- **1:** Let R be a ring and let F be a field.
 - (a) Using only the rules R1-R9 which define a field, prove that for all $a \in F$ if $a \cdot a = a$ then (a = 0 or a = 1).
 - (b) Using only the rules R1-R9, prove that for all $a \in F$ if $a \cdot a = 1$ then (a = 1 or a + 1 = 0).
 - (c) Using only the rules R1-R7 which define a ring, together with the rule R0 which states that for all $a \in R$ we have $(a \cdot 0 = 0 \text{ and } 0 \cdot a = 0)$, prove that for all $a, b, c, d \in R$, if a + c = 0 and b + d = 0 then ab = cd.
- **2:** Let S be an ordered set and let F be an ordered field.
 - (a) Using only the rules O1-O3, and the rule O0 which defines the strict order < by stating that for all $a, b \in S$ we have $a < b \iff (a \le b \text{ and } a \ne b)$, prove that for all $a, b, c \in S$, if $a \le b$ and b < c then a < c.
 - (b) Using only the rules R1-R9 and O1-O5, prove that for all $a, b \in F$ if $0 \le a$ and $a \le b$ then $a \cdot a \le b \cdot b$.
 - (c) Using only rules R1-R9 and O1-O5, together with the rule R0 from Exercise 1(c), prove that $0 \le 1$.
- **3:** In this problem, you may use any of the algebraic properties and order properties of N, Z, Q and R described in Chapter 1 of the Lecture Notes.
 - (a) Let $A = \{(-1)^n + \frac{1}{n} \mid n \in \mathbb{Z}^+\}$. Find (with proof) sup A and inf A.

(b) Prove that for every $0 \le y \in \mathbb{R}$ there exists a unique $0 \le x \in \mathbb{R}$ such that $x^2 = y$ (this number x is called the square root of y and is denoted by $x = \sqrt{y} = y^{1/2}$). In other words, prove that the function $f:[0,\infty) \to [0,\infty)$ given by $f(x) = x^2$ is bijective.