Chapter 6. Differentiation in Euclidean Space

6.1 Definition: Let U C R" be open in R™, let f: U C R” — R, and let at a € U, say
a=(ay, - -,a,). We define the k" partial derivative of f at a to be

gi-(a) = gi'(ax) , where gi(t) = a1, arp—1, b apsr, - an),

Oz

or equivalently, letting e, = (0,0,---,0,1,0,---,0) be the k" standard basis vector in R,
%(a) = hi'(0) , where hp(t) = f(ay, -, ap_1,a +t,ap41, -~ an) = fla+tey),

provided that the derivatives exist. Note that gi and hj are functions of a single variable.
Sometimes af is written as f,, or as fr. When we write u = f(x), we can also write

aa_mi as 6?; , Ug, OT uk. When n = 3 and we write x, y and z instead of x1, x5 and x3, the
partial derivatives %, g—ai and % are written as %, g_f and a]; ,oras fg, fy and f,.

When n =1 so there is only one variable x = z; we have gf( ) = jj; (a) = f'(a).

6.2 Definition: Let U C R” be open in R™, let f : U C R" — R™ and let a € U.
Write u = f(x) = (fl(a:),fz(x),---,fm(x))T with # = (21, 29,---,2,)7. We define the
derivative matrix, or the Jacobian matrix, of f at a to be the matrix

@) S8(a) - F(a)
0 (q) () ... (g
Df(a) = awl.( ) am2.< ) awn'( )
Ofum Ofum Ofm
aLml(a) 3%2(@) e (%i—n(a)

and we define the linearization of f at a to be the affine map L : R™ — R™ given by

L(z) = f(a) + Df(a)(x — a)

provided that all the partial derivatives %(a) exist.
l

6.3 Definition: Let U be open in R™ and let f : U C R® — R™. We say that f is C! in
U when all the partial derivatives a—f’“ exist and are continuous in U. The second order

partial derivatives of f are the functions

0*f; _ 95d)

(9:13k6$l &m
0% f; 9% f; 2 *f;
We also write 95" = Forosr We say that f is C* when all the partial derivatives 5 —3
k0T, O,
exist and are continuous in U. Higher order derivatives can be defined similarly, and we
0% £

say f is C* when all the k" order derivatives T e 5. exist and are continuous in U.
21 2 k

6.4 Definition: Let a € U where U is an open set in R, and let f : U C R — R™, say
z = f(t) = (z1(t), z2(t), -+, 1 (t)). Then we write f'(a) = Df(a) and we have
& (a) z1/(a)
f'(a) = Df(a) = : = :
% (a) T’ (@)
The vector f/(a) is called the tangent vector to the curve = f(t) at the point f(a). In

the case that ¢ represents time and f(t) represents the position of a moving point, f/(a) is
also called the velocity of the moving point at time t = a.




6.5 Definition: Let a € U where U is an open set in R™ and let f : U C R" — R. We
define the gradient of f at a to be the vector

of of T %(a)
— T _ - [ — = .
Vi(a) = Df(@)" = (g-(a). . () 8f:
m(a)
6.6 Note: Recall that for f: U CR — R and a € U,
f is differentiable at a <= lim M exists
Tr—a X —Q
— IMERVe>036>0VzclU 0<|r—a|<d = ‘M —m’ <e

r—a
< IMeRVe>030>0VeclU 0<|z—a|<d = |f(z)— f(a) —m(z —a)| < |z —q
< IMERVe>035>0VzeU |z—a| <d = |f(z) — (f(a) + m(z —a))| < €|z —al.
In this case, the number m € R is unique, we call it the derivative of f at a and denote

it by f’(a), and the map ¢(x) = f(a) + f'(a)(z — a) is called the linearization of f at a.

6.7 Definition: Let f: U C R" — R™, where U is open. We say f is differentiable at
a € U if there is an m X n matrix A such that

Ve>036>0Vael (\x—a| <5 = |f() — (f(a) + A(z — a))| < e]x—a|).

We show below that the matrix A is unique, we call it the derivative (matrix) of f at a, and
we denote it by Df (a). The affine map L : R™ — R"™ given by L(z) = f(a)+ Df(a)(x —a),
which approximates f(x), is called the linearization of f at a. We say f is differentiable
in U when it is differentiable at every point a € U.

6.8 Example: If f is the affine map f(x) = Az + b, then we have Df(a) = A for all a.
Indeed given € > 0 we can choose § > 0 to be anything we like, and then for all  we have

|f(@) = f(a) — A(z — a)| = |Az + b — Aa — b— Az + Aa| =0 < €|z — al.

6.9 Theorem: (The Derivative is the Jacobian) Let f : U C R™ — R™ and let a € U.
If f is differentiable at a then the partial derivatives g—i’;(a) all exist and the matrix A

which appears in the definition of the derivative is equal to the Jacobian matrix Df(a).

