n > N, by the Triangle Inequality we have
2| < |zn—al+]a| < 1+]a|. Thus we can choose r = max {|zp|, |zps1], -, lzn-1], 1Hal|}
to obtain |z, | < r for all n > p, and so the sequence (z,),>p is bounded, as required.

5.37 Theorem: (Uniqueness of Limits of Sequences) Let (x,)n>p be a sequence in R™
and let a,b € R™ U {oco}. If lim z, =a and lim z, =b then a = b.

n— oo n—oo
Proof: We prove the theorem in the case that a,b € R™ and leave the case that a = oo or

b = oo as an exercise. Suppose that lim z, =a € R™ and lim z, = b € R™. Suppose,
n—oo n—oo

for a contradiction, that a # b. Choose Ny > p such that n > Ny = |z, —a| < @ and
choose Ny > p such that n > Ny = |z, — b| < m—;l". Let N = max{Ny,N2}. Forn > N
we have |a —b| < |a — x|+ |z, — b| < @ + @ = |a — b| which is impossible. Thus we
must have a = b, as required.

5.38 Theorem: (Limits of Subsequences) Let (z,),>p be a sequence in R™ and let
(@, )k>q be a subsequence of (xy,)p>p. If lim z, =a € R™ U {oco} then klim T, = Q.
- - n—oo — 00

Proof: We give the proof in the case that a € R™. Suppose that lim z, = a € R™

n—oo

and let (z,,)r>q be any subsequence of (z,). Let e > 0. Choose N > p such that
n > N = |z, —a| < e. Choose M > ¢ such that k > M = nj, > N (we can do this
since each ny € Z with nx < ngy1 and hence ny — oo as k — o0). Then for £k > M we
have ni > N and so |z, — a|] < e. Thus kllj{)lo Zn, = a, as required.
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5.39 Remark: It follows from the above theorem that the initial index p of a sequence
(Xn)n>p does not affect whether or not the sequence converges, and it does not influence
the value of the limit. For this reason, we often omit the initial index p from our notation
and denote the sequence (z,,)n>p simply as (z,).

5.40 Definition: Let (z,,),>, be a sequence in R™ For n>plet x,, = (1, Tn.2, " Tnom )
For each index k with 1 < k < m, the k' component sequence of (n)n>p is the
sequence (Tp k)n>p = (Tpk, Tpr1k - - -). Note that the sequence (z,,)n>p in R™ determines
and is determined by its component sequences (Zy, i )n>p-

5.41 Theorem: (Limits of Component Sequences) Let (z,,),>, be a sequence in R™, say
Tn = (l'n,la Tn,2y " 7xn,m) e R™.
(1) (xp)n>p is bounded if and only if (xy, i )n>p is bounded for all indices k.

(2) For a = (a1, -,am,) € R™ we have lim z,, = a if and only if lim =z, = aj for all k.
n—00 n—00

Proof: Suppose that (z,,)n>p is bounded. Choose r > 0 such that |z,| < r for all n > p.
Let n > p and let 1 <k < m. Then |z, ;| < |z,| <7 and so the sequence (x, 1 )n>p is also
bounded. Now suppose, conversely, that (z, i )n>p is bounded for all indices k. For each £,
chose r > 0 such that |z, | <7y for alln > p. Let r =7 +--- 41y, Then for all n > p,
by the Triangle Inequality we have |z, | < |zp1|+|Tn 2|+ F|Tnm| < T1+re+-41m =7
and so the sequence (z,),>p is bounded. This proves Part (1).

To prove Part (2), suppose first that nli_)rr;() Zn = a. Let € > 0 and choose N > p so that

nzN:>‘xn—a|<e. Let 1 < k <m. For n > N we have |xn,k—ak‘§|xn—a\<e

and so lim z, 3 = ar. Now suppose, conversely, that lim z, ; = aj for all indices k.
n—roo n—oo
€

Let € > 0. For each index k, choose N > p such that n > N — ‘xnk — ak‘ < —=.

m

m
Then for n > N, by the Triangle Inequality we have |z, —a| < ) |znx — ar| < € and so
k=1

lim z,, = a.
n—oo

5.42 Theorem: (Operations on Limits of Sequences) Let (x,) and (y,) be sequences in
R™ and let ¢ € R. Suppose that lim z, =u € R™ and lim y, =v € R™. Then
n—oo n—oo

