
PMATH 333, Solutions to the Exercises for Chapter 1

1: Let R be a ring and let F be a field.

(a) Using only the rules R1-R9 which define a field, prove that for all a ∈ F if a ·a = a then (a = 0 or a = 1).

Solution: Let a ∈ F . Suppose that a · a = a. Suppose that a 6= 0. Using R9, since a 6= 0 we can choose
b ∈ F so that a · b = b · a = 1. Then we have

a = 1 · a , by R6

= (b · a) · a , since b · a = 1

= b · (a · a) , by R5

= b · a , since a · a = a

= 1 , since b · a = 1.

This proves that if a 6= 0 then a = 1 or, equivalently, that either a = 0 or a = 1.

(b) Using only the rules R1-R9, prove that for all a ∈ F if a · a = 1 then (a = 1 or a+ 1 = 0).

Solution: Let a ∈ F . Suppose that a · a = 1. Suppose that a + 1 6= 0. Using R9, choose b ∈ F so that
(a+ 1) · b = b · (a+ 1) = 1. Then

a = a · 1 , by R6

= a · ((a+ 1) · b) , since (a+ 1) · b = 1

= (a · (a+ 1)) · b , by R5

= (a · a+ a · 1) · b , by R7

= (1 + a · 1) · b , since a · a = a

= (1 + a) · b , by R6

= (a+ 1) · b , by R2

= 1 , since (a+ 1) · b = 1.

This proves that if a+ 1 6= 0 then a = 1 or, equivalently, that either a = 1 or a+ 1 = 0.

(c) Using only the rules R1-R7 which define a ring, together with the rule R0 which states that for all a ∈ R
we have (a · 0 = 0 and 0 · a = 0), prove that for all a, b, c, d ∈ R, if a+ c = 0 and b+ d = 0 then ab = cd.

Solution: Let a, b, c, d ∈ R. Suppose that a+ c = 0 and b+ d = 0. Then

ab = ab+ 0 , by R3

= ab+ c0 , by R0

= ab+ c(b+ d) , since b+ d = 0

= ab+ (cb+ cd) , by R7

= (ab+ cb) + cd , by R1

= (a+ c)b+ cd , by R7

= 0b+ cd , since a+ c = 0

= 0 + cd , by R0

= cd+ 0 , by R2

= cd , by R3.



2: Let S be an ordered set and let F be an ordered field.

(a) Using only the rules O1-O3, and the rule O0 which defines the strict order < by stating that for all
a, b ∈ S we have a < b ⇐⇒ (a ≤ b and a 6= b), prove that for all a, b, c ∈ S, if a ≤ b and b < c then a < c.

Solution: Let a, b, c ∈ S. Suppose that a ≤ b and b < c. Since b < c we have b ≤ c and b 6= c by O0. Since
a ≤ b and b ≤ c we have a ≤ c by O3. Suppose, for a contradiction, that a = c. Since a ≤ b and a = c we
have c ≤ b (by substitution). Since b ≤ c and c ≤ b we have b = c by O2. But b 6= c, so we have obtained
the desired contradiction, and so a 6= c. Since a ≤ c and a 6= c we have a < c by O0.

(b) Using only the rules R1-R9 and O1-O5, prove that for all a, b ∈ F if 0 ≤ a and a ≤ b then a · a ≤ b · b.
Solution: Let a, b ∈ F . Suppose that 0 ≤ a and a ≤ b. Since 0 ≤ a and a ≤ b we have 0 ≤ b by O3. Using
R4, choose c ∈ F so that a + c = 0. Since a ≤ b we have a + c ≤ b + c by O4, and hence 0 ≤ b + c since
a + c = 0. Since 0 ≤ a and 0 ≤ b + c we have 0 ≤ a(b + c) by O5. Also, since 0 ≤ b + c and 0 ≤ b we have
0 ≤ (b+ c)b. Thus

0 ≤ a(b+ c)

