PMATH 333, Solutions to the Exercises for Appendix 2

: Recall that a formula in first-order set theory only uses symbols from the following symbol set:
ALY, =, e, (), =,€,3,V
along with variable symbols including z, y, z, u, v, w, - - -.

(a) Express the statement {0, {u}} € w as a formula in first-order set theory.
Solution: In the class of sets we have
v={0,{u}} <= Vo (rev & (z=0Vz={u}))
— Vaz(zev <+ (VyycaVVy(yer < y=u)))

and so

{0,{u}} ew <= Vv (v={0,{u}} = vew)
— Yo (Vx(mev — My—-yexVVy (yex < y:u))) — va).
Alternatively,
{0,{u}} ew = Fv(v={0,{u}} Avew)
< v (Va(zev + (Vy-yca VVy(yex < y=u))) Avew).

(b) Recall that (z,y) = {{:c}, {x,y}} Express the statement “w is a set of ordered pairs” as a formula in
first-order set theory.

Solution: In the class of all sets we have
w is a set of ordered pairs <= Vu(u€w — Iz Iy u=(z,y))

— Vu(uew — Iz Iy u={{z},{z,y}})

— Vu(uew — JzIyWw(veu < (v={z} Vo={z,y}))

= Vu(uEw — JrIyWVu(veu « (Vz(z€v < z2=z) VVz(2€v ¢ (z=2V z:y)))))
We remark that the statement “w is a set of ordered pairs” is equivalent to the statement “w is a relation”.
(c) Express the statement “for every u € w there exists € u such that u \ {z} € w” as a formula in first
order set theory. Also, determine whether there exists such a set w which is not empty.

Solution: The given statement can be expressed as “Vucw drcu Yy (y =u\{z} s ye€ w)” which, in turn,
can be expressed by the formula

Vu(uew — Jz(zeunVy(Vz(z€y « (z€uA-2=1)) = yEw)))

There do exist such sets w, for example we could take w to be the set of all infinite subsets of N, that is
w = {u € P(N)|3neN u C n} which is a set by a Separation Axiom (since P(N) is a set and the statement
“IneN u Cn” can be expressed as a formula in First Order Set Theory). As another example, we could
take w to be the set w = {{1,2,3, - 44{2,3,4,---},{3,4,5,- -}, - - } = {u € P(N)|3n6N Ve(zeu < nex}
which is a set by a Separation Axiom.



2: Recall that N = {0,1,2,---} is a set where 0 =0, 1 = {0}, 2= {0,1} and in general x + 1 = z U {z}.

(a) Show that if u is a set then the collection w = {z U {z} |z € u} is a set.

Solution: We provide two solutions by explaining how w can be constructed from u using the ZFC axioms in
two slightly different ways. In both solutions we use the fact that the statement “y = 2 U {x}” is considered
to be an allowable mathematical statement because it can be expressed as the first-order formula

F(z,y) =Vz(z€y < (€2 V 2=1)).
For the first solution, we note that when w is a set, the given collection w = {x U {:v}|:n € u} is equal to
w = {y‘ﬂxeu y=zU{z}} = {y‘ﬂxeu F(z,y)},
which is a set by a Replacement Axiom, because the statement F'(x,y) has the property that for every set

x there is a unique set y such that F'(x,y) is true (indeed, given a set x, to make F'(z,y) true we must take
y = x U{z}, which is a set by the Pair and Union Axioms).

For the second solution, note that when z, y and u are sets with « € u, if y € x then y € [Ju and if
y € {x} then y =z so y € u, and so if y € x U {z} then y € w U|Ju. Thus the given collection is

w={zU{z}|zeu} ={y|Ixcu F(z,y)} = {y € uUUu|3x(m€u/\F(x7y))}

which is a set by a Separation Axiom, since u U |Ju is a set by the Pair and/or Union Axioms.