(1) lim (x, + yn) = u+ v,

n—oo
(2) nl;rgo(cxn) = cu,
(3) lim |z,| = [ul,
(4) lim (x, + ypn) = u - v, and

n—oo
(5) if m = 3 then lim (z, X y,) = u X v.

n—oo

Proof: These follow easily from Part (2) of the above theorem and from known properties
of sequences in R. For example, to prove Part (1), note that

lim (xy, + Yn )k = li_>m (T + Ynk) = li_>m Tk + li_>m Ynk = Uk + U = (U4 V).

n—oo
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5.43 Theorem: (Sequential Characterization of Limit Points) Let A C R™ and let
a € R™. Then a € A’ if and only if there exists a sequence (x,) in A\ {a} such that
lim z,, = a.

n—oo

Proof: Let a € A’. For eachn € ZT, since a € A’ we have B* (a, %)ﬂA # () so we can choose
an element z,, € B*(a, )N A and then we have z,, € A\{a} and |z, —a| < 2. Givene > 0
we can choose a positive integer N > % and then we have n > N = |z, —al| < % < % < €.
Thus (z,,)n,>1 is a sequence in A\ {a} with nli_}ngO Ty = Q.

Suppose, conversely, that (z,),>p is a sequence in A\ {a} with lim z, = a. Let
- n—oo

r > 0. Since lim x,, = a we can choose N > p so that n > N = |z,, — a| < r. Then we

n— oo

have zy € A\ A and |zy — a| < 7 so that zx € B*(a,r), and hence B*(a,r) # 0. Since
r > 0 was arbitrary, it follows that a € A’.

5.44 Theorem: (Sequential Characterization of Closed Sets) Let A C R™. Then A is
closed (in R™) if and only if every for every sequence in A which converges in R™, the
limit of the sequence lies in A.

Proof: Suppose that A is closed. Let (x,)n>p be a sequence in A which converges in
R™. Let a = lim z,. Suppose, for a contradiction, that a ¢ A. Since a ¢ A we have
— 00

A= A\ {a} and so (z,,) is a sequence in A\ {a}. Since (z,) is a sequence in A\ {a} with

lim x, = a, we have a € A’ by the Characterization of Limit Points. Since A is closed
n—oo

we have A’ C A and so a € A, giving the desired contradiction.

Suppose, conversely, that for every sequence in A which converges in R”, the limit
of the sequence lies in A. Let a € A’. By the Characterization of Limit Points, we can
choose a sequence (x,) in A\ {a} such that nh_)rréo xn = a. Then (z,) is a sequence in A

which converges in R™, and so its limit must lie in A, thus we have a € A. Since a € A’
was arbitrary, this proves that A’ C A and so A is closed.

5.45 Theorem: (Bolzano-Weierstrass) Every bounded sequence in R™ has a convergent
subsequence.

Proof: For this proof, we shall label the components of an element in R" using superscripts
rather than subscripts, so we shall write an element z € R™ as (2!, 22,---,2™). Let (z,,) be

a bounded sequence in R™. Then the first component sequence (x.) is a bounded sequence

in R. By the Bolzano-Weierstrass Theorem for sequences in R, we can choose a convergent

subsequence (x;,,), where n; < ny < ---. Since the second component sequence (x7) is
2

bounded, the subsequence (z7 ) is also bounded so we can choose a convergent subsequence

2 1 . .
(2 . - Zk) also converges because it is a

subsequence of the convergent subsequence (z;,,). Since the sequence (3 ) is bounded, the

subsequence (z3 ) is also bounded so we can choose a convergent subsequence (z3 ),
£y Ly .

e

), where ¢ < f5 < ---. Note that the sequence (x

where k1 < ko < ---. We then obtain convergent subsequences of each of the first 3

component sequences (z?) for i = 1,2, 3, namely the subsequences (z?, 0 ). We repeat the
J

procedure until we obtain simultaneous subsequences of all m component sequences (x?,),
which we can combine to form a subsequence of the original sequence (x,,) in R™.
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5.46 Definition: Let (x,),>, be a sequence in R™. We say that (x,,) is Cauchy when
Ve>0 IN€EZs, Yk (€Zs, (kz,f >N = o — 24| < o).