Proof: Suppose that f is differentiable at a. Fix indices k and ¢ and let g(t) = fx(a + tey)
so that g—i’z(a) = ¢'(0) provided that the derivative ¢’(0) exists. Let A be a matrix as in
the definition of differentiability. Let ¢ > 0. Choose § > 0 such that for all x € U with
|z —a| < & we have |f(z) — f(a) — A(x — a)| < €|z —a|. Let t € R with [t| < 6. Let
z = a+tes. Then we have [z—a| = |te| = |t| < d and so | f(z)— f(a)—A(z—a)| < €|z —al.
Since for any vector u € R™ we have |ug| < |u|, we have
9(t) — 9(0) — Apet| = | fr(a+ te) — fr(a) — (Alter)) |
< |f(a+ter) — fla) — Altey)|
= |7(@) ~ f(a) - Az~ a)

<e€lr—al=c¢€lt|

It follows that Ag, = ¢'(0) = g—i’z(a), as required.



The Matrix Norm

6.10 Definition: Let A € M,,x,(R) and let S = {z € R"||z| = 1}. Since S is compact
by the Extreme Value Theorem, the continuous function f : R™ — R given by f(z ‘Ax!
attains its maximum value on S. We define the norm of the matrix A to be

|Al| = max {|Az| | |z| = 1}.
6.11 Lemma: (Properties of the Matrix Norm) Let A € M, x,(R). Then
(1) |Az| < ||A]| |x| for all z € R™,
(2) if A is 1nvert1b]e then |Az| >

(3) 141 < £ 3 A, and
(4) ||A|| is equal to the square root of the largest eigenvalue of the matrix ATA.

Proof: When x = 0 € R™ we have |Az| =0 = ||A|| |z| and when 0 # 2 € R™ we have
A0 = |jz] A% | =

” for all x € R",

l2|[Ag] < lal Al

[z]

This proves Part 1. To prove Part 2, suppose that A is invertible. Then we can choose
x € R™ with |z| = 1 such that Az # 0 so we must have ||A|| > 0. Similarly, since
A~1 is also invertible, we also have [|[A™!|| > 0. By Part 1, for all € R™ we have

2| = |A7'Az| < [|[A7Y|||Az| so that [Az| > %, as required. To prove Part 3, let

x € R™ with |z| = 1. Then |z/| < |z| <1 for all indices ¢, and so

[Az] = | 3 (An)wer| < 3 [(Aa)i] = 30 | X Aweme| < X 3 [Aral ol < 3 3 |Anl.
k=1 k=1 k=11i=1 k=1(=1 k=1 (=1

We omit the proof of Part 4, which we shall not use (it is often proven in a linear algebra
course).

6.12 Theorem: (Differentiability Implies Continuity) Let f : U C R™ — R™. If f is
differentiable at a € U, then f is continuous at a.

Proof: Suppose f is differentiable at a. Note that for all x € U we have
f(z) = f(a)| = | f(z) — f(a) — Df(a)(z — a) + Df(a)(z — a)|
< |f(z) = f(a) = Df(a)(z — a)| +|Df(a) (x — a)|
< |f(z) = f(a) = Df(a)(z — a)| + || Df (a)|| |2 — a

Let € > 0. Since f is differentiable at a we can choose § with 0 < § < m such that

|2 —a| <6 = |f(z) ~ f(a) - Df(a)(z — a)| < |z —qf
and then for |x — a| < § we have
|[f(2) = f(a)] < |f(z) = f(a) = Df(a)(z — a)| + | Df (a)|| | — a
< |z —al+IDf(a)|l |z — a| = (1 + | Df (a)]) |= — al
< (1+|Df(@)) 6 < e



6.13 Theorem: (Continuous Partial Derivatives Implies Differentiability) Let U C R™ be
open, let f : U CR™ — R™ and let a € U. If the partial derivatives g—fz(m) exist in U and
are continuous at a then f is differentiable at a.

Proof: Suppose that the partial derivatives g—i’z(x) exist in U and are continuous at a.

Let € > 0. Choose § > 0 so that E(a 9) C U and so that for all indices k, ¢ and for all

y € U we have |y —a| < 6§ = |g£’z g—ﬁ(a)‘ < - Let ¢ € U with |z —a] < 4. For
0</l<mn,let u = (X1, ,Tg, 041, ,ap), with ug = a and w,, = x, and note that each
wEB(a,d). For 1</<n, 1et Oég(t)Z({I?l, Ce Xp 1yt gy, an) for t between ay and xy,

For 1<k<m and 1</<n, let gr(t) = fi(ae(t)) so that g, L) = af’“ (o (t)). By the
Mean Value Theorem, we can choose s ¢ between a, and z, so that gkj(Sk’g)(CL‘g —ay) =

9k.0(z¢) — g e(ag) or, equivalently, so that 8f’“ (Oég(skvg))(aj'g—ag) = fr(ue)— fr(ug—1). Then

Jr(@) = fr(a) = fr(un) — fx(uo) = éé (fre(ue) — fr(ue—r)) = i g—ﬁ(ae(sk,e))(w —ay).

(=

[y

Let B € M, x»(R) be the matrix with entries By ; = g—ai(ag(sk7g)). Then (by Parts 1 and
3 of Lemma 6.11) we have

/(@) = f(a) = Df(a)(@ — )| = |(B = Df(@))(w — a)| < | B - Df(a)||]o

0
< T3 (anlone) — (@)l e —al < o —al.

6.14 Corollary: If U C R" is open and f : U C R™ — R™ is C! then f is differentiable.

6.15 Corollary: Every function f : U C R™ — R™, which can be obtained by applying
the standard operations (such as multiplication and composition) on functions to basic
elementary functions defined on open domains, is differentiable in U.

