
PMATH 333, Solutions to the Exercises for Appendix 2

1: Recall that a formula in first-order set theory only uses symbols from the following symbol set:

¬ , ∧ , ∨ , → , ↔ , ( , ) , = , ∈ , ∃ , ∀
along with variable symbols including x, y, z, u, v, w, · · ·.

(a) Express the statement
{
∅, {u}} ∈ w as a formula in first-order set theory.

Solution: In the class of sets we have

v={∅, {u}} ⇐⇒ ∀x
(
x∈v ↔ (x=∅ ∨ x=

{
u})
)

⇐⇒ ∀x
(
x∈v ↔ (∀y ¬ y∈x ∨ ∀y (y∈x ↔ y=u))

)
and so

{∅, {u}} ∈ w ⇐⇒ ∀v
(
v={∅, {u}} → v ∈ w

)
⇐⇒ ∀v

(
∀x
(
x∈v ↔ (∀y ¬ y∈x ∨ ∀y (y∈x ↔ y=u))

)
→ v∈w

)
.

Alternatively,

{∅, {u}} ∈ w ⇐⇒ ∃v
(
v={∅, {u}} ∧ v∈w

)
⇐⇒ ∃v

(
∀x
(
x∈v ↔ (∀y ¬ y∈x ∨ ∀y (y∈x ↔ y=u))

)
∧ v∈w

)
.

(b) Recall that (x, y) =
{
{x}, {x, y}

}
. Express the statement “w is a set of ordered pairs” as a formula in

first-order set theory.

Solution: In the class of all sets we have

w is a set of ordered pairs ⇐⇒ ∀u
(
u∈w → ∃x ∃y u=(x, y)

)
⇐⇒ ∀u

(
u∈w → ∃x∃y u=

{
{x}, {x, y}

})
⇐⇒ ∀u

(
u∈w → ∃x∃y ∀v

(
v∈u ↔ (v={x} ∨ v={x, y}

))
⇐⇒ ∀u

(
u∈w → ∃x ∃y ∀v

(
v∈u ↔

(
∀z(z∈v ↔ z=x) ∨ ∀z(z∈v ↔ (z=x ∨ z=y))

)))
We remark that the statement “w is a set of ordered pairs” is equivalent to the statement “w is a relation”.

(c) Express the statement “for every u ∈ w there exists x ∈ u such that u \ {x} ∈ w” as a formula in first
order set theory. Also, determine whether there exists such a set w which is not empty.

Solution: The given statement can be expressed as “∀u∈w ∃x∈u ∀y
(
y = u \ {x} → y ∈ w

)
” which, in turn,

can be expressed by the formula

∀u
(
u∈w → ∃x

(
x∈u ∧ ∀y

(
∀z(z∈y ↔ (z∈u ∧ ¬ z=x)) → y∈w

)))
There do exist such sets w, for example we could take w to be the set of all infinite subsets of N, that is
w =

{
u ∈ P(N)

∣∣∃n∈N u ⊆ n
}

which is a set by a Separation Axiom
(
since P(N) is a set and the statement

“∃n∈N u ⊆ n” can be expressed as a formula in First Order Set Theory). As another example, we could
take w to be the set w =

{
{1, 2, 3, · · ·}, {2, 3, 4, · · ·}, {3, 4, 5, · · ·}, · · ·

}
=
{
u ∈ P(N)

∣∣∃n∈N ∀x(x∈u ↔ n∈x
}

which is a set by a Separation Axiom.



2: Recall that N = {0, 1, 2, · · ·} is a set where 0 = ∅, 1 = {0}, 2 = {0, 1} and in general x + 1 = x ∪ {x}.

(a) Show that if u is a set then the collection w =
{
x ∪ {x}

∣∣x ∈ u
}

is a set.

Solution: We provide two solutions by explaining how w can be constructed from u using the ZFC axioms in
two slightly different ways. In both solutions we use the fact that the statement “y = x∪ {x}” is considered
to be an allowable mathematical statement because it can be expressed as the first-order formula

F (x, y) ≡ ∀z
(
z∈y ↔ (z∈x ∨ z=x)

)
.