5.47 Theorem: (The Completeness of R™) For every sequence in R™, the sequence
converges if and only if it is Cauchy.

Proof: Let (z,) be a sequence in R™. Suppose that (z,) converges. Let a = lim z,,. Let
n— o0

e > 0. Choose N so that n > N = |z, —a| < §. Then for k,¢ > N we have |z, —a| < §
and |z — a| < § so |z — x| < |zk — al + |a — 24| < e. Thus (2,) is Cauchy.

Now suppose that (x,,)n>p is Cauchy. Choose N > psothat k, £ > N = |z, —z4| < 1.
Then for all &k > N we have |zy — zn| < 1 hence |xg| < |z — zn| + |zn] < 1+ |zN],
and so (z,,) is bounded by max {|zp|, |zpt1], -+, [zn—1], 1+|zn]|}. Choose a convergent
subsequence (z,, ) and let a = kli)ngo Zn, . Let € > 0. Since (z,) is Cauchy we can choose M

so that n, ¢ > M = |z, — x| < g Since klim Zp, = a we can choose k so that ng > M
— 00

and |2y, —a| < §. Then for n > M we have |z, — a| < |2, — &y, | + |20, —a| <e

Limits of Functions

5.48 Definition: Let A C R and let f : A — R™. When a is a limit point of A and
b € R™, we say that f(z) converges to b as = tends to a, and we write lim f(z) = b
T—a

when

Ve>0 36>0 YaeA <0<|m—a|<5 — |f(x)—b|<e>.

When a is a limit point of A, we say that f(x) diverges to co and we write lim f(z) = co
Tr—a

when

Vr>0 36>0 YoecA (0<|J;—a|<5 — |f(m)|2r>.
5.49 Theorem: (Sequential Characterization of Limits) Let f : A C R* — R™, let a be a
limit point of A and let uw € R™ U {oo}. Then lim f(z) = u if and only if lim f(x,)=u
Tr—a n—oo

for every sequence (z,) in A\ {a} with lim z, = a.
n—oo

Proof: We give the proof in the case that u € R™. Suppose first that lim f(xz) = u € R™.
r—a
Let (x,) be a sequence in A\ {a} with x,, — a. Let ¢ > 0. Since lim f(x) = u we can
r—a

choose § > 0 so that 0 < |z —a| < § = |f(x) —u| < e. Since z,, — a we can choose N so
that n > N = |z,, — a|] < §. For n > N we have |z,, — a| < § and we have z,, # a (since
xn, € A\ {a}) and so 0 < |z, — a|] < ¢ and hence |f(z,) — u| < e. Thus lim f(z,) = u,
n—oo
as required.
Suppose, conversely, that lim f(z) # u. Choose € such that for every § > 0 there
r—a

exists € A such that 0 < |x —a| < 0 and |f(z) —u| > €. For each n € Z*, choose z,, € A
such that 0 < |z, —a| < 1 and |f(z,) — u| > e. For each n, since 0 < |z,, — a| we have
T, # a so the sequence (z,) lies in A\ {a}. Since |z, —a| < % for all n € ZT it follows
that x,, — a. Since |f(x,) —u| > € for all n, it follows that nli_)rr;O f(x,) # u. Thus we have

found a sequence (z,) in A\ {a} with z,, — a such that 1i_>m f(xn) # u.

5.50 Note: Using the Sequential Characterization of Limits, many properties of limits of
sequences immediately imply analogous properties of limits of function. We list some of
these properties in the following theorems.
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5.51 Theorem: (Uniqueness of Limits of Functions) Let f : A C R* — R™, let a € A/,
and let u,v € R™ U{oo}. If lim f(z) =w and lim f(z) = v then u = v.
Tr—a r—ra

Proof: This can be proven by imitating the proof of the Uniqueness of Limits of Sequences.
Alternatively, we can use Uniqueness of Limits of Sequences together with the Sequential
Characterization of Limits as follows. Since a € A" we can choose a sequence (x,,) € A\{a}
such that x, — a. By the Sequential Characterization of Limits, since wh_)IIb f(z) = u we

have lim f(x,) = u and since lim f(z) = v we have lim f(x,) = v. By the Uniqueness
n— 00 T—ra n—00

of Limits of Sequences, since lim f(z,) =wv and lim f(z,) = v it follows that u = v.
n— oo n—00