6.16 Exercise: For each of the following functions f : R?\ {(0,0)} — R, extend the
domain of f(z,y) to all of R? by defining f(0,0) = 0 and then determine whether the
partial derivatives of f exist at (0,0) and whether f is differential at (0,0).

(a) flz,y) = =32 (b) f(z,y) = |yl (©) f(z,y) = Vl]zyl

3

(d) fl@,y) = SE;BTyQ (e) f(z,y) = W (f) flz,y) = mi;izgz




The Chain Rule and the Directional Derivative

6.17 Theorem: (The Chain Rule) Let f : U CR" -V CR™ et g : V C R™ — RY,
and let h(x) = g(f(x)). If f is differentiable at a and g is differentiable at f(a) then h is
differentiable at a and Dh(a) = Dg(f(a))Df(a).

Proof: Suppose f is differentiable at a and g is differentiable at f(a). Write y = f(x) and
b= f(a). We have

|i(x) — h(a) — Dg(f(a))Df (a)(x — a)| = |g(y) — 9(b) — Dg(b)Df (a)(z — a)|

= |g(y) — g(b) — Dg(b)(y — b) + Dg(b)(y — b) — Dg(b)Df (a)(x — a)
< |g(y) — g(b) = Dg(b)(y — b)| + IDg(®)[| |y — b — Df (a)(x — a)|
< |g(y) — g(b) — Dg(b)(y — b)| + (1 + [|Dg(®)|) | f(x) — f(a) — Df(a)(z — a)|
and
ly — 0| = [f(x) — f(a)|

= |f(z) = f(a) - Df (a)(z — a) + Df(a)(z — a)|
< |f(z) = f(a) = Df(a)(z — a)| + |Df (a)|| |z — al.
Let € > 0 be given. Since g is differentiable at b we can choose dg > 0 so that

< ) — < y—b.
[y = b < do = [9(y) = 9(b) = Dg(b) (v = )| < srripray 1V —

Since f is continuous at a we can choose §; > 0 so that
|z —a| <01 = |y —b] = |f(x) — fla)] < do
Since f is differentiable at a we can choose 2 > 0 so that
|z — a| < 8, = |f(x) — f(a) — Df(a)(z — a)| < |z — q
and we can choose d3 > 0 so that

2~ a] 65 = | f(z) — (@) - Df(@)(x — 0)] < s o —al.

Let 6 = min{é;,d2,93}. Then for |x — a| < § we have
ly — bl <|f(z) — f(a) — Df(a)(z — a)| + | Df (a)(z — a)]
< |z —a| + || Df (a)]| |z — af
= 1+ [Df(a@)]]) |z — al
SO

_ _ _ < € |y— _
|9(y) = 9(b) = Dg(b)(y —b)| < srram 1V — Ol < Sl —al

and we have
(1+[I1Dg®)I)|f(z) = f(a) = Df(a)(z — a)| < § o —ql
and so
|(x) = h(a) — Dg(f(a))Df (a)(z — a)| < § |z —al + 5|z — a| = |z — al.
Thus h is differentiable at a with derivative Dh(a) = Dg(f(a))Df(a), as required.



6.18 Definition: Let f : U C R"™ — R, let a € R” and let v € R”. We define the
directional derivative of f at a with respect to v, written as D, f(a), as follows: pick
any differentiable function a : (—¢,¢) C R — U C R", where € > 0, such that «(0) = a
and o/(0) = v (for example, we could pick a(t) = a+vt), let g(t) = f(a(t)), note that by
the Chain Rule we have ¢'(t) = Df(«(t))d/(t), and then define

Dy f(a) = ¢'(0) = Df(e(0)) &/ (0) = Df(a) v = V f(a) - v.
Notice that the formula for D, f(a) does not depend on the choice of the function «(t).

The directional derivative of f at a in the direction of v is defined to be D, f(a)
where w is the unit vector in the direction of v, that is w = ﬁ

6.19 Remark: Some books only define the directional derivative in the case that vector
is a unit vector.

6.20 Theorem: Let f : U C R™ — R be differentiable at a € U. Say f(a) = b. The
gradient V f(a) is perpendicular to the level set f(x) = b, it is in the direction in which f
increases most rapidly, and its length is the rate of increase of f in that direction.

Proof: Let a(t) be any curve in the level set f(x) = b, with a(0) = a. We wish to show that
Vf(a) L a/(0). Since «(t) lies in the level set f(z) = b, we have f(«(t)) = b for all t. Take
the derivative of both sides to get Df (a(t))c/(t) = 0. Put in ¢ = 0 to get Df(a) o/(0) =0,
that is Vf(a) - &/(0) = 0. Thus Vf(a) is perpendicular to the level set f(x) = b.

Next, let u be a unit vector. Then D, f(a) = Vf(a) - u = |Vf(a)| cos @, where 6 is the
angle between u and Vf(a). So the maximum possible value of D, f(a) is |Vf(a)|, and this
occurs when cosf = 1, that is when 6§ = 0, which happens when u is in the direction of

Vf(a).

