1: Let R be a ring and let F be a field.

(a) Using only the rules R1-R9 which define a field, prove that for all $a \in F$ if $a \cdot a = a$ then (a = 0 or a = 1). Solution: Let $a \in F$. Suppose that $a \cdot a = a$. Suppose that $a \neq 0$. Using R9, since $a \neq 0$ we can choose $b \in F$ so that $a \cdot b = b \cdot a = 1$. Then we have

$$a = 1 \cdot a , \text{ by R6}$$

= $(b \cdot a) \cdot a , \text{ since } b \cdot a = 1$
= $b \cdot (a \cdot a) , \text{ by R5}$
= $b \cdot a , \text{ since } a \cdot a = a$
= 1 , since $b \cdot a = 1$.

This proves that if $a \neq 0$ then a = 1 or, equivalently, that either a = 0 or a = 1.

(b) Using only the rules R1-R9, prove that for all $a \in F$ if $a \cdot a = 1$ then (a = 1 or a + 1 = 0).

Solution: Let $a \in F$. Suppose that $a \cdot a = 1$. Suppose that $a + 1 \neq 0$. Using R9, choose $b \in F$ so that $(a + 1) \cdot b = b \cdot (a + 1) = 1$. Then

$$\begin{aligned} a &= a \cdot 1 , \text{ by R6} \\ &= a \cdot ((a+1) \cdot b) , \text{ since } (a+1) \cdot b = 1 \\ &= (a \cdot (a+1)) \cdot b , \text{ by R5} \\ &= (a \cdot a + a \cdot 1) \cdot b , \text{ by R7} \\ &= (1+a \cdot 1) \cdot b , \text{ since } a \cdot a = a \\ &= (1+a) \cdot b , \text{ by R6} \\ &= (a+1) \cdot b , \text{ by R2} \\ &= 1 , \text{ since } (a+1) \cdot b = 1. \end{aligned}$$

This proves that if $a + 1 \neq 0$ then a = 1 or, equivalently, that either a = 1 or a + 1 = 0.

(c) Using only the rules R1-R7 which define a ring, together with the rule R0 which states that for all $a \in R$ we have $(a \cdot 0 = 0 \text{ and } 0 \cdot a = 0)$, prove that for all $a, b, c, d \in R$, if a + c = 0 and b + d = 0 then ab = cd. Solution: Let $a, b, c, d \in R$. Suppose that a + c = 0 and b + d = 0. Then

$$\begin{aligned} ab &= ab + 0 , \text{ by R3} \\ &= ab + c0 , \text{ by R0} \\ &= ab + c(b + d) , \text{ since } b + d = 0 \\ &= ab + (cb + cd) , \text{ by R7} \\ &= (ab + cb) + cd , \text{ by R1} \\ &= (a + c)b + cd , \text{ by R1} \\ &= (a + c)b + cd , \text{ by R7} \\ &= 0b + cd , \text{ since } a + c = 0 \\ &= 0 + cd , \text{ by R0} \\ &= cd + 0 , \text{ by R2} \\ &= cd , \text{ by R3.} \end{aligned}$$

2: Let S be an ordered set and let F be an ordered field.

(a) Using only the rules O1-O3, and the rule O0 which defines the strict order < by stating that for all $a, b \in S$ we have $a < b \iff (a \le b \text{ and } a \ne b)$, prove that for all $a, b, c \in S$, if $a \le b$ and b < c then a < c.

Solution: Let $a, b, c \in S$. Suppose that $a \leq b$ and b < c. Since b < c we have $b \leq c$ and $b \neq c$ by O0. Since $a \leq b$ and $b \leq c$ we have $a \leq c$ by O3. Suppose, for a contradiction, that a = c. Since $a \leq b$ and a = c we have $c \leq b$ (by substitution). Since $b \leq c$ and $c \leq b$ we have b = c by O2. But $b \neq c$, so we have obtained the desired contradiction, and so $a \neq c$. Since $a \leq c$ and $a \neq c$ we have a < c by O0.

(b) Using only the rules R1-R9 and O1-O5, prove that for all $a, b \in F$ if $0 \le a$ and $a \le b$ then $a \cdot a \le b \cdot b$.

Solution: Let $a, b \in F$. Suppose that $0 \le a$ and $a \le b$. Since $0 \le a$ and $a \le b$ we have $0 \le b$ by O3. Using R4, choose $c \in F$ so that a + c = 0. Since $a \le b$ we have $a + c \le b + c$ by O4, and hence $0 \le b + c$ since a + c = 0. Since $0 \le a$ and $0 \le b + c$ we have $0 \le a(b + c)$ by O5. Also, since $0 \le b + c$ and $0 \le b$ we have $0 \le (b + c)b$. Thus