(b) Show that the collection w = {{0,1},{1,2},{2,3},{3,4},--- } is a set.
Solution: Again we provide two solutions. Note that when x and y are sets we have
y={z,2U{z}} < Vz(zey & (z=zVz=zU{z}))
> Vz(zey < (z=2VVu(uez < (uex Vu=1))))
so the statement “y = {x, T U {x}}” can be expressed as the formula
F(z,y) =Vz(z€y < (=2 VVu(uez ¢ (ucz Vu=x)))).
For the first solution we note that
w= {{0,1},{1,2}, {2,3},--- } = {{1:,13 + 1}|z € N} = {{x,z U {x}}|x € N}
= {y ‘ JdreN F(m,y)}

which is a set by a Replacement Axiom, since N is known to be a set by the Axiom of Infinity, and since the
statement F'(z,y) has the property that for every set x there exists a unique set y such that the statement
is true (indeed given z, to make the statement true we must choose y = {x, xu{x}}, which is a set by the
Pair and Union Axioms).

For the second solution, note that when =z € N we have {z,z + 1} € P(N) and so
w={{z,z+1}{zreN} ={y| Iz e Ny={z,2+1}} = {y € P(N) | Jz(zeNA F(z,y)) }

which is a set by a Separation Axiom, since P(N) is a set by the Axiom of Infinity and the Power Set Axiom,
and since the statement “c €N A F(z,y)” is an allowable mathematical statement.

To be careful, we should verify that the statements “u=N” and “x € N” can be expressed as formulas

(in first-order set theory) so that they are allowable mathematical statements. It is not clear, from reading
Chapter 1 in the Lecture Notes, exactly how this should be done. After reading the definition of the set N
given in Appendix 1, you will be able to work out that the statement “u = N” can be expressed as

DeunVa(zeu — zU{z} € u) AVw((Dew AVz(zew — zU{z} € w)) = uCw))

which can, in turn, be expressed as a formula. The statement “z€N” can be expressed as Vu(u=N — z€u).



(c) Show that the collection w = {0, {0}, {{0}}, {{{0}}},--- } is a set.

Solution: We shall only provide an incomplete solution. Define sets s, for n € N, recursively by so = () and
Snt1 = {sn}. If we can express the statement “u = s,,” as a formula F'(n,u) (with free variables n and u)
then we have

w={sy|n €N} ={u|IneNu=s,} ={u|IneN F(u,n)}

which is a set by a Replacement Axiom. For n € N, let

Wn = {(07(2))’ (17 {@})7 ) (n,sn)}

M

In order to show that the statement “u = s,” is expressible as a formula, we shall first show that the
(apparently more complicated) statement "v = w,,” is expressible as a formula. We recall that the statements
“u=N” and “x€N” are each expressible as formulas. When n € N and v is a set we have

v=w, <= VzevJxe{0,1,---,n} Iy z=(z,y)
and Vxe{0,1,---,n} Jy (z,y)€v
and Va Vy Vz (((z,y)€vA (z,2)€v) = y=2))
and (0,0) €wv
and Vze{0,1,---,n—1} Vy ((z,y)€v — (z+1,{y})€v)
We leave it as a (long but not particularly difficult) exercise to verify that the rather long statement on the
right can be expressed as a formula, say H(n,v), with free variables n and v. When n € N and u is a set we

have
u=s, < (nu) €cw, < Yw(v=w, = (n,u) €v) < Yv(H(n,v) = (n,u) €v)

which can be expressed as a formula, say G(n,u). Finally, to be careful, the statement F(n,u) which
is used in the Replacement Axiom, must have the property that for every set m (not necessarily with
n € Z) there is a unique set u for which F(n,u) is true, and so we take F(n,u) to be the statement
(neN — G(n,u)) A (—neN — u = 0).

For our solution to be complete, we would need to prove that our statement F'(u,n) has the property
that for every set n there is a unique set u such that F'(n,w) is true. To do this, we would first prove that
for every n € N there is a unique set v such that H(n,v) is true. This can be proven using Induction.



3: In some books on set theory, the list of ZFC axioms includes an additional axiom called the Axiom of
Regularity, which states that every nonempty set u contains an element v such that u Nv = (. Assuming
the Axiom of Regularity (along with the other ZFC axioms), prove each of the following statements.

(a) There does not exist a set w such that u € u.