5.52 Theorem: (Local Determination of Limits of Functions) Let A C R*, let a € A’,

let B = B*(a,7r)N A withr > 0. Let f: A — R™ and let g : B — R™ and suppose that

f(z) = g(x) for all z € B. Then lim f(x) exists in R™ U {oo} if an only if lim g(z) exists
Tr—a r—a

in R™ U {oo} and, in this case, the limits are equal.

Proof: We leave the proof as an exercise.

5.53 Definition: Let f: A C R — R™. We can write f(z) = (fi(z), fa(z), -, fm())
where f : A — R for each index k. Then the function f is called the k"' component
function of f. Note that fi = pr o f where p; : R™ — R is the £ projection map given

bypk(yla'”?yk7”'aym> = Yk-

5.54 Theorem: (Limits of Component Functions) Let f : A C R® — R™ be given by
f(@) = (fi(@), -, fm(x)), let a be a limit point of A, and let b = (by,bs,---,by) € R™.
Then liin f(z) = b if and only if liin fr(z) = by, for all indices k.

Proof: Suppose that lim f(x) = b. Let (x,) be any sequence in A\ {a} with z,, — a.
By the Sequential Clrfz;;cterization of Limits, we have lim f(xz,) = b. By Limits of
Component Sequences, we have lim fi(z,) = by for alrll_{rﬁices k. By the Sequential
Characterization of Limits again, Tt_) fooollows that h_r)n fr(x) = by, for all indices k.

Suppose, conversely, that lim fi(z) = by for g;llc}f. Let (z,) be any sequence in A\ {a}
with z,, — a. By the Sequenat;;ib Characterization of Limits, we have lim fi(x,) = b
for all k. By Limits of Component Sequences, we have nli_)rr;() f(x) =b. ﬁ;?he Sequential

Characterization of Limits again, it follows that lim f(x) = b.
T—a

5.55 Theorem: (Operations on Limits of Functions) Let f,g: A CRf = R™, let a € A’
and let ¢ € R. Suppose that lim f(z) =u € R™ and lim g(x) =v € R™. Then
r—a n—oo

(1) lim (f + g)(z) = u + v,
(2) lim (cf)(z) = cu,

Tr—a
(3) Tim |f](2) = |l
(4) lim (f - g)(z) =u-v, and

Tr—a
(5) when m = 3 we have lim (f X g)(x) = u x v.

T—r 00

Proof: This follows from Operations on Limits of Sequences, together with the Sequential
Characterization of Limits.
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5.56 Theorem: (Comparison Theorem) Let f,g: A C R® — R with f(z) < g(x) for all
x € AandletacA.

(1) If lim f(x) =u € RU{+oo} and lim g(x) =v € RU {£oo} then u < v.
T—a T—a

(2) If lim f(x) = oo then lim g(x) = oco.
Tr—a r—a

(3) If li_r>n g(x) = —oo then li_>m f(x) = —o0.

Proof: This follows from the Comparison Theorem for Sequences in R together with the
Sequential Characterization of Limits.

5.57 Theorem: (Squeeze Theorem) Let f,g,h : A C R* — R with f(x) < g(z) < h(z)
for all x € A, and let w € RU {xo0}. If lim f(z) =u = lim h(z) then lim g(z) = u.
T—a T—ra T—a

Proof: This follows from the Squeeze Theorem for Sequences in R together with the
Sequential Characterization of Limits.

Continuity

5.58 Definition: Let A C R, let B C R™, and let f : A — B. For a € A, we say that f
is continuous at a when

Ve>030>0VzeA (Jz—a|<d = |f(z)—f(a)|<e).

We say that f is continuous (in A) when f is continuous at a for every a € A. We say
that f is uniformly continuous in A when

Ve>030>0VacAVreA (Jr—a|<d = |f(z)—f(a)|<e).
5.59 Theorem: (Continuity and Limits) Let A C R® and let f : A — R™.
(1) When a is a limit point of A, f is continuous at a <= il_)HZ f(z) = f(a).
(2) When a is an isolated point of A, f is always continuous at a.
Proof: We leave the proof as an exercise.