0 + aa ≤ a(b+ c) + aa , by O4

aa+ 0 ≤ a(b+ c) + aa , by R2

aa ≤ a(b+ c) + aa , by R3

aa ≤ (ab+ ac) + aa , by R7

aa ≤ ab+ (ac+ aa) , by R1

aa ≤ ab+ a(c+ a) , by R7

aa ≤ ab+ a(a+ c) , by R2

aa ≤ ab+ a0 , since a+ c = 0

aa ≤ a(b+ 0) , by R7

aa ≤ ab , by R3

and
0 ≤ (b+ c)b

0 + ab ≤ (b+ c)b+ ab , by O4

ab+ 0 ≤ (b+ c)b+ ab , by R2

ab ≤ (b+ c)b+ ab , by R3

ab ≤ (bb+ cb) + ab , by R7

ab ≤ bb+ (cb+ ab) , by R1

ab ≤ bb+ (c+ a)b , by R7

ab ≤ bb+ (a+ c)b , by R2

ab ≤ bb+ 0b , since a+ c = 0

ab ≤ (b+ 0)b , by R7

ab ≤ bb , by R3

Since aa ≤ ab and ab ≤ bb we have aa ≤ bb by O3.

(c) Using only rules R1-R9 and O1-O5, together with the rule R0 from Exercise 1(c), prove that 0 ≤ 1.

Solution: Choose u ∈ R so that 1 + u = 0 (we can do this by R4). Then

u · u = u · u+ 0 , by R3,

= u · u+ 0 · 1 , by R6,

= u · u+ (1 + u) · 1 , since 1 + u = 0,

= u · u+ (1 · 1 + u · 1) , by R7.

= (1 · 1 + u · 1) + u · u , by R2.

= 1 · 1 + (u · 1 + u · u) , by R1,

= 1 · 1 + u · (1 + u) , by R7,

= 1 · 1 + u · 0 , since 1 + u = 0,

= 1 · 1 + 0 , by R0,

= 1 · 1 , by R3,

= 1 , by R6.

By O1 we know that either 0 ≤ 1 or 1 ≤ 0. Suppose, for a contradiction, that 1 ≤ 0. Then

1 + u ≤ 0 + u , by O4,

0 ≤ 0 + u , since 1 + u = 0,

0 ≤ u+ 0 , by R2,

0 ≤ u , by R3,

0 ≤ u · u , by O5,

0 ≤ 1 , since u · u = 1, as shown above.

Since 0 ≤ 1 and 1 ≤ 0 we have 0 = 1 by O2. This gives the desired contradiction because 0 6= 1, from the
definition of a ring.



3: In this problem, you may use any of the algebraic properties and order properties of N, Z, Q and R described
in Chapter 1 of the Lecture Notes.

(a) Let A =
{

(−1)n + 1
n

∣∣n ∈ Z+
}

. Find (with proof) supA and inf A.

Solution: We claim that supA = 3
2 . Let x ∈ A, say x = (−1)n + 1

n where 1 ≤ n ∈ Z. If n is even then
(−1)n = 1 and n ≥ 2 so that 1

n ≤
1
2 , and so we have x = (−1)n + 1

n = 1 + 1
n ≤ 1 + 1

2 = 3
2 . If n is odd then

(−1)n = −1 and n ≥ 1 so that 1
n ≤ 1, and so we have x = (−1)n + 1

n = −1 + 1
n ≤ −1 + 1 = 0 ≤ 3

2 . In
either case, we have x ≤ 3

2 . Thus x ≤ 3
2 for all x ∈ A, and so 3

2 is an upper bound for A in R. If c ∈ R is
any upper bound for A then c ≤ x for all x ∈ A, and in particular c ≤ (−1)2 + 1