For the first solution, we note that when u is a set, the given collection w =
{
x∪{x}

∣∣x ∈ u
}

is equal to

w =
{
y
∣∣∃x∈u y = x ∪ {x}

}
=
{
y
∣∣∃x∈u F (x, y)

}
,

which is a set by a Replacement Axiom, because the statement F (x, y) has the property that for every set
x there is a unique set y such that F (x, y) is true (indeed, given a set x, to make F (x, y) true we must take
y = x ∪ {x}, which is a set by the Pair and Union Axioms).

For the second solution, note that when x, y and u are sets with x ∈ u, if y ∈ x then y ∈
⋃
u and if

y ∈ {x} then y = x so y ∈ u, and so if y ∈ x ∪ {x} then y ∈ u ∪
⋃
u. Thus the given collection is

w =
{
x ∪ {x}

∣∣x∈u} =
{
y
∣∣∃x∈u F (x, y)

}
=
{
y ∈ u ∪

⋃
u
∣∣ ∃x(x∈u ∧ F (x, y))

}
which is a set by a Separation Axiom, since u ∪

⋃
u is a set by the Pair and/or Union Axioms.

(b) Show that the collection w =
{
{0, 1}, {1, 2}, {2, 3}, {3, 4}, · · ·

}
is a set.

Solution: Again we provide two solutions. Note that when x and y are sets we have

y =
{
x, x ∪ {x}

}
⇐⇒ ∀z

(
z∈y ↔ (z=x ∨ z = x ∪ {x})

)
⇐⇒ ∀z

(
z∈y ↔

(
z=x ∨ ∀u(u∈z ↔ (u∈x ∨ u=x))

))
so the statement “y =

{
x, x ∪ {x}

}
” can be expressed as the formula

F (x, y) ≡ ∀z
(
z∈y ↔

(
z=x ∨ ∀u(u∈z ↔ (u∈x ∨ u=x))

))
.

For the first solution we note that

w =
{
{0, 1}, {1, 2}, {2, 3}, · · ·

}
=
{
{x, x + 1}

∣∣x ∈ N
}

=
{
{x, x ∪ {x}}

∣∣x ∈ N
}

=
{
y
∣∣∃x∈N F (x, y)

}
which is a set by a Replacement Axiom, since N is known to be a set by the Axiom of Infinity, and since the
statement F (x, y) has the property that for every set x there exists a unique set y such that the statement
is true (indeed given x, to make the statement true we must choose y =

{
x, x∪{x}

}
, which is a set by the

Pair and Union Axioms).

For the second solution, note that when x ∈ N we have {x, x + 1} ∈ P (N) and so

w =
{
{x, x + 1}

∣∣x ∈ N
}

=
{
y
∣∣∃x ∈ N y = {x, x + 1}

}
=
{
y ∈ P (N)

∣∣∃x(x∈N ∧ F (x, y)
)}

which is a set by a Separation Axiom, since P (N) is a set by the Axiom of Infinity and the Power Set Axiom,
and since the statement “x∈N ∧ F (x, y)” is an allowable mathematical statement.

To be careful, we should verify that the statements “u=N” and “x ∈ N” can be expressed as formulas
(in first-order set theory) so that they are allowable mathematical statements. It is not clear, from reading
Chapter 1 in the Lecture Notes, exactly how this should be done. After reading the definition of the set N
given in Appendix 1, you will be able to work out that the statement “u = N” can be expressed as

∅∈u ∧ ∀x(x∈u → x∪{x} ∈ u) ∧ ∀w
((
∅∈w ∧ ∀x(x∈w → x∪{x} ∈ w)

)
→ u⊆w)

)
which can, in turn, be expressed as a formula. The statement “x∈N” can be expressed as ∀u(u=N → x∈u).



(c) Show that the collection w =
{
∅, {∅}, {{∅}}, {{{∅}}}, · · ·

}
is a set.

Solution: We shall only provide an incomplete solution. Define sets sn, for n ∈ N, recursively by s0 = ∅ and
sn+1 = {sn}. If we can express the statement “u = sn” as a formula F (n, u) (with free variables n and u)
then we have

w =
{
sn
∣∣n ∈ N

}
=
{
u
∣∣ ∃n∈N u = sn

}
=
{
u
∣∣∃n∈N F (u, n)

}
which is a set by a Replacement Axiom. For n ∈ N, let

wn =
{

(0, ∅), (1, {∅}), · · · , (n, sn)
}
.