The Geometry of the Linearization

6.21 Note: There are several geometric objects (curves and surfaces, and higher di-
mensional analogues) that we can associate with a given function f : U C R® — R™.
The graph of f is the set Graph(f) = {(z, f(z)) |z € U} C R™™. We say that the
graph of f is given explicitlty by the equation y = f(z). The null set of f is the set
Null(f) = f740) = {z € U| f(z) =0} C R", and more generally, when a € U and
f(a) = b, the inverse image of b under f, also called the level set f~1(b), is given by
f70) ={zeU ‘ f(z)=b} C R™ We say the level set f~'(b) is given implicitly by the
equation f(z) = b. The range of f is the set Range(f) = {f(¢) \te U} CR™. We say
that the range of f is given parametrically by the equation =z = f(¢).

When f is differentiable at a € U, it is approximated by its linearization near z = a,
that is when x = a we have

f(z) = L(z) = f(a) + Df(a)(x — a).

The geometric objects Graph(f), Null(f), f~*(b) and Range(f) are approximated by the
affine spaces Graph(L), Null(L), L~!(b) and Range(L). Each of these affine spaces is called
the (affine) tangent space of its corresponding geometric object: the space Graph(L) is
called the (affine) tangent space of the set Graph(f) at the point (a, f(a)); when f(a) = b
the space L~1(b) is called the (affine) tangent space to f~1(b) at the point a; and the space
Range(L) is called the (affine) tangent space of the set Range(f) at the point f(a). When
a tangent space is 1-dimensional we call it a tangent line and when a tangent space is
2-dimensional we call it a tangent plane.



The Mean Value Theorem

6.22 Definition: For a,b € R™, we define the line segment from a to b to be the set
[a,b] = {a+t(b—a)|0 <t <1}
For A C R™ we say the A is convex when for all a,b € A we have [a,b] C A.

6.23 Exercise: Show, using the triangle inequality, that B(a,r) is convex for all a € R™
and r > 0.

6.24 Theorem: (The Mean Value Theorem) Let f : U C R™ — R™ with U open in R™.
Suppose that f is differentiable in U. Let v € R™ and let a,b € U with [a,b] C U. Then
there exists ¢ € [a,b] such that

Df(e)(b—a) - u= (f(b) ~ f(a)) - u.

Proof: Let a(t) = a+t(b—a) and define g : [0,1] — R by g(t) = f(a(t)) - u. By the Chain
Rule, we have ¢/'(t) = (Df(a(t))a/(t)) +u = (Df(a(t))(b — a)) - u. By the Mean Value
Theorem (for a real-valued function of a single variable) we can choose s € [0, 1] such that
g'(s) = g(1) — 9(0), that is (Df (a(s))(b—a)) - u = f(b) - u— f(a) - u = (f(b) = f(a)) - u.
Thus we can take ¢ = a(s) € [a,b] to get Df(c)(b—a)-u= (f(b) — f(a)) - u.

6.25 Corollary: (Vanishing Derivative) Let U C R™ be open and connected and let
f: U — R™ be differentiable with Df(x) = O for all x € U. Then f is constant in U.

Proof: Let a € U and let A = {& € U|f(z) = f(a)}. We claim that A is open (both
in R™ and in U). Let b € A, that is let b € U with f(b) = f(a). Since U is open we
can choose r > 0 so that B(b,7) C U. Let ¢ € B(b,r). Since B(b,r) is convex we have
[b,c] C B(b,r) C U. Let u = f(c) — f(b) and choose d € [b,¢|, as in the Mean Value
Theorem, so that (Df(d)(c— b)) - u= (f(c) — f(b)) - u. Then we have

£(e) = FB))" = (f(e) = £(1)) - u = (Df(d)(c — b)) - u=0

since Df (d) = O . Since |f(c) — f(b)| = 0 we have f(c) = f(b) = f(a), and so ¢ € A. Thus
B(b,r) C A and so A is open, as claimed. A similar argument shows that if b € U \ A
and we chose r > 0 so that B(b,7) C U then we have f(c) = f(b) for all ¢ € B(b,r) hence
B(b,r) CU\ A and hence U \ A is also open. Note that A is non-empty since a € A. If
U \ A was also non-empty then U would be the union of the two non-empty open sets A
and U \ A, and this is not possible since U is connected. Thus U\ A = () so U = A. Since
U=A={zecU|f(x)= f(a)} we have f(z) = f(a) for all z € U, so f is constant in U.



The Inverse and the Implicit Function Theorems

6.26 Theorem: (The Inverse Function Theorem) Let f : U C R™ — R"™ where U C R"
is open with a € U. Suppose that f is C! in U and that Df(a) is invertible. Then there
exists an open set Uy C U with a € Uy such that the set Vo = f(Uy) is open in R™ and the
restriction f : Uy — Vp is bijective, and its inverse g = f~' : Vo — Uy is C! in V;. In this
case we have Dg(f(a)) = Df (a)™*

Proof: Let A = Df(a) and note that A is invertible. Since U is open and f is C!, we can
choose r > 0 so that B(a,r) C U and so that ‘af’“ g’}k( )| < m for all k, £. Let
Uy = B(a,r) and note that for all 2 € Uy we have || Df (z) — A| < 2||A o

Claim 1: for all x € Uy, the matrix Df(z) is invertible.
Let x € Uy and suppose, for a contradiction, that Df(z) is not invertible. Then we can
choose u € R™ with |u| = 1 such that Df(z)u = 0. But then we have

|Df () — Al 2 [(Df (@) — Ayu| = |Au] > J4 = oL

which contradicts the fact that since x € Uy we have HDf xr) — AH < m.

