1: Let R be a ring and let F be a field.

(a) Using only the rules R1-R9 which define a field, prove that for all $a \in F$ if $a \cdot a = a$ then $(a = 0 \text{ or } a = 1)$. Solution: Let $a \in F$. Suppose that $a \cdot a = a$. Suppose that $a \neq 0$. Using R9, since $a \neq 0$ we can choose $b \in F$ so that $a \cdot b = b \cdot a = 1$. Then we have

$$
a = 1 \cdot a, \text{ by R6}
$$

= $(b \cdot a) \cdot a, \text{ since } b \cdot a = 1$
= $b \cdot (a \cdot a), \text{ by R5}$
= $b \cdot a, \text{ since } a \cdot a = a$
= 1, since $b \cdot a = 1$.

This proves that if $a \neq 0$ then $a = 1$ or, equivalently, that either $a = 0$ or $a = 1$.

(b) Using only the rules R1-R9, prove that for all $a \in F$ if $a \cdot a = 1$ then $(a = 1 \text{ or } a + 1 = 0)$.

Solution: Let $a \in F$. Suppose that $a \cdot a = 1$. Suppose that $a + 1 \neq 0$. Using R9, choose $b \in F$ so that $(a + 1) \cdot b = b \cdot (a + 1) = 1$. Then

$$
a = a \cdot 1, \text{ by R6}
$$

= $a \cdot ((a + 1) \cdot b), \text{ since } (a + 1) \cdot b = 1$
= $(a \cdot (a + 1)) \cdot b, \text{ by R5}$
= $(a \cdot a + a \cdot 1) \cdot b, \text{ by R7}$
= $(1 + a \cdot 1) \cdot b, \text{ since } a \cdot a = a$
= $(1 + a) \cdot b, \text{ by R6}$
= $(a + 1) \cdot b, \text{ by R2}$
= 1, since $(a + 1) \cdot b = 1$.

This proves that if $a + 1 \neq 0$ then $a = 1$ or, equivalently, that either $a = 1$ or $a + 1 = 0$.

(c) Using only the rules R1-R7 which define a ring, together with the rule R0 which states that for all $a \in R$ we have $(a \cdot 0 = 0$ and $0 \cdot a = 0)$, prove that for all $a, b, c, d \in R$, if $a + c = 0$ and $b + d = 0$ then $ab = cd$.

Solution: Let $a, b, c, d \in R$. Suppose that $a + c = 0$ and $b + d = 0$. Then

$$
ab = ab + 0, \text{ by R3} \n= ab + c0, \text{ by R0} \n= ab + c(b + d), \text{ since } b + d = 0 \n= ab + (cb + cd), \text{ by R7} \n= (ab + cb) + cd, \text{ by R1} \n= (a + c)b + cd, \text{ by R7} \n= 0b + cd, \text{ since } a + c = 0 \n= 0 + cd, \text{ by R0} \n= cd + 0, \text{ by R2} \n= cd, \text{ by R3}.
$$

2: Let S be an ordered set and let F be an ordered field.

(a) Using only the rules O1-O3, and the rule O0 which defines the strict order \lt by stating that for all $a, b \in S$ we have $a < b \iff (a \le b \text{ and } a \ne b)$, prove that for all $a, b, c \in S$, if $a \le b$ and $b < c$ then $a < c$.

Solution: Let $a, b, c \in S$. Suppose that $a \leq b$ and $b < c$. Since $b < c$ we have $b \leq c$ and $b \neq c$ by O0. Since $a \leq b$ and $b \leq c$ we have $a \leq c$ by O3. Suppose, for a contradiction, that $a = c$. Since $a \leq b$ and $a = c$ we have $c \leq b$ (by substitution). Since $b \leq c$ and $c \leq b$ we have $b = c$ by O2. But $b \neq c$, so we have obtained the desired contradiction, and so $a \neq c$. Since $a \leq c$ and $a \neq c$ we have $a < c$ by O0.

(b) Using only the rules R1-R9 and O1-O5, prove that for all $a, b \in F$ if $0 \le a$ and $a \le b$ then $a \cdot a \le b \cdot b$.