In order to show that the statement “u = sn” is expressible as a formula, we shall first show that the
(apparently more complicated) statement ”v = wn” is expressible as a formula. We recall that the statements
“u=N” and “x∈N” are each expressible as formulas. When n ∈ N and v is a set we have

v = wn ⇐⇒ ∀z∈v ∃x∈{0, 1, · · · , n} ∃y z=(x, y)

and ∀x∈{0, 1, · · · , n} ∃y (x, y)∈v
and ∀x ∀y ∀z

((
(x, y)∈v ∧ (x, z)∈v

)
→ y=z

)
)

and (0, ∅) ∈ v

and ∀x∈{0, 1, · · · , n−1} ∀y
(
(x, y)∈v → (x+1, {y})∈v

)
We leave it as a (long but not particularly difficult) exercise to verify that the rather long statement on the
right can be expressed as a formula, say H(n, v), with free variables n and v. When n ∈ N and u is a set we
have

u = sn ⇐⇒ (n, u) ∈ wn ⇐⇒ ∀v
(
v=wn → (n, u) ∈ v

)
⇐⇒ ∀v

(
H(n, v) → (n, u) ∈ v

)
which can be expressed as a formula, say G(n, u). Finally, to be careful, the statement F (n, u) which
is used in the Replacement Axiom, must have the property that for every set n (not necessarily with
n ∈ Z) there is a unique set u for which F (n, u) is true, and so we take F (n, u) to be the statement
(n∈N → G(n, u)) ∧ (¬n∈N → u = ∅).

For our solution to be complete, we would need to prove that our statement F (u, n) has the property
that for every set n there is a unique set u such that F (n, u) is true. To do this, we would first prove that
for every n ∈ N there is a unique set v such that H(n, v) is true. This can be proven using Induction.



3: In some books on set theory, the list of ZFC axioms includes an additional axiom called the Axiom of
Regularity, which states that every nonempty set u contains an element v such that u ∩ v = ∅. Assuming
the Axiom of Regularity (along with the other ZFC axioms), prove each of the following statements.

(a) There does not exist a set u such that u ∈ u.

Solution: Suppose, for a contradiction, that u is a set with u ∈ u. Since u ∈ {u} and u ∈ u we have
u ∈ {u} ∩ u and so {u} ∩ u 6= ∅. Let w = {u}. By the Axiom of Regularity (applied to the set w) we
can choose an element v ∈ w such that w ∩ v = ∅. Since v ∈ w = {u} we must have v = u, so we have
{u}∩u = w∩ v = ∅. We have shown that {u}∩u = ∅ and that {u}∩u 6= ∅, so we have obtained the desired
contradiction, hence there is no set u with u ∈ u.

(b) There do not exist sets u and v such that u ∈ v and v ∈ u.

Solution: Suppose, for a contradiction, that u and v are sets with u ∈ v and v ∈ u. Let w = {u, v}. By the
Axiom of Regularity (applied to the set w), either w ∩ u = ∅ or w ∩ v = ∅. But since u ∈ v and u ∈ w we
have u ∈ w ∩ v so w ∩ v 6= ∅ and, similarly, since v ∈ u and v ∈ w we have v ∈ w ∩ u so that w ∩ u 6= ∅. We
have shown that either w ∩ u = ∅ or w ∩ v = ∅, and we have also shown that w ∩ u 6= ∅ and w ∩ v 6= ∅, so
we have obtained the desired contradiction.

(c) For all sets u and v, if u ∪ {u} = v ∪ {v} then u = v.

Solution: Let u and v be sets. Suppose that u ∪ {u} = v ∪ {v}. Suppose, for a contradiction, that u 6= v.
Since u ∈ u ∪ {u} and u ∪ {u} = v ∪ {v} we have u ∈ v ∪ {v}. Since u ∈ v ∪ {v} it follows that either u ∈ v
or u = v. Since u 6= v it follows that u ∈ v. A similar argument shows that v ∈ u. But then we have u ∈ v
and v ∈ u, which contradicts the result of Part (b).