2 = 3
2 . Thus 3

2 = supA.
We claim that inf A = −1. Let x ∈ A, say x = (−1)n + 1

n with 1 ≤ n ∈ Z. Since (−1)n ≥ −1 and 1
n > 0

we have x = (−1)n + 1
n > −1 + 0 = −1. Since x > −1 for all x ∈ A we see that −1 is a lower bound for A

in R. Let c ∈ R be any lower bound for A. Suppose, for a contradiction, that c > −1. Then c+ 1 > 0 hence
1

c+1 > 0. Choose an odd integer n ∈ Z with n > 1
c+1 > 0 (we are using the Archimedean Property here) and

note that 1
n < c + 1. Let x = (−1)n + 1

n . Then x ∈ A with x = (−1)n + 1
n = −1 + 1

n < −1 + (c + 1) = c,
which contradicts the fact that c is a lower bound for A. Thus we must have c ≤ −1. Since −1 is a lower
bound for A and since every lower bound c for A satisfies c ≤ −1, it follows that −1 = inf A, as claimed.

(b) Prove that for every 0 ≤ y ∈ R there exists a unique 0 ≤ x ∈ R such that x2 = y (this number x is
called the square root of y and is denoted by x =

√
y = y1/2). In other words, prove that the function

f : [0,∞)→ [0,∞) given by f(x) = x2 is bijective.

Solution: First we prove uniqueness. Suppose that x1 ≥ 0 and x2 ≥ 0 and x1
2 = x2

2 = y. Since x1
2 = x2

2

we have (x1−x2)(x1 +x2) = x1
2−x22 = 0 and hence either x1−x2 = 0 or x1 +x2 = 0 (since a field has no

zero divisors). In the case that x1 + x2 = 0, since x1 ≥ 0 and x2 ≥ 0 we must have x1 = x2 = 0 (indeed if
we had x2 > 0 then we would have x1 = −x2 < 0, so we must have x2 = 0, and hence x1 = −x2 = −0 = 0).
In the case that x1 − x2 = 0 we have x1 = x2. In either case, we have x1 = x2. This proves uniqueness.

Next we prove existence. Let 0 ≤ y ∈ R. Let A =
{

0 ≤ t ∈ R
∣∣t2 ≤ y}. Note that A 6= ∅ since 0 ∈ A. We

claim that A is bounded above. If 0 ≤ y ≤ 1 then A is bounded above by 1 because t > 1 =⇒ t2 > 1 =⇒
t2 > y =⇒ t /∈ A. If y ≥ 1 then A is bounded above by y because t > y ≥ 1 =⇒ t2 > y2 > y =⇒ t /∈ A. In
either case, A is bounded above. Since A 6= ∅ and A is bounded above, we know that A has a supremum in
R by the Completeness Property of R. Let x = supA. We claim that x2 = y. Suppose, for a contradiction,
that x2 < y. Note that for 0 < ε ≤ 1 we have (x+ ε)2 = x2 + 2xε+ ε2 ≤ x2 + 2xε+ ε = x2 + (2x+ 1)ε and we

have x2 + (2x+ 1)ε ≤ y ⇐⇒ ε ≤ y−x2

2x+1 . Choose ε = min
{

1, y−x2

2x+1

}
. Then (x+ ε)2 ≤ x2 + (2x+ 1)ε ≤ y so

that x+ ε ∈ A, which contradicts the fact that x = supA. Thus we must have x2 ≥ y. Now suppose, for a
contradiction, that x2 > y. Note that for 0 < ε ≤ x we have (x− ε)2 = x2− 2xε+ ε2 > x2− 2xε and we have

x2−2xε ≥ y ⇐⇒ ε ≤ x2−y
2x . Choose ε = min

{
x, x

2−y
2x

}
. Then (x− ε)2 > x2−2xε ≥ y. Since x = supA, by

the Approximation Property we should be able to choose t ∈ A with (x− ε) < t ≤ x, but when t > x− ε we
have t2 > (x− ε)2 > y so that t /∈ A, and so we have the desired contradiction. Thus we must have x2 ≤ y.
Since x2 ≥ y and x2 ≤ y we must have x = y.