Solution: Let $a, b \in F$. Suppose that $0 \le a$ and $a \le b$. Since $0 \le a$ and $a \le b$ we have $0 \le b$ by O3. Using R4, choose $c \in F$ so that $a + c = 0$. Since $a \leq b$ we have $a + c \leq b + c$ by O4, and hence $0 \leq b + c$ since $a + c = 0$. Since $0 \le a$ and $0 \le b + c$ we have $0 \le a(b + c)$ by O5. Also, since $0 \le b + c$ and $0 \le b$ we have $0 \leq (b+c)b$. Thus

Since $aa \leq ab$ and $ab \leq bb$ we have $aa \leq bb$ by O3.

(c) Using only rules R1-R9 and O1-O5, together with the rule R0 from Exercise 1(c), prove that $0 \leq 1$. Solution: Choose $u \in R$ so that $1 + u = 0$ (we can do this by R4). Then

$$
u \cdot u = u \cdot u + 0, \text{ by R3},
$$

= $u \cdot u + 0 \cdot 1$, by R6,
= $u \cdot u + (1 + u) \cdot 1$, since $1 + u = 0$,
= $u \cdot u + (1 \cdot 1 + u \cdot 1)$, by R7.
= $(1 \cdot 1 + u \cdot 1) + u \cdot u$, by R2.
= $1 \cdot 1 + (u \cdot 1 + u \cdot u)$, by R7,
= $1 \cdot 1 + u \cdot (1 + u)$, by R7,
= $1 \cdot 1 + u \cdot 0$, since $1 + u = 0$,
= $1 \cdot 1 + 0$, by R0,
= $1 \cdot 1$, by R3,
= 1, by R6.

By O1 we know that either $0 \leq 1$ or $1 \leq 0$. Suppose, for a contradiction, that $1 \leq 0$. Then

$$
1 + u \leq 0 + u
$$
, by O4,
\n
$$
0 \leq 0 + u
$$
, since $1 + u = 0$,
\n
$$
0 \leq u + 0
$$
, by R2,
\n
$$
0 \leq u
$$
, by R3,
\n
$$
0 \leq u \cdot u
$$
, by O5,
\n
$$
0 \leq 1
$$
, since $u \cdot u = 1$, as shown above.

Since $0 \leq 1$ and $1 \leq 0$ we have $0 = 1$ by O2. This gives the desired contradiction because $0 \neq 1$, from the definition of a ring.

- **3:** In this problem, you may use any of the algebraic properties and order properties of $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R} described in Chapter 1 of the Lecture Notes.
	- (a) Let $A = \{(-1)^n + \frac{1}{n} \mid n \in \mathbb{Z}^+\}$. Find (with proof) sup A and inf A. n

Solution: We claim that $\sup A = \frac{3}{2}$. Let $x \in A$, say $x = (-1)^n + \frac{1}{n}$ where $1 \le n \in \mathbb{Z}$. If n is even then $(-1)^n = 1$ and $n \ge 2$ so that $\frac{1}{n} \le \frac{1}{2}$, and so we have $x = (-1)^n + \frac{1}{n} = 1 + \frac{1}{n} \le 1 + \frac{1}{2} = \frac{3}{2}$. If n is odd then $(-1)^n = -1$ and $n \ge 1$ so that $\frac{1}{n} \le 1$, and so we have $x = (-1)^n + \frac{1}{n} = -1 + \frac{1}{n} \le -1 + 1 = 0 \le \frac{3}{2}$. In either case, we have $x \leq \frac{3}{2}$. Thus $x \leq \frac{3}{2}$ for all $x \in A$, and so $\frac{3}{2}$ is an upper bound for A in R. If $c \in \mathbb{R}$ is any upper bound for A then $c \le x$ for all $x \in A$, and in particular $c \le (-1)^2 + \frac{1}{2} = \frac{3}{2}$. Thus $\frac{3}{2} = \sup A$.
We claim that inf $A = -1$, Let $x \in A$, say $x = (-1)^n + \frac{1}{2}$ with $1 \le n \in \mathbb{Z}$. Since $(-1)^n \ge -1$ and $\frac{1$

We claim that inf $A = -1$. Let $x \in A$, say $x = (-1)^n + \frac{1}{n}$ with $1 \le n \in \mathbb{Z}$. Since $(-1)^n \ge -1$ and $\frac{1}{n} > 0$ we have $x = (-1)^n + \frac{1}{n} > -1 + 0 = -1$. Since $x > -1$ for all $x \in A$ we see that -1 is a lower bound for A in R. Let $c \in \mathbb{R}$ be any lower bound for A. Suppose, for a contradiction, that $c > -1$. Then $c + 1 > 0$ hence $\frac{1}{c+1} > 0$. Choose an odd integer $n \in \mathbb{Z}$ with $n > \frac{1}{c+1} > 0$ (we are using the Archimedean Proper note that $\frac{1}{n} < c + 1$. Let $x = (-1)^n + \frac{1}{n}$. Then $x \in A$ with $x = (-1)^n + \frac{1}{n} = -1 + \frac{1}{n} < -1 + (c + 1) = c$, which contradicts the fact that c is a lower bound for A. Thus we must have $c \le -1$. Since -1 is a lower bound for A and since every lower bound c for A satisfies $c \le -1$, it follows that $-1 = \inf A$, as claimed.