5.60 Theorem: (Sequential Characterization of Continuity) Let A C R’ Iet f : A — R™,
and let a € A. Then f is continuous at a if and only if lim f(x,) = f(a) for every sequence
n—oo

(Tn)n>p In A with lim z, = a.
- n—oo

Proof: Suppose f is continuous at a. Let (z,) be any sequence in A with z,, — a. Let € > 0.
Since f is continuous at a we can choose ¢ > 0 so that |z —a| <0 = |f(z) — f(a)| < e
Since x,, — a we can choose N so that n > N = |z,, — a| < 0. Then for all n > N we
have |z,, — a| < § hence |f(z,) — f(a)| < €, and so nli_)rr;(} f(z,) = f(a), as required.
Suppose that f is not continuous at a. Choose € > 0 such that for every § > 0 there
exists € A such that |z —a| < and |f(x) — f(a)| > €. For each n € Z*, choose z,, € A
such that |z, —a| < 1 and |f(z,) — f(a)| > €. Since |z, —a| < L for all n € Z7 it follows
that z, — a. Since |f(z,) — f(a)| > € for all n, it follows that nli_)rréo f(xn) # f(a). Thus

we have found a sequence (z,,) in A with z,, — a such that lim f(x,) # f(a).
r—a

5.61 Theorem: (Local Determination of Continuity) Let A C RY, let a € A’, and let
B = B*(a,r) N A where r > 0. Let f: A — R™ and g : B — R™ and suppose that
f(z) = g(zx) for all x € B. Then f is continuous at a if and only if g is continuous at a.

Proof: The proof is left as an exercise.
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5.62 Theorem: (Continuity of Component Functions) Let A C R and let f : A — R™.
Then f is continuous at a if and only if fi is continuous at a for every index k.

Proof: This can be proven by imitating the proof of Continuity of Component Sequences
or by using the result of Continuity of Component Sequences together with the Sequential
Characterization of Continuity.

5.63 Theorem: (Operations on Continuous Functions) Let A C RY, let f,g: A — R™,
let a € A and let ¢ € R. If f and g are continuous at a then so are each of the functions
f+g,cf,|f| and f - g, and also f x g in the case that m = 3.

Proof: This follows from the Sequential Characterization of Continuity along with Opera-
tions on Limits of Sequences.

5.64 Theorem: (Composition and Limits) Let f : A C R* =+ R™, let g: B C R™ — R"
and let h=go f:C CR*— R™ where C = AN f~Y(B). Letac C' C A’ and let b € B'.
Suppose that li_r>n f(x) =b and lin%g(y) =c e R" U {o0}.

T a y—)

(1) If f(z) # b for all x € C'\ {a} then lim h(z) = c.
r—a
(2) If b € B and g is continuous at b then lim h(z) = g(b) = c.
Tr—a

Proof: We leave the proof of Part (1) as an exercise. To prove Part (2), suppose that

b € B and g is continuous at b. Note that since b € B’ and ¢ is continuous at b we have

g(b) = lin%) g(y) = ¢ by Theorem 5.59. Let (xj) be any sequence in C'\ {a} with x; — a.
Yy—r

Since C' C A, the sequence (xj) also lies in A \ {a}. By the Sequential Characterization

of Limits of Functions, since lim f(z) = b we have klim f(xx) = b. For each index k we
Tr—ra — 00

have ), € C = AN f~1(B) so that f(z}) € B, and so the sequence (f(z)) lies in B. By

the Sequential Characterization of Continuity, since g is continuous at b and f(xy) — b

we have klim g(f(zr)) = g(b) = ¢, that is klim h(zx) = g(b) = c¢. By the Sequential
— 00 — 00

Characterization of Limits, it follows that lim h(z) = g(b) = c.
Tr—ra

5.65 Corollary: (Composition of Continuous Functions) Let f : A C R — R™, Iet
g:BCR™ = R" andlet h=go f:C CR!—= R" where C = AN f~Y(B).

(1) If f is continuous at a€ A and g is continuous at b=f(a) € B then h is continuous at a.
(2) If f is continuous in A and g is continuous in B then h is continuous in C.