$0 \le a(b+c)$		0 < (b+c)b
$0 + aa \le a(b+c) + aa$, by O4	and	0 = (b+c)b $0 + ab \le (b+c)b + ab$, by O4
$aa+0 \leq a(b+c)+aa$, by R2		$ab + 0 \le (b + c)b + ab$, by R2
$aa \leq a(b+c) + aa$, by R3		$ab \leq (b+c)b+ab$, by R3
$aa \leq (ab + ac) + aa$, by R7		$ab \leq (bb + cb) + ab$, by R7
$aa \leq ab + (ac + aa)$, by R1		$ab \leq bb + (cb + ab)$, by R1
$aa \leq ab + a(c+a)$, by R7		$ab \leq bb + (c+a)b$, by R7
$aa \leq ab + a(a+c)$, by R2		$ab \leq bb + (a+c)b$, by R2
$aa \leq ab + a0$, since $a + c = 0$		$ab \leq bb + 0b$, since $a + c = 0$
$aa \leq a(b+0)$, by R7		$ab \leq (b+0)b$, by R7
$aa \leq ab$, by R3		$ab \leq bb$, by R3

Since $aa \leq ab$ and $ab \leq bb$ we have $aa \leq bb$ by O3.

(c) Using only rules R1-R9 and O1-O5, together with the rule R0 from Exercise 1(c), prove that $0 \le 1$. Solution: Choose $u \in R$ so that 1 + u = 0 (we can do this by R4). Then

$$\begin{split} u \cdot u &= u \cdot u + 0 \text{, by R3,} \\ &= u \cdot u + 0 \cdot 1 \text{, by R6,} \\ &= u \cdot u + (1 + u) \cdot 1 \text{, since } 1 + u = 0, \\ &= u \cdot u + (1 \cdot 1 + u \cdot 1) \text{, by R7.} \\ &= (1 \cdot 1 + u \cdot 1) + u \cdot u \text{, by R2.} \\ &= 1 \cdot 1 + (u \cdot 1 + u \cdot u) \text{, by R1,} \\ &= 1 \cdot 1 + u \cdot (1 + u) \text{, by R7,} \\ &= 1 \cdot 1 + u \cdot 0 \text{, since } 1 + u = 0, \\ &= 1 \cdot 1 + 0 \text{, by R0,} \\ &= 1 \cdot 1 \text{, by R3,} \\ &= 1 \text{, by R6.} \end{split}$$

By O1 we know that either $0 \le 1$ or $1 \le 0$. Suppose, for a contradiction, that $1 \le 0$. Then

$$\begin{array}{l} 1+u \leq 0+u \ , \, \mbox{by O4}, \\ 0 \leq 0+u \ , \, \mbox{since } 1+u=0, \\ 0 \leq u+0 \ , \, \mbox{by R2}, \\ 0 \leq u \ , \, \mbox{by R3}, \\ 0 \leq u \cdot u \ , \, \mbox{by O5}, \\ 0 \leq 1 \ , \, \mbox{since } u \cdot u=1, \, \mbox{as shown above.} \end{array}$$

Since $0 \le 1$ and $1 \le 0$ we have 0 = 1 by O2. This gives the desired contradiction because $0 \ne 1$, from the definition of a ring.

- **3:** In this problem, you may use any of the algebraic properties and order properties of N, Z, Q and R described in Chapter 1 of the Lecture Notes.
 - (a) Let $A = \{(-1)^n + \frac{1}{n} \mid n \in \mathbb{Z}^+\}$. Find (with proof) sup A and inf A.

Solution: We claim that $\sup A = \frac{3}{2}$. Let $x \in A$, say $x = (-1)^n + \frac{1}{n}$ where $1 \le n \in \mathbb{Z}$. If n is even then $(-1)^n = 1$ and $n \ge 2$ so that $\frac{1}{n} \le \frac{1}{2}$, and so we have $x = (-1)^n + \frac{1}{n} = 1 + \frac{1}{n} \le 1 + \frac{1}{2} = \frac{3}{2}$. If n is odd then $(-1)^n = -1$ and $n \ge 1$ so that $\frac{1}{n} \le 1$, and so we have $x = (-1)^n + \frac{1}{n} = -1 + \frac{1}{n} \le -1 + 1 = 0 \le \frac{3}{2}$. In either case, we have $x \le \frac{3}{2}$. Thus $x \le \frac{3}{2}$ for all $x \in A$, and so $\frac{3}{2}$ is an upper bound for A in \mathbb{R} . If $c \in \mathbb{R}$ is any upper bound for A then $c \le x$ for all $x \in A$, and in particular $c \le (-1)^2 + \frac{1}{2} = \frac{3}{2}$. Thus $\frac{3}{2} = \sup A$. We claim that $\inf A = -1$. Let $x \in A$, say $x = (-1)^n + \frac{1}{n}$ with $1 \le n \in \mathbb{Z}$. Since $(-1)^n \ge -1$ and $\frac{1}{n} > 0$ we have $x = (-1)^n + \frac{1}{n} > -1 + 0 = -1$. Since x > -1 for all $x \in A$ we see that -1 is a lower bound for A in \mathbb{R} . Let $c \in \mathbb{R}$ be any lower bound for A. Suppose, for a contradiction, that $c \ge -1$. Then $c + 1 \ge 0$ hence