(d) For all sets u, v, x and y, if
{
u, {u, v}

}
=
{
x, {x, y}

}
then u = x and v = y.

Solution: Let u, v, x, y be sets. Suppose that
{
u, {u, v}

}
=
{
x, {x, y}

}
. Note that u 6= {u, v} because if we

had u = {u, v} then we would have u ∈ {u, v} = u which contradicts Part (a). Similarly x 6= {x, y} so the
sets

{
u, {x, y}

}
and

{
u, {u, v}

}
are 2-element sets. Since

{
u, {u, v}

}
=
{
x, {x, y}

}
, with the sets on each

side having 2 distinct elements, either
(
u = x and {u, v} = {x, y}

)
or
(
u = {x, y} and {u, v} = x

)
.

Case 1: suppose that u = x and {u, v} = {x, y}. We need to show that v = y. Since v ∈ {u, v} and
{u, v} = {x, y} we have v ∈ {x, y} hence either v = x or v = y. If v = y we are done, so suppose that v = x.
Then we have u = x = v hence {u, v} = {v}. Since y ∈ {x, y} = {u, v} = {v} we have y = v, as required.

Case 2: suppose that u = {x, y} and {u, v} = x. Since u ∈ {u, v} and {u, v} = x we have u ∈ x. Since
x ∈ {x, y} and {x, y} = u we have x ∈ u. But then we have u ∈ x and x ∈ u which contradicts Part (b), and
so Case 2 does not arise.



4: In this problem, and in the following problem, you may use any known properties of N, Z, Q and R.

(a) Let X and Y be nonempty sets and let f : X → Y . Prove that f is injective if and only if we have
f(A ∩B) = f(A) ∩ f(B) for all subsets A,B ⊆ X.

Solution: Suppose that f is injective. Let A,B ⊆ X. Let y ∈ f(A ∩ B). Choose x ∈ A ∩ B with f(x) = y.
Since x ∈ A and y = f(x) we have y ∈ f(A). Since x ∈ B and y = f(x) we have y ∈ f(B). Thus
y ∈ f(A) ∩ f(B), showing that that f(A ∩B) ⊆ f(A) ∩ f(B) (we did not use the fact that f was injective).
Now let y ∈ f(A)∩f(B). Since y ∈ f(A) we can choose x1 ∈ A with f(x1) = y. Since y ∈ f(B) we can choose
x2 ∈ B with f(x2) = y. Since f(x1) = y = f(x2) and f is injective, we must have x1 = x2, say x1 = x2 = x.
Since x = x1 ∈ A and x = x2 ∈ B we have x ∈ A ∩ B. Since x ∈ A ∩ B and y = f(x1) = f(x2) = f(x) we
have y ∈ f(A ∩B), hence f(A) ∩ f(B) ⊆ f(A ∩B). Thus f(A ∩B) = f(A) ∩ f(B) for all A,B ⊆ X.

Suppose that f is not injective. Choose x1, x2 ∈ X with x1 6= x2 such that f(x1) = f(x2), and
let y = f(x1) = f(x2). Let A = {x1} and B = {x2}. Then f(A) ∩ f(B) = {y} ∩ {y} = {y} but
A∩B = {x1}∩{x2} = ∅ so f(A∩B) = f(∅) = ∅. For these sets A,B, we do not have f(A∩B) = f(A)∩f(B).

(b) Show that |R| =
∣∣[0, 1)

∣∣ without using the Cantor-Schröder-Bernstein Theorem.

Solution: The map f : [0,∞) → [0, 1) given by f(x) = x
x+1 is bijective with inverse given by f−1(y) = y

1−y
because for all x ∈ [0,∞) and all y ∈ [0, 1) we have

y = x
x+1 ⇐⇒ xy + y = x ⇐⇒ x(1− y) = y ⇐⇒ x = y

1−y .

The map g : N × [0, 1) → [0,∞) given by g(n, t) = n + t is bijective with inverse g−1(x) =
(
bxc , x − bxc

)
because for all (n, t) ∈ N× [0, 1) and all x ∈ [0,∞) we have

x = n + t ⇐⇒
(
n = bxc and t = x− bxc

)
⇐⇒ (n, t) =

(
bxc , x− bxc

)
.

