PMATH 333, Exercises for Chapter 2

: (a) Let z = 2EEL for k > 2. Use the definition of the limit to show that lim zj, =2 in R.

k—o0
(b) Let 1 = % and for k > 1 let zp41 = ﬁ. Find kli)n;o xy, if it exists in R (with proof).
(c) Let (zk)r>p and (yx)r>p be sequences in R with lim x; = ¢ where 0 < ¢ € R, and klim yr = 0o. Use the
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definition of the limit to show that lim %t =
k—oo Yk

: (a) Find a divergent sequence (z)r>0 in R with |z, — zp_1| < ¢ for all k > 1.

(b) Let (z1)r>0 be a sequence in R with ’:vk - a:k,1| < 1%2 for all k > 1. Show that (zj) converges in R.

: For a sequence (z1)r>p in R and for a € R we say a is a limiting value of (z1)x>, when
Ve>0 VmeZs, Ik€Zs, (E>m and |z, —al <e).
We denote the set of limiting values of (zy)r>p by Lim((zx)k>p)-

(a) Determine whether, for every sequence (zj)g>p in R, we have klim zp = a = Lim((@4)r>p) = {a}.
> m >

(b) Determine whether, for every sequence (zx)k>p in R we have Lim((xk)k>p) ={a} = klim T = a.
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(c) Determine whether there exists a sequence (z4)>p in R with Lim ((zx)r>p) = R.

: In this problem, we explore the rate at which the approximations found using Newton’s Method approach
a square root of a positive real number. Let a > 0. To approximate /a, let 1 > y/a and for k > 1 let
Tht1 = %(xk + x%) For k > 1 let e, = z1, — v/a.
(a) Show that (xy) is decreasing with z — v/a.
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(b) Show that for all £ > 1 we have ;1 = k_ and that L < ( “ ) .

2xp 2\/6 - 2\/5

(c) Show that when a = 3 and 7 = 2 we have ¢5 < 410732,

: Solve the following problems using the definition of the limit and the definition of the derivative as a limit.
(a) Let f(x) = -+ for x # £1. Show that lim2 fl@) = %
r—r
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(b) Let g(z) = v/5 — 22 for |z| < /5. Show that ¢'(2) = —2.
(c) Let h(z) = 1 for  # 0. Show that h/(z) = —;12 for all = # 0.
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: Let f(x) = S 1333& and let g(x) = { 1x¢@ . .
0 ,ifz=0, 3 ,ifx =% withae€Z,beZ" and ged(a,b) = 1.

(a) Show that f is differentiable at x = 0.

(b) Determine where g is continuous.

(c) Determine where g is differentiable.

(a) Define f : R — R by f(x) = cos (7ra:2). Show that f is not uniformly continuous in R.

eV yifx #£0,

0 ,ifx=0.
(c) Find a function h : R — R which is differentiable in R with A'(0) = 1 such that for all § > 0 the function h
is not increasing in the interval (=4, 9).

(b) Define g : R — R by g(x) = { Use induction to show that 0 = g(0) = ¢’(0) = ¢”(0) = - -

: (a) Let f : [a,b] — R be differentiable on [a,b]. Let m > 0 and suppose that f'(x) > m for all z € [a,b]. Show
that f(b) > f(a) + m(b— a).

(b) Let f : [a,b] — R be differentiable on [a,b]. Let m € R and suppose that f'(a) < m < f’(b). Show that
there exists ¢ € (a,b) such that f/(c) = m. (Hint: consider the function g(x) = f(x) — mz).

(c) Let f,g : [a,b] — R be differentiable on [a,b] with f'(z)g(x) = f(x)g'(x) for all x € [a,b]. Suppose that
f(a) = f(b) =0, f(x) #0 for all z € (a,b), and g(a) # 0. Show that there exists ¢ € (a,b) such that g(c) = 0.



9: In this problem we explore a uniqueness theorem for differential equations.

(a) Let f : [a,b] — R be differentiable on [a, b] with f(a) = 0. Suppose that there exists a constant ¢ > 0 such
that

[ (@)] < clf ()]
for all z € [a,b]. Show that f(z) =0 for all z € [a,b].

(b) Let A = {(z,y) |z € [a,b] and y € [r,s]} and let F : A — R. Suppose there exists a constant ¢ > 0 such
that

|F(2,y1) — F(z,y2)| < clyr — vz

for all z € [a,b] and y1,y2 € [r, s]. Show that for each p € [r, s] there exists at most one function f : [a,b] — [r, 5]
with f(a) = p such that f'(z) = F(z, f(z)) for all z € [a, b].

(¢) Find every function f : [0,1] — [0, 1] such that f/(z) = 24/ f(x) (there is more than one such function).