Solution: Suppose, for a contradiction, that w is a set with v € w. Since u € {u} and u € u we have
u € {u}Nwand so {u} Nu # 0. Let w = {u}. By the Axiom of Regularity (applied to the set w) we
can choose an element v € w such that wNv = @. Since v € w = {u} we must have v = u, so we have
{u}Nu =wnv = 0. We have shown that {u} Nu = 0 and that {u} Nu # 0, so we have obtained the desired
contradiction, hence there is no set u with u € wu.

(b) There do not exist sets u and v such that v € v and v € u.

Solution: Suppose, for a contradiction, that v and v are sets with u € v and v € u. Let w = {u,v}. By the
Axiom of Regularity (applied to the set w), either wNwu =0 or wNv = (). But since v € v and v € w we
have u € wNv so wNv # () and, similarly, since v € v and v € w we have v € w Nu so that w Nu # 0. We
have shown that either wNwu = () or wNv = (), and we have also shown that wNu # () and wNv # 0, so
we have obtained the desired contradiction.

(c) For all sets v and v, if wU {u} = v U {v} then u =v.

Solution: Let u and v be sets. Suppose that v U {u} = vU {v}. Suppose, for a contradiction, that u # v.
Since v € wU {u} and v U {u} = v U {v} we have u € v U {v}. Since u € v U {v} it follows that either v € v
or u = v. Since u # v it follows that v € v. A similar argument shows that v € u. But then we have u € v
and v € u, which contradicts the result of Part (b).

(d) For all sets u, v,  and y, if {u, {u,v}} = {z,{z,y}} then u =z and v = y.

Solution: Let u,v, 2,y be sets. Suppose that {u,{u,v}} = {z,{z,y}}. Note that u # {u,v} because if we
had u = {u,v} then we would have v € {u,v} = u which contradicts Part (a). Similarly z # {z,y} so the
sets {u, {m,y}} and {u, {u,v}} are 2-element sets. Since {u, {u,v}} = {:E, {amy}}, with the sets on each
side having 2 distinct elements, either (v = z and {u,v} = {z,y}) or (u = {z,y} and {u,v} = z).

Case 1: suppose that u = 2 and {u,v} = {z,y}. We need to show that v = y. Since v € {u,v} and
{u,v} = {x,y} we have v € {z,y} hence either v = x or v = y. If v = y we are done, so suppose that v = z.
Then we have v = x = v hence {u,v} = {v}. Since y € {z,y} = {u,v} = {v} we have y = v, as required.

Case 2: suppose that v = {z,y} and {u,v} = 2. Since u € {u,v} and {u,v} = x we have v € x. Since
x € {x,y} and {z,y} = v we have € u. But then we have u € x and = € u which contradicts Part (b), and
so Case 2 does not arise.



4: In this problem, and in the following problem, you may use any known properties of N, Z, Q and R.

(a) Let X and Y be nonempty sets and let f : X — Y. Prove that f is injective if and only if we have
f(AN B) = f(A)N f(B) for all subsets A,B C X.

Solution: Suppose that f is injective. Let A, B C X. Let y € f(AN B). Choose x € AN B with f(z) = y.
Since x € A and y = f(z) we have y € f(A). Since x € B and y = f(z) we have y € f(B). Thus
y € f(A)N f(B), showing that that f(AN B) C f(A)N f(B) (we did not use the fact that f was injective).
Now let y € f(A)Nf(B). Sincey € f(A) we can choose 1 € A with f(z1) = y. Since y € f(B) we can choose
29 € B with f(z2) =y. Since f(z1) =y = f(x2) and f is injective, we must have z1 = zo, say 1 = 22 = x.
Since x = x1 € A and x = x5 € B we have t € AN B. Since x € AN B and y = f(x1) = f(z2) = f(z) we
have y € f(AN B), hence f(A)N f(B) C f(ANB). Thus f(ANB) = f(A)N f(B) for all A,B C X.
Suppose that f is not injective. Choose 1,25 € X with 1 # x5 such that f(z1) = f(z2), and
let y = f(r1) = f(z2). Let A = {a1} and B = {z3}. Then f(4) N f(B) = {y} N {y} = {y} bus
ANB = {z1}N{z2} = 0so f(ANB) = f() = 0. For these sets A, B, we do not have f(ANB) = f(A)Nf(B).

(b) Show that |R| = |[0,1)| without using the Cantor-Schroder-Bernstein Theorem.