We claim that the map h : Z× [0, 1)→ N× [0, 1) given by

h(n, t) =

{
(2n, t) if n ≥ 0,

(−2n− 1, t) if n < 0

is bijective with inverse ` : N × [0, 1) → Z × [0, 1) given by `(2j, t) = (j, t) and `(2j + 1, t) = (−j − 1, t) for
j ∈ N. For n ∈ Z and t ∈ [0, 1), when n ≥ 0 we have `

(
h(n, t)

)
= `(2n, t) = (n, t) and when n is odd we

have `
(
h(t)

)
= `
(
− 2n − 1, t

)
= `
(
2(−n − 1) + 1 , t

)
=
(
− (−n − 1) , t

)
= (n, t). Thus `(h(n, t) = (n, t)

for all n ∈ Z and all t ∈ [0, 1), and so ` is a left inverse for h. For m ∈ N and t ∈ [0, 1), we can
write m = 2j or m = 2j + 1 with j ∈ N, and then we have h

(
`(2j, t)

)
= h(j, t) = (2j, t) and we have

h
(
`((2j + 1, t)

)
= h

(
− j − 1, t

)
=
(
− 2(−j − 1)− 1 , t

)
= (2j + 1, t). Thus h

(
`(m, t)

)
= (m, t) for all m ∈ N

and all t ∈ [0, 1) and so ` is a right inverse for h. Since ` is both a left inverse and a right inverse for h, it is
the (two-sided) inverse of h, as claimed. Finally, the map k : R→ Z× [0, 1) given by k(x) =

(
bxc , x−bxc

)
is

bijective with inverse given by k−1(n, t) = n + t by the same calculation which showed that g was bijective.
The composite map f ◦ g ◦ h ◦ k is a bijective map from R to [0, 1) so we have |R| =

∣∣[0, 1)
∣∣, as required.



5: (a) Show that the cardinality of the set of all finite subsets of N is equal to ℵ0.

Solution: Let A be the set of finite subsets of N. We define a bijective map F : N → A as follows. Given

n ∈ N we can write n (uniquely) in its binary representation as n = amam−1 · · · a1a0, so we have n =
m∑
i=0

ai2
i

where each ai ∈ {0, 1} with am = 1 (unless n = 0 in which case m = am = 0). We then define

F (n) = F
( m∑
k=0

ak2k
)

=
{
k ∈ N

∣∣ak = 1
}
.

(for example, when n = 19, in binary notation n = 10011 and so F (n) = {0, 1, 4}). The inverse map
G : A→ N is given by

G(S) =
∞∑
k=0

ak2k where ak =

{
1 if k ∈ S,

0 if k /∈ S.

In the above equation, S is a finite subset of N, and the sum
∞∑
k=0

ak2k finite because S is finite so that ak = 1

for only finitely many values of k ∈ N.

(b) Show that the cardinality of the set of all functions from N to N is equal to 2ℵ0 .

Solution: Recall that 2N denotes the set of functions from N to {0, 1}, and NN denotes the set of functions
from N to N. Note that 2N ⊆ NN (since every function from N to {0, 1} is also a function from N to N) and so
we have |2N| ≤ |NN|. Recall that each element n ∈ N can be written uniquely in the form n = 2k(2l + 1)− 1
with k, l ∈ N. Define F : NN → 2N by

F (f)
(
2k(2l + 1)− 1

)
=

{
1 if k = f(l),

0 if k 6= f(l).

(In the above equation, f : N→ N and F (f) : N→ {0, 1}). We claim that F is injective. Let f, g : N→ N.
Suppose that F (f) = F (g). Then F (f)(n) = F (g)(n) for all n ∈ N. Given k, l ∈ N, let n = 2k(2l − 1) − 1.
Then we have k = f(l) ⇐⇒ F (f)(n) = 1 ⇐⇒ F (g)(n) = 1 ⇐⇒ k = g(l). Thus f(l) = g(l) for all l ∈ N,
and so f = g. Thus F is injective, as claimed, and so we have |NN| ≤ |2N|. By the Cantor-Schroeder-Bernstein
Theorem, it follows that |NN| = |2N|.