Claim 2: for all b, ¢ € Uy we have | f(c) — f(b) — A(c — b)| < 2“; ﬁ'”

Let b,c € Uy. Let a(t) = b+ t(c — b) and note that a(t) € Uy for all t € [0,1]. Let ¢(t) =
f(a(t)) —L(a(t)) where L is the linearization of f at a given by L(a) = f(a)+Df (a)(z—a),
and note that ¢(1) — ¢(0) = (f(c) — L(c)) — (f(b) — L(b)) = f(c) — f(b) — A(c — b). By
the Chain Rule, we have ¢/(t) = Df (a(t))e/(t) — DL(a(t))d/(t) = (Df (a(t)) — A)(c —b)

and so

16/(8)] < || D (at)) - All e — bl < itk

By the Mean Value Theorem, using u = ¢(1) — ¢(0), we choose t € [0, 1] such that
2

[6(1) = ¢(0)]" = (#(1) = $(0)) - u = (D(t)(1 — 0)) - u = ¢ (t) - u
= [¢'(t) - (6(1) = $(0)] < [¢'(1)] |#(1) — ¢(0)]

by the Cauchy Schwarz Inequality, and hence |¢(1) — ¢(0)| < |¢'(t)| < %, that is
\

Claim 3: for all b,c € Uy we have |f(c) — f(b)| > 2|||i‘_f)1|“.

Let b,c € Uy. By the Triangle Inequality we have
[f(e) = F(b) = A(c=b)| = |A(c = b)] = | £(c) = F(B)] = 15538 — [ f(e) = ()]
and so, by Claim 3, we have

It follows that when b # ¢ we have f(b) # f(c), so the restriction of f to Uy is injective.

Claim 4: the restriction of f to Uy is injective, hence f : Uy — Vo = f(Up) is bijective.
By Claim 3, when b,¢ € Uy with b # ¢ we have |f(c) — f(b)‘ > 2|||6Af_bl|” > 0 so that
f(b) # f(c). Thus the restriction of f to Up is injective, as claimed.




Claim 5: the set Vj is open in R™.

Let p € Vo. Let b = g(p) so that p = f(b). Choose s > 0 so that B(b,s) C Up.
We shall show that B(p, m) C Vp. Let q € B(b, m). We need to show that
q€ Vo f(Uo) and in fact we shall show that ¢ € f(B(b, s)) To do this, define ) : U — R
by ¥ (x ‘ flx) — q!. Since 1) is continuous, it attains its minimum value on the compact
set B(b s), say at c € B(b,s). We shall show that ¢ € B(b s) and that f(c) = ¢ so we have
q€ f(B(b, s)), hence ¢q € f(Uy) = Vo, hence B(b C Vp, and hence V} is open.

Claim 5(a): we have ¢ € B(b, s).
Suppose, for a contradiction, that ¢ ¢ B(b, s) so we have |c — b| = s. Then

T afjA- 1||)

=[f(b)—q|=lp—q| < 4”A AT and, using Claim 3,

= [f(c) —d| = |£(c) = FB)| = [ F(B) —a| = 5527 — Ip—

= qpay P —d > 2”}1” T AT T aA
so that ¥(b) < 1)(c). But this contradicts the fact that 1(c) is the minimum value of ¢ (z)
in B(b, s), so we have ¢ € B(b, s), as claimed.

Claim 5(b): we have f(c) = q.
Suppose, for a contradiction, that f(c) # g so we have ¥(c) > 0. Let v = g — f(c¢) so that
lv| = (c) > 0. Let u = A~'v so that v = Au. Then for 0 < ¢ < 1, using Claim 2, we have

Y(c+tu) = |f(c+tu)—q| < |f(c—|—tu)—f( —Atu}—k’f(c)—l—Atu—q‘

[tu] t|A" ] t _ t
< 2 A1 + |t’U —U| 2[[A-1]| + (1 _t)|v| < 2 |U| + (1 —t)l’U| - (1 - 5)‘U|'

Since |v] > 0 we have ¢(c + tu) < (1 — %)|v| < |v] = 1(c). But this again contradicts the
fact that ¢(z) attains its minimum value at ¢, and so we have f(c) = ¢, as claimed.

Claim 6: the function g is differentiable in Vo with Dg(f(b)) = Df(b)~* for all b € Up.
Let p € Vi and let b = g(p) so that f(b) = p. Let B = Df(b). Note that B is invertible by
Claim 1. Let C = B!, Let y € Vy and let z = g(y) € Uy so that y = f(x). Then we have

l9(y) —g(p) = Cly —p)| = |z —b—C(f(x) — f(b))| = |CB(x —b—C(f(x) — f(b)))]
= |C(Bz — Bb— (f(z)— f(b))| < |C|l| f(z) — f(b) — B(z - b)| '

Also, as shown above, we have |y — p| = | f(z) — f(b)| > 2“‘1 b1|” so that

| = < 2|A7H ] |y — pl.
It follows that g is differentiable at p with Dg(p) = C = Df(b)~!, as claimed. Indeed,
given € > 0, since f is differentiable at b with Df (b) = B we can choose §; > 0 so that when
|z —a| < &, we have | f(z) — f(b) — B(z —b)| < WL@ — bl, and since g is continuous
at b we can choose > 0 so that when |y — p| <  we have |z — b| = |g(y) — g(b)| < 1.
When |y — p| < 8, the above inequalities give |g(y) — g(b) — C(y — p)| < ely — pl.
Claim 7: the function ¢ is C! in Vj.
By the cofactor formula for the inverse of a matrix, for all y € V and all indices k, ¢,

