PMATH 333 Real Analysis, Solutions to the Exercises for Chapter 2

: (a) Let z, = 2L for k > 2. Use the definition of the limit to show that lim zj, =2 in R.

k—o0
Solution: For k > 2 and € > 0, we have

2k+1 _ | 2k+1—-2k+2| _ 3
|z, — 2 = |34 — 2| = [ = 2

and

<e = Bl s k152 = k>1+3.
Let ¢ > 0. ChoosemEZwithm>1+%. ForkzeZzgwitthmwehavekzm>1+%andhence,as
shown above, |z, — 2| = 27 <.

(b) Let 1 = % and for k > 1 let 441 = = 6%. Find lim ay if it exists in R (with proof).

Solution: Suppose for now that (x)r>1 does converge, and let a = lim ;. Then we also have hm Tpy1 = a
’I’L*)OO

and so taking the limit on both sides of the recursion formula z;; = 5_ak gives
a=:% —=5a-a’=6=0a?-5a+6=0= (a—2)(a—3) =0,
and so we must have a =2 or a = 3.

We claim that z,, < z,41 < 2 for all n > 4. We have z1 = %,

claim is true when n = 4. Let k > 4 and suppose the claim is true when n = k. Then we have

< 1

071k 5793k+1

x2:4,x3:6,x4:—6andx5—1£ so the

1
<3

wk<xk+1<2:> _-'L'k>_37lc+1> 2:>5_-Tk>5_l'k+1>3:>

= 5 <

O—Tf 5— Ik+

<2:>$Uk+1 <$k+2<2

so the claim is true when n = k + 1. By induction, the claim is true for all n > 4. Thus (x,,),>4 is increasing

and is bounded above by 2, so (z,) converges by the Monotone Convergence Theorem and lim z, < 2 by the
n—oo

Comparison Theorem. We showed above that the limit must be 2 or 3, and so we must have lim =z, = 2.
n—oo

(c) Let (zx)r>p and (yx)k>p be sequences in R with klim xp = ¢ where 0 < ¢ € R, and klim yr = oo. Use the
= = — 00 — 00
definition of the limit to show that lim Zt = (.
k—oo Yk
Solution: Let € > 0. Since z;, — ¢ we can choose m; € Z so that k >my = |zp — | < § = § < < 3C

Since yr — oo we can choose ma E Z so that k > ms = yy, > . Let m = max{ml,mg} Then for k > m
we have z;, < 3¢ 5 and we have y, > 2<, and so ””* < ?’0/3C =€ Thus “"’f — 0, as required.



2: (a) Find a divergent sequence (xg)i>0 in R with |xk — xk,1| < % for all &k > 1.

Solution: Let g = 0 and for k > 1, let x;, = % + % + % 4 % Note that |z — xx—1]| = T — Tp—1 = %
for all £ > 1. Consider the subsequence ($2k)k>0 = (1, 22,74, 78, --). We have 90 = 21 = 1. Let k > 0 and

suppose, inductively, that xox > 1+ g Then
s = (bt ) (g 4 g+ )

=y b (g + g oo ) 2 e (e g o )

=2y +2% s =g+ 3> 1+ E+ =14 B
By induction, we have z,, > 1+ 5 for all n > 0. Since (zy) is increasing and Ton > 1+ 5 for all n > 0, it
follows that xp — oco. Indeed, given r € R we can choose n so that 1 + 5§ > 7 and then for m = 2" we have
E>m=k>2"= 2 >2,, >214+5 >1.
(b) Let (z1)r>0 be a sequence in R with ’xk — xk,1| < 1%2 for all k > 1. Show that (zj) converges in R.

Solution: Notice that for all k& > 2 we have 75 < m =1 - % It follows that for 1 < k < [ we have

|z — o] = |1’k = Tp41 + Tyl — Tpt2 + Thy2 — T3 + 00 — L1+ T—1 — 1’1|
< lzk — g1 | + |Tht1 — Toga| + [Tog2 — Tos| + -+ |zi—1 — @]
1 1 1 1 1
< (k+1)2 + (k+2)? + (k+3)2 +ot -1z +

1 1 1 1 1

S T Eer T e T T aeoaen T e

_ 1 1 1 1 1 1 1 1 1

R == U == Wl =R =l = S g s

—1_ 11

I
Let € > 0. Choose m € Z with m > % For k,1 > m say with k <, if k = then |zx — ;] = 0 and if k < [ then,
as shown above, |z — 2| < % < % < e. Thus (xy) is a Cauchy sequence, and so it converges by the Cauchy

Criterion.