(b) Prove that for every $0 \leq y \in \mathbb{R}$ there exists a unique $0 \leq x \in \mathbb{R}$ such that $x^2 = y$ (this number x is called the square root of y and is denoted by $x = \sqrt{y} = y^{1/2}$. In other words, prove that the function $f:[0,\infty)\to[0,\infty)$ given by $f(x)=x^2$ is bijective.

Solution: First we prove uniqueness. Suppose that $x_1 \geq 0$ and $x_2 \geq 0$ and $x_1^2 = x_2^2 = y$. Since $x_1^2 = x_2^2$ we have $(x_1 - x_2)(x_1 + x_2) = x_1^2 - x_2^2 = 0$ and hence either $x_1 - x_2 = 0$ or $x_1 + x_2 = 0$ (since a field has no zero divisors). In the case that $x_1 + x_2 = 0$, since $x_1 \ge 0$ and $x_2 \ge 0$ we must have $x_1 = x_2 = 0$ (indeed if we had $x_2 > 0$ then we would have $x_1 = -x_2 < 0$, so we must have $x_2 = 0$, and hence $x_1 = -x_2 = -0 = 0$. In the case that $x_1 - x_2 = 0$ we have $x_1 = x_2$. In either case, we have $x_1 = x_2$. This proves uniqueness.

Next we prove existence. Let $0 \le y \in \mathbb{R}$. Let $A = \{0 \le t \in \mathbb{R} | t^2 \le y\}$. Note that $A \ne \emptyset$ since $0 \in A$. We claim that A is bounded above. If $0 \le y \le 1$ then A is bounded above by 1 because $t > 1 \implies t^2 > 1 \implies$ $t^2 > y \implies t \notin A$. If $y \ge 1$ then A is bounded above by y because $t > y \ge 1 \implies t^2 > y^2 > y \implies t \notin A$. In either case, A is bounded above. Since $A \neq \emptyset$ and A is bounded above, we know that A has a supremum in R by the Completeness Property of R. Let $x = \sup A$. We claim that $x^2 = y$. Suppose, for a contradiction, that $x^2 < y$. Note that for $0 < \epsilon \le 1$ we have $(x+\epsilon)^2 = x^2 + 2x\epsilon + \epsilon^2 \le x^2 + 2x\epsilon + \epsilon = x^2 + (2x+1)\epsilon$ and we have $x^2 + (2x+1)\epsilon \leq y \iff \epsilon \leq \frac{y-x^2}{2x+1}$. Choose $\epsilon = \min\left\{1, \frac{y-x^2}{2x+1}\right\}$. Then $(x+\epsilon)^2 \leq x^2 + (2x+1)\epsilon \leq y$ so that $x + \epsilon \in A$, which contradicts the fact that $x = \sup A$. Thus we must have $x^2 \geq y$. Now suppose, for a contradiction, that $x^2 > y$. Note that for $0 < \epsilon \leq x$ we have $(x - \epsilon)^2 = x^2 - 2x\epsilon + \epsilon^2 > x^2 - 2x\epsilon$ and we have $x^2 - 2x\epsilon \geq y \iff \epsilon \leq \frac{x^2 - y}{2x}$. Choose $\epsilon = \min\left\{x, \frac{x^2 - y}{2x}\right\}$. Then $(x - \epsilon)^2 > x^2 - 2x\epsilon \geq y$. Since $x = \sup A$, by the Approximation Property we should be able to choose $t \in A$ with $(x - \epsilon) < t \leq x$, but when $t > x - \epsilon$ we have $t^2 > (x - \epsilon)^2 > y$ so that $t \notin A$, and so we have the desired contradiction. Thus we must have $x^2 \leq y$. Since $x^2 \ge y$ and $x^2 \le y$ we must have $x = y$.