. ( 1)k+€
() = (Dg()), , = (DFg) ), , = det DF (9(9))

where is F is the matrix obtained from Df(g(y)) by removing the k" column and the

row. Thus gﬂ(y) is a continuous function of y, as claimed.
Ye

% det £

gth



6.27 Corollary: (The Parametric Function Theorem) Let f : U C R"™ — R"™*+* be C1.
Let a € U and suppose that Df(a) has rank n. Then Range(f) is locally equal to the
graph of a C' function.

Proof: Since Df(a) has maximal rank n, it follows that some n x n submatrix of Df(a)
is invertible. By reordering the variables in R™T* if necessary, suppose that the top
n rows of Df(a) form an invertible n x n submatrix. Write f(t) = (z(¢),y(t)), where

z(t) = (z1(t), -+, 2, (t)) and y(t) = (y1(t), -+, yr(t)), so that we have
Dx(t) >
Df(t) =
/e (Dy(t)
with Dz(a) invertible. By the Inverse function Theorem, the function z(t) is locally
invertible. Write the inverse function as ¢ = t(z) and let g(z) = y(t(z)). Then, locally,
we have Range(f) = Graph(g) because if (x,y) € Graph(g) and we choose t = t(x) then

we have (x,y) = (x,g(a:)) = (x(t),g ) ( ) € Range(f) and, on the other
hand, if (z,y) € Range(f), say (z,y) = (x(t), y(t )) then we must have t = t(x) so that
y(t) = y(t(z)) = g(x) so that (z,y) = (z(t),y(t)) = (z,9(x)) € Graph(g).

6.28 Corollary: (The Implicit Function Theorem) Let f : U C R*"** — R¥ be C!. Let

p € U, suppose that Df (p) has rank k and let ¢ = f(p). Then the level set f~1(c) is locally
the graph of a C! function.

Proof: Since Df(p) has rank k, it follows that some k X k submatrix of f is invertible.
By reordering the variables in R™** if necessary, suppose that the last k& columns of
Df(p) form an invertible k x k matrix. Write p = (a,b) with a = (p1,---,pn) € R™ and
b= Pni1, ,Pnsir) € R¥ and write z = f(z,y) with z € R", y € R* and z € R¥, and
write

Df(z,y) = (F(z,1), 55 (x,))

with g—Z(a,b) invertible. Define F': U C R"*F — R"** by F(z,y) = (=, f(z,y)) = (w, 2).
Then we have I o
DF = < 0z 0z )
oz dy

with DF'(a,b) invertible. By the Inverse Function Theorem, F' = F(x,y) is locally invert-
ible. Write the inverse function as (z,y) = G(w, 2) = (w, g(w, z)) and let h(z) = g(z, c).
Then, locally, we have f~!(c) = Graph(h) because

f(x,y) = ¢ = F(z,y) = (z,¢c) = (2,9) = G(z,¢)
— (2,y) = (z,9(z,¢)) < (=,y) € Graph(h).

6.29 Remark: We can also find a formula for Dh where h is the function in the above
I O

proof. Since G(w,z) = (w,g(w,z)) we have DG(w,z) = | a3 ay ) and we also have
ow 0z
I
DG(w,z) = DF(z,y)~ ! = < YN aZO—l) so, since h(z) = g(z, ¢), we have
-(5) 7 (5)

Dh(z) = 92 (x,¢) = —(82) 7" 8(x, ).
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Higher Order Derivatives and Taylor’s Theorem

6.30 Lemma: (Iterated Limits) Let I and J be open intervals in R witha € I and b € J,
let U = (I xJ)\{(a,b)}, and let f : U — R. Suppose that lim f(z,y) exists for every

x €I and that lim  f(z,y) =u € R. Then lim hmf(x y) = u.

(m7y)_>(a’vb) r—a t—

Proof: Define g : I — R by g(x) = lim f(x,y). Let € > 0. Since lim f(z,y) = u
y—b (z,y)—(ab)

we can choose § > 0 such that for all (z,y) € U with 0 < |(z,y) — (a,b)| < 26 we have

}f(x,y)—u! <e Letx €I withO<|z—a|] <4. Forallye J with0 < |y—5b] <d we

have 0 < |(z,y) — (a,b)| < |z —a| + |y — b| < 26 and so |f(z,y) — u| < € and hence

Take the limit as y — b on both sides to get |g(x) —u| < e. Thus lim g(x) = u, as required.
Tr—a

6.31 Theorem: (Mixed Partials Commute) Let f : U C R™ — R where U is open in R"

witha € U, and let k,£ € {1,---,n}. Suppose 83}3“ (z) exists in U and is continuous at a,

of . . . . *f . ’f _ o
5o (@) exists and is continuous in U, and 7 5—(a) exists. Then 5 5—(a) = 5, 55 (a).