We claim that $\inf A = -1$. Let $x \in A$, say $x = (-1)^n + \frac{1}{n}$ with $1 \le n \in \mathbb{Z}$. Since $(-1)^n \ge -1$ and $\frac{1}{n} > 0$ we have $x = (-1)^n + \frac{1}{n} > -1 + 0 = -1$. Since x > -1 for all $x \in A$ we see that -1 is a lower bound for Ain \mathbb{R} . Let $c \in \mathbb{R}$ be any lower bound for A. Suppose, for a contradiction, that c > -1. Then c+1 > 0 hence $\frac{1}{c+1} > 0$. Choose an odd integer $n \in \mathbb{Z}$ with $n > \frac{1}{c+1} > 0$ (we are using the Archimedean Property here) and note that $\frac{1}{n} < c+1$. Let $x = (-1)^n + \frac{1}{n}$. Then $x \in A$ with $x = (-1)^n + \frac{1}{n} = -1 + \frac{1}{n} < -1 + (c+1) = c$, which contradicts the fact that c is a lower bound for A. Thus we must have $c \le -1$. Since -1 is a lower bound for A and since every lower bound c for A satisfies $c \le -1$, it follows that $-1 = \inf A$, as claimed.

(b) Prove that for every $0 \le y \in \mathbb{R}$ there exists a unique $0 \le x \in \mathbb{R}$ such that $x^2 = y$ (this number x is called the square root of y and is denoted by $x = \sqrt{y} = y^{1/2}$). In other words, prove that the function $f: [0, \infty) \to [0, \infty)$ given by $f(x) = x^2$ is bijective.

Solution: First we prove uniqueness. Suppose that $x_1 \ge 0$ and $x_2 \ge 0$ and $x_1^2 = x_2^2 = y$. Since $x_1^2 = x_2^2$ we have $(x_1 - x_2)(x_1 + x_2) = x_1^2 - x_2^2 = 0$ and hence either $x_1 - x_2 = 0$ or $x_1 + x_2 = 0$ (since a field has no zero divisors). In the case that $x_1 + x_2 = 0$, since $x_1 \ge 0$ and $x_2 \ge 0$ we must have $x_1 = x_2 = 0$ (indeed if we had $x_2 > 0$ then we would have $x_1 = -x_2 < 0$, so we must have $x_2 = 0$, and hence $x_1 = -x_2 = -0 = 0$). In the case that $x_1 - x_2 = 0$ we have $x_1 = x_2$. In either case, we have $x_1 = x_2$. This proves uniqueness.

Next we prove existence. Let $0 \le y \in \mathbb{R}$. Let $A = \{0 \le t \in \mathbb{R} | t^2 \le y\}$. Note that $A \ne \emptyset$ since $0 \in A$. We claim that A is bounded above. If $0 \le y \le 1$ then A is bounded above by 1 because $t > 1 \implies t^2 > 1 \implies t^2 > y \implies t \notin A$. If $y \ge 1$ then A is bounded above by y because $t > y \ge 1 \implies t^2 > y^2 > y \implies t \notin A$. In either case, A is bounded above. Since $A \ne \emptyset$ and A is bounded above, we know that A has a supremum in \mathbb{R} by the Completeness Property of \mathbb{R} . Let $x = \sup A$. We claim that $x^2 = y$. Suppose, for a contradiction, that $x^2 < y$. Note that for $0 < \epsilon \le 1$ we have $(x + \epsilon)^2 = x^2 + 2x\epsilon + \epsilon^2 \le x^2 + 2x\epsilon + \epsilon = x^2 + (2x + 1)\epsilon$ and we have $x^2 + (2x + 1)\epsilon \le y \iff \epsilon \le \frac{y - x^2}{2x + 1}$. Choose $\epsilon = \min\{1, \frac{y - x^2}{2x + 1}\}$. Then $(x + \epsilon)^2 \le x^2 + (2x + 1)\epsilon \le y$ so that $x + \epsilon \in A$, which contradicts the fact that $x = \sup A$. Thus we must have $x^2 \ge y$. Now suppose, for a contradiction, that $x^2 > y$. Note that for $0 < \epsilon \le x$ we have $(x - \epsilon)^2 = x^2 - 2x\epsilon + \epsilon^2 > x^2 - 2x\epsilon$ and we have $x^2 - 2x\epsilon \ge y \iff \epsilon \le \frac{x^2 - y}{2x}$. Choose $\epsilon = \min\{x, \frac{x^2 - y}{2x}\}$. Then $(x - \epsilon)^2 > x^2 - 2x\epsilon \ge y$. Since $x = \sup A$, by the Approximation Property we should be able to choose $t \in A$ with $(x - \epsilon) < t \le x$, but when $t > x - \epsilon$ we have $t^2 > (x - \epsilon)^2 > y$ so that $t \notin A$, and so we have the desired contradiction. Thus we must have $x^2 \le y$. Since $x^2 \ge y$ and $x^2 \le y$ we must have x = y.