5.66 Definition: An elementary function is a function f : A C R® — R™ which
can be obtained, using the operations of addition, subtraction, multiplication, division,
and composition of functions (whenever those operations are defined) from the following
functions, which we call the basic elementary functions: and the single-variable, real-
valued functions ¢, 2", /™, e*, Inz, sinz, cosx, tanz, sin~ ' x, cos~ ! z and tan~! z. and
the k™" inclusion map I : R — R given by I(t) = (0,---,0,¢,0,---,0) = teg, and the
k' projection map P : R — R given by Py(x1,---,2/) = xp.

5.67 Corollary: FElementary functions are continuous in their domains.

2 _ 9,2 2
5.68 Exercise: Show that lim u, i Y and im 7
(2,9)—(0,0) 22+ 42 7 (2,9)—(0,0) 22 + y? (2,y)—(0,0) T2 + y*
do not exist, and that i 37 g and i it 0
O Nnot exi1st, an a 11m _— = an 11m —_— =
(,9)—(0,0) 22 + 22 (2,9)—(0,0) /22 + 12
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Continuity and Topology

5.69 Theorem: (Topological Characterization of Continuity) Let A C R", let B C R™,
and let f : A — B.

(1) f is continuous if and only if f~1(E) is open in A for every open set E in B.
(2) f is continuous if and only if f~(F) is closed in A for every closed set F in B.

Proof: We prove Part (1) and leave the proof of Part (2) as an exercise. Suppose that f
is continuous. Let E be an open set in B. Let a € f~'(FE) so we have f(a) € E. Since
f(a) € E and E is open in B we can choose € > 0 so that Bg(f(a),e) C E. Since f is
continuous at a we can choose § > 0 so that for allz € A, [z —a| < § = | f(z)— f(a)| <e.
Let © € Ba(a,0), that is let x € A with |z —a| < §. Since z € A and f: A — B we
have f(z) € B. Since z € A with |z — a| < 6, we have and |f(z) — f(a)| < e. Since
f(z) € B with |f(z) = f(a)| < ¢, we have f(z) € Bp(f(a),e) C E hence z € f~(E).
Since a € Ba(a,d) was arbitrary, this shows that Ba(a,d) C f~Y(E). Thus f~1(E) is
open in A, as required.

Suppose, on the other hand, that f~1(FE) is open in A for every open set E in B. Let
a € A and let € > 0. The set E = Bp(f(a),¢) is open in B so the set f~(E) is open
in A, and so we can choose § > 0 such that Ba(a,d) C f~1(E). It follows that for all
x € Ba(a,8) we have f(a) € E = Bg(f(a),€). Equivalently, for all z € A, if |z —a| < §
then f(z) € B with | f(z) — f(a)| < e. hus f is continuous at a. Since a € A was arbitrary,
f is continuous (in its domain A).

5.70 Theorem: (Properties of Continuous Functions) Let ) # A C R", let B C R™, and
let f: A — B be continuous.

(1) If A is connected then f(A) is connected.

(2) If A is compact then f(A) is compact.

(3) If A is compact then f is uniformly continuous on A.

(4) If A is compact and m = 1 then f(x) attains its maximum and minimum values on A.
(5) if A is compact and f is bijective then f~! is continuous.

Proof: We sketch a proof for Parts (1), (2) and (4) and leave some details, along with
the other two parts, as an exercise. To prove Part (1), suppose that f(A) is disconnected.
Choose open sets U and V in R™ which separate f(A). Since f is continuous and U and
V are open, it follows that f~1(U) and f~!(V) are open in A. Verify that f~1(U) and
f~Y(V) separate A, so A is disconnected.

To prove Part (2), suppose that A is compact. Let S = {Uk‘k: € K} be an open cover
of f(A) (with each Uy open in R™). For each set k € K, since Uy, is open in R™ and f is
continuous, it follows that f~!(Uy) is open in A. Let T = {f~'(Uy)|k € K}. Verify that
T is an open cover of A (with each set f~1(Uy) open in A). Since A is compact, we can
choose a finite subset J C K such that the set {f‘l(Uj)|j € J} is an open cover of A.
Verify that the set {Uj|j € J} is an open cover for f(A), so f(A) is compact.