Proof: When k = /¢ there is nothing to prove, so suppose that k # ¢. Choose r > 0 so
that B(a,2r) C U. For |z| < r and |y| < r note that the points a, a + xeg, a + ye, and
a + xey, + yeg all lie in B(a,2r). For | X| < r and |y| < r, define

9(@,y) = fla+ zer +yer) — fla+wey) — fa+yer) + f(a).

By the Mean Value Theorem, applied to the function f(a + xer + yes) — f(a + yey) as a
function of y, we can choose ¢ between 0 and y such that

y(gg(a—l—xek—l—teg) a+teg)—gxy

By the Mean Value Theorem, applied to the function 8—£(a + zey + teg) as a function of
x, we can choose s between 0 and x such that

2
x afkgm (a + sei, + tey) = %(a + xey, + teg) — g—gg(a + tey).

Also by the Mean Value Theorem, applied to the function f(a + zey + yes) — f(a + xey)
as a function of x, we can choose r between 0 and x such that

x5 o7 —(a+reg +yer) — aa—f(a +reg)) = g(z,y).
Then for |z| < r and 0 < |y| < r we have

8f (a+rek + yey) — f (a—i—rek) B o2 f
Y  Ox,0xy

(a + se, + tey).

. 8% f
Slnce m

and since g—cic is continuous, the limit as y — 0 of the limit as x — 0 on the left is equal

to 85250 (a), so the desired result follows from the above lemma.
O

is continuous, the limit on the right as (z,y) — (0,0) is equal to 0°f (a),

OxrOxp

6.32 Corollary: If U C R" is open and f : U C R® — R is C? in U then we have

agiaka (z) = 355% (x) for all z € U and for all k,¢.

6.33 Exercise: Verify that for f(x,y) =

72752 e have hr% llm flx,y) # hm hm flx,y).

11



zy(2® —y°)
: B 5o il (z,y) #(0,0) : .
6.34 Exercise: Let f(z,y) = 44y . Verify that the mixed

0 , if (z,y) = (0,0)

partial derivatives ;(O 0) and Big (0,0) both exist, but they are not equal.

6.35 Definition: for f : U C R™ — R, where U is open in R"™ with a € U, we define
D (a) = f(a) and for £ € Z* we define the £*! total differential of f at a to be the map
D’f(a) : R® — R given by

n n n
V4
D f(a)(u) = kzl kzl Z 3mklamk5 Dz, (a> Uy Uy * U,
1=1 ko= =1

provided that all of the ¢** order partial derivatives exist at a.
6.36 Example: When f: U C R? — R is C? (so the mixed partial derivatives commute)
we have
D% (u,v) = f(a,b)
Df(a,b)(u,v) = % (a,b) u+ % (a,b) v
Df(a,b)(u,v) = 55 (a,b) u? + 2525 (a,b) uv + 5% (a, b) v?

6.37 Theorem: (Taylor’s Theorem) Let f : U C R™ — R where U is open in R™. Suppose
that the m*™ oder partial derivatives of f all exist in U. Then for all a,z € U such that
la,z] C U there exists ¢ € [a, x| such that

f(x) = j; 1D (a)x —a) + L D)@ — a).

Proof: Let a,z € U with [a,2] C U. Let a(t) = a + t(x — a) for all ¢ € R and note that
a(t) € U for 0 <t < 1. Since U is open and « is continuous, we can choose 6 > 0 so that
a(t) e U for allt € I = (9,14 ). Define g : I — R by g(t) = f(a(t)). By the Chain
Rule, we have

g'(t) = Df (a(t)) o/ (t) = Df (a(t)) (z — a) = > 5L (alt)) (x; — a;) = D'f (a(t)) (z — a).

i=1

By the Chain Rule again, we have

g')=3 (2 5 () (25 — a7)) (@ — a5) = D*f (a(t)) (x — a).

An induction argument shows that

g (t) = D'f (a(t)) (x — a).
By Taylor’s Theorem, applied to the function g(¢) on the interval [0,1], we can choose
m—1
s € [0,1] such that g(1) = > £g9(0) + L;g(™(s), that is
(=0

m—1

fl@)= 3 5Df(a)(x—a) + :D"f(a(s))(z —a).

£=0

Thus we can choose ¢ = a(s) € [a, x].

12



Positive Definiteness and the Second Derivative Test

6.38 Definition: For f: U C R" — R, where U is open in R" with a € U, we define the
m*™ Taylor polynomial of f at a to be the polynomial

T™f (a)(z) = g:o 1 D'f(a)(z — a)

provided that all the m'™ order partial derivatives exist at a. When f is C? in U (so that
the mixed partial derivatives commute) we have

T*f(a)(z) = f(a) + Df (a)(z — a) + 5 (z — a)" Hf (a) (x - a)

where Hf (a) € My, x»(R) is the symmetric matrix with entries Hf (a)x ¢
matrix Hf(a) is called the Hessian matrix of f at a.

(a). The

= Ox0xyp

6.39 Definition: Let A € M,,(R) be a symmetric matrix. We say that

(1) A is positive-definite when u” Au > 0 for all 0 # u € R",
(2) A is negative-definite when u” Au < 0 for all 0 # u € R™, and
(3) A is indefinite when there exist 0 # u,v € R™ with u” Au > 0 and v7 Av < 0.

6.40 Theorem: (Characterization of Positive-Definiteness by Eigenvalues) Let A€ M, (R)
be symmetric. Then

(1) A is positive-definite if and only if all of the eigenvalues of A are positive,
(2) A is negative-definite if and only if all of the eigenvalues of A are negative, and
(3) A is indefinite if and only if A has a positive eigenvalue and a negative eigenvalue.