X

Solution: The map f : [0,00) — [0,1) given by f(z) = ;%7 is bijective with inverse given by ) = ﬁ
because for all z € [0,00) and all y € [0,1) we have

y=:;7 = wty=v <= z(l-y =y = z=1%.

The map g : N x [0,1) — [0,00) given by g(n,t) = n +t is bijective with inverse g~!(z) = (|z], z — |z])
because for all (n,t) € N x [0,1) and all = € [0, 00) we have

r=n+t < (n=|z]andt=2z— |z|) < (n,t)=(lz],z— [z]).
We claim that the map h: Z x [0,1) — N x [0,1) given by

(2n,t) ifn>0,
h(n,t) = :
(=2n—-1,t)ifn <0

is bijective with inverse £ : N x [0,1) — Z x [0,1) given by ¢(25,t) = (j,t) and ¢(25 + 1,t) = (—j — 1,¢) for
jEN. Forn € Zandte€[0,1), when n > 0 we have ¢(h(n,t)) = {(2n,t) = (n,t) and when n is odd we
have ((h(t)) = £(—2n —1,t) =L(2(-n—1)+1,¢) = (= (—n—1),t) = (n,t). Thus £(h(n,t) = (n,t)
for all n € Z and all ¢ € [0,1), and so £ is a left inverse for h. For m € N and ¢t € [0,1), we can
write m = 2j or m = 2j + 1 with j € N, and then we have h({(2j,t)) = h(j,t) = (2j,t) and we have
R(U((25+1,t) =h(—j—1,t) = (—2(—j—1)—1,t) = (2j + 1,¢). Thus h((m,t)) = (m,t) for all m € N
and all ¢ € [0,1) and so ¢ is a right inverse for h. Since ¢ is both a left inverse and a right inverse for h, it is
the (two-sided) inverse of h, as claimed. Finally, the map k : R — Z x [0, 1) given by k(z) = (|z], z— |z]) is
bijective with inverse given by k~1(n,t) = n +t by the same calculation which showed that g was bijective.
The composite map f o gohok is a bijective map from R to [0,1) so we have |R| = |[0, 1)|, as required.



5: (a) Show that the cardinality of the set of all finite subsets of N is equal to Rg.
Solution: Let A be the set of finite subsets of N. We define a bijective map F : N — A as follows. Given
n € N we can write n (uniquely) in its binary representation as n = @, @, —1 - - - a1ag, so we have n = i a;2°
where each a; € {0,1} with a,, =1 (unless n = 0 in which case m = a,, = 0). We then define i

F(n) = F(Igjoaﬂk) — {k € Njay = 1}.

(for example, when n = 19, in binary notation n = 10011 and so F(n) = {0,1,4}). The inverse map
G : A — N is given by

G(S) = i ap2" where ay, =
k=0

lifkels,
0ifk ¢ S.

(oo}

In the above equation, S is a finite subset of N, and the sum " a;2" finite because S is finite so that a; = 1
k=0

for only finitely many values of k € N.

(b) Show that the cardinality of the set of all functions from N to N is equal to 2%0.

Solution: Recall that 2 denotes the set of functions from N to {0,1}, and N denotes the set of functions
from N to N. Note that 2% C NN (since every function from N to {0, 1} is also a function from N to N) and so
we have |21Y| < |NN|. Recall that each element n € N can be written uniquely in the form n = 2¥(2/ +1) — 1
with k,1 € N. Define F : NN — 2N by

1if k= f(1),
0if k # f(1).
(In the above equation, f : N — N and F(f): N — {0,1}). We claim that F is injective. Let f,g: N — N.
Suppose that F(f) = F(g). Then F(f)(n) = F(g)(n) for all n € N. Given k,l € N, let n = 2F(2] — 1) — 1.
Then we have k = f(I) <= F(f)(n)=1 <= F(g9)(n) =1 < k=g(l). Thus f(I) = g(l) for all I € N,

and so f = g. Thus F is injective, as claimed, and so we have |NN| < |2V|. By the Cantor-Schroeder-Bernstein
Theorem, it follows that |NN| = [2N].

F(f)(2F@2+1)—1) = {