To prove Part (4), suppose that f : A C R” — R with A is compact. Since A is
compact and f is continuous, f(A) is compact by Part (2). Since f(A) is compact, it is
closed and bounded by the Heine Borel Theorem. Since f(A) is bounded and non-empty
(since A # ()) it has a supremum and an infemum in R. Let u = sup f(A). By the
Approximation Property of the Supremum, for each k € Z* we can choose 7, € A with
u— 1 < f(zg) <wu, and it follows that f(zx) — u and hence u is a limit point of f(A).
Since w is a limit point of f(A) and f(A) is closed, we have u € f(A). Thus we can choose
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a € A such that f(a) =u =sup f(A) = max f(A), and then f attains its maximum value
at a € A. Similarly, we can choose b € A such that f(b) = inf f(A) = min f(A).

5.71 Definition: Let A C R™. For a,b € A, the line segment between a and b is the set
[a,b] = {a+t(b—a) |0<t<1}.

We say that A is convex when for every a,b € A we have [a,b] C A.

5.72 Example: Show that for a € R™ and r > 0, the ball B(a,r) is convex.

Proof: Let b,c € B(a,r) so we have |b —a| < r and |c —a| < r. Let = € [b,¢], say
x=b+1t(c—0b)=(1—1t)b+tc with 0 <t < 1. Note that

r—a=1-t)b+tc—((1—-t)+t)a=(1—-1t)(b—a)+t(c—a).
By the Triangle Inequality, we have
z—a|l=|1—-t)(b—a)+tlc—a) <|1—t)(b—a)|+ |t(c—a)
=(1-tb—a|l+tlc—al<A—-t)r+tr=r
so that « € B(a,r). This shows that [b,c] C B(a,r) and so B(a,r) is convex.

5.73 Definition: Let A C R™ and let a,b € A. A (continuous) path from a to b in A
is a continuous function f : [0,1] — A with f(0) = a and f(1) = b. We say that A is
path-connected when for every a,b € A there exists a continuous path from a to b in A.

5.74 Note: For A C R™, if A is convex then A is path connected because given a,b € A,
since [a,b] C A, the map f(t) = a + t(b — a) is a continuous path from a to b in A.

5.75 Theorem: (Path-Connectedness and Connectedness) Let A C R™.

(1) If A is path-connected then A is connected.
(2) If A is open and connected then A is path-connected.

Proof: We prove Part (1) and leave Part (2) as an exercise. Suppose that A is path
connected and suppose, for a contradiction, that A is not connected. Let U and V be open
sets in R™ which separate A, that s UNA# 0, VNAAD), UNV =0and ACUUYV.
Choose a e UN A and b € V N A. Since A is path connected we can choose a continuous
path f : [0,1] — A with f(0) = a and f(1) = b. Since f is continuous, f~(U) and
f~1(V) are open in [0,1]. Since f(0) = a € U we have 0 € f~1(U) so f~1(U) # 0.
Similarly 1 € f=1(V) so f=1(V) # (. Since U NV = () we also have f~1(U)N f~1(V) =0
(indeed if we had t € f~1(U) N f~1(V) then we would have f(t) € U and f(t) € V so
that f(t) € UNV). Since f:[0,1] - A C U UV it follows that [0,1] = f~Y(U)U f~1(V)
(indeed, given ¢t € [0,1] we have f(t) € A C U UV, so either f(t) € U or f(t) € V hence
either t € f~1(U) or t € f~1(V)). Thus the open sets f~1(U) and f~1(V) separate [0,1].
This is not possible since [0, 1] is connected, so we have obtained the desired contradiction.

5.76 Example: Show that the set U = {(z,y) € ]R2|y > 2%} is open in R?.
Solution: The map f : R? — R given by f(z,y) = y — 2 is continuous (it is an elementary
function), and the interval I = (0,00) is open and so the set U = f~!(I) is open (by the

Topological Characterization of Continuity).
5.77 Example: Show that for a« € R™ and r > 0, the set B(a,r) is connected.

Solution: Since B(a, ) is convex (by Example 5.72), it is path connected (by Note 5.74),
and hence it is connected (by Part 1 of Theorem 5.75).
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