Proof: Suppose that A is positive definite. Let A\ be an eigenvalue of A and let u be
a unit eigenvector for . Then A = Aul? = AMu-u) = Mu-u = Au-u = vl Au > 0.
Conversely, suppose that all of the eigenvalues of A are positive. Since A is symmetric,
we can orthogonally diagonalize A. Choose a matrix P € M, (R) with PT = P so that
PTAP = D = diag(A1,- -+, \n). Given 0 # u € R", let v = PTu. Note that v # 0 since
PT is invertible. Thus uTAu = u" PDPTu = vTDv = > \iv;2 > 0 since every \; > 0 and
i=1

some v; # 0. This proves Part (1). The proofs of Parts (2) and (3) are fairly similar.
6.41 Theorem: (Characterization of Positive-Definiteness by Determinant) Let A €
M, (R) be symmetric. For each k with 1 < k <mn, let A®) denote the upper-left k x k sub
matrix of A. Then

(1) A is positive-definite if and only if det(A*)) > 0 for all k with 1 < k < n, and
(2) A is negative-definite if and only if (—1)* det(A*) > 0 for all k with 1 < k < n.

Proof: Part (2) follows easily from Part (1) by noting that A is negative-definite if and
only if —A is positive-definite. We shall prove one direction of Part (1). Suppose that
A is positive-definite. Let 1 < k < n. Since uTAu > 0 for all 0 # u € R", we have

(uT O) A 8) = 0, or equivalently uZ A%y > 0, for all 0 # u € R¥. This shows that

A is positive definite. By the previous theorem, all of the eigenvalues of A*) are positive.
Since det(A®*)) is equal to the product of its eigenvalues, we see that det(A®*)) > 0.

The proof of the other direction of Part (1) is more difficult. We shall omit the proof.
It is often proven in a linear algebra course.
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3 —1 2
6.42 Exercise: Let A= |—1 2 1 |. Determine whether A is positive-definite.
2 1 5

6.43 Definition: Let f : A C R™ — R and let a € A. We say that f has a local
maximum value at a when there exists » > 0 such that f(a) > f(x) for all z € By(a,r).
We say that f has a local minimum value at a when there exists » > 0 such that
f(a) <z for all x € Ba(a,r).

6.44 Exercise: Show that when f : U C R™ — R where U is open in R" with a € U, if
f has a local maximum or minimum value at a then either Df(a) = 0 or Df(a) does not
!

exist (that is one of the partial derivatives C,?—M(a) does not exist).

6.45 Definition: Let f: U C R™ — R where U is open in R". For a € U, we say that a
is a critical point of f when either Df(a) = 0 or Df(a) does not exist. When a € U is a
critical point of f but f does not have a local maximum or minimum value at a, we say
that a is a saddle point of f.

6.46 Theorem: (The Second Derivative Test) Let f : U C R™ — R with U open in R"
and let a € U. Suppose that f is C? in U with Df(a) = 0. Then

(1) if H f(a) is positive definite then f has a local minimum value at a,
(2) if H f(a) is negative definite then f has a local maximum value at a, and
(3) if H f(a) is indefinite then f has a saddle point at a.

Proof: Suppose that Hf(a) is positive-definite. Then det (Hf(a)(k) >0forl <k<n.
Since each determinant function det(A*)) is continuous as a function in the entries of the
matrix A, the set V = {m eU | Hf(z)®) > 0 for k = 1,2,-~,n} is open. Choose r > 0
so that B(a,r) C V. Then we have u” Hf (c)u > 0 for all 0 # v € R™ and all ¢ € B(a,r).
Let = € B(a,r) with = # a. By Taylor’s Theorem, we have

f(@) = f(a) = Df(a)(z — a) = (z — a) " Hf(c) (x — a)
for some ¢ € [a, x]. Since Df(a) = 0 and Hf (c) is positive-definite, we have f(z)— f(a) > 0.
Thus f has a local minimum value at a. This proves Part (1) and Part (2) is similar.
Let us prove Part (3). Suppose there exists 0 # v € R™ such that uTHf (a)u > 0. Let
r > 0 with B(a,r) C U and scale the vector u if necessary so that [a,u] C B(a,r). Let
a(t) = a+tu and let g(t) = f(a(t)) for 0 < ¢ < 1. As in the proof of Taylor’s Theorem,
we have

Since g(0) = f(a), ¢’(0) = Df(a)u = 0 and ¢”(0) = ul Hf (a)u > 0, it follows from
single-variable calculus that we can choose ty with 0 < tg < 1 so that g(to) > g(0). When
z = a(ty) we have z € B(a,r) and f(z) = f(a(to)) = g(to) > g(0) = f(a), and so f
does not have a local maximum value at a. Similarly, if there exists 0 # v € R™ such that
vl Hf(a)v < 0 then f does not have a local minimum value at a. Thus when Hf(a) is
indefinite, f has a saddle point at a.

6.47 Exercise: Find and classify the critical points of the following functions f : R? — R.
(a) f(x,y) = 2 +2zy+y? (D) f(w,y) = 2> +32%y—6y>  (c) f(w,y) = aPye ™ 2
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