3: For a sequence (2)r>p in R and for a € R we say a is a limiting value of (z4)r>, when
Ve>0 VmEZs, Ik€Z>, (E>m and |z, —al <e).

We denote the set of limiting values of (zj)r>p by Lim((2x)r>p)-

(a) Determine whether, for every sequence (zj)g>p in R, we have klim zp = a = Lim((zx)r>p) = {a}.
> m. >

Solution: This is true. Let (2x)r>p be a sequence in R with zj, — a. We claim that Lim((zy)) = {a}. First
we show that {a} C Lim((z))). Let € > 0 and let m € Z>,. Since x; — a we can choose mg € Zx>, so that
k> my = |zy, —a| < e. Let k = max{m, mg}. Then k € Z>,, with k > m and |zy — a| < e. This proves that
a € Lim((zy)), so we have {a} C Lim((zy)).

Conversely, we need to show that Lim((z;)) C {a}. Let b € Lim((x})). Suppose, for a contradiction, that

b # a. Since x — a, we can choose m € Z>, so that k > m = |z —a| < Ib;a‘

. Since b € Lim((z)), we can
choose an index k with k > m and |z — b| < @ Then we have

b—a|=|b—ax + a2 —a| < |b—ay| + |z, —a| < 54 4 ol —1p g,

which is not possible. Thus we must have b = a, and this shows that Lim((zx)) C {a}, as required.
(b) Determine whether, for every sequence (z1)k>p in R we have Lim((zx)r>p) = {a} = klim T = a.
- - —00

Solution: This is false. For example, for the sequence (zx)x>0 given by x; = a when k is even and ), = k when
k is odd, we have Lim((z))) = {a} but klim x # a, indeed (1) diverges.
—00

Here is a proof that Lim((z)) = {a}. Given € > 0 and given m € N we can choose an even number k > m
and then we have |zx — a] = |a — a] = 0 < e. This shows that a € Lim((xy)) so we have {a} C Lim((zy)).
Conversely, let b € Lim((z,)). Suppose, for a contradiction, that b # a. Let € = @ and let m = |b—a| + |b).
Then for k > m, if k is even then xp = a so |z — b = |a — b] = 2¢ > ¢, and if k is odd then z; = k so
|z — bl =]k —b > k—|b| >m —|bl =|b—a|+ |b] — |b] = |b — a| = 2¢ > e. But this contradicts the fact that
b € Lim((zy)). Thus we must have b = a, and this shows that Lim((z))) C {a}.

Here is a proof that hm xr # a. Suppose, for a contradiction, that zy — a. Choose m € N so that

kE>m= |z, —a| <1 Then for all K > m we have a — 1 < z < a+ 1. But we can choose an odd number
k € N with k > max{m,a + 1} to get k > m with z; = k > a + 1, giving the desired contradiction.

(¢) Determine whether there exists a sequence (zx)k>p in R with Lim((2x)r>p) = R.

Solution: There does exist such a sequence (zy). For example, choose a surjective map f : Zt — Q and let
z = f(k) for k € ZT. We claim that for this sequence (xj)i>1, we have Lim((xk)kzl) =R. Let a € R. Let
€ > 0 and let m € Z*. Since Q is dense in R, we can choose distinct rational numbers q1, g2, g3, - - - € Q with
|gi — a] < e for all i > 1. For each 4 > 1, since f is surjective we can choose k; € Z* with f(k;) = ¢;. Note that
the numbers k; are distinct (since the ¢; are distinct and f is a function). Since k1, ko, k3, - - - are distinct, we
can choose an index j such that k; > m. For k = k; we have k > m and |z, —a| = |f(k) —a| = |¢; —a| < e
This shows that a € Lim((zy)). Since a € R was arbitrary, we have Lim((zx)) = R.

Here is an example of a surjective map f : Zt — Q: Given n € ZT, write n (uniquely in the form)
n =2%(2¢ — 1) where k € N and £ € Z*. Then define f(n) = w if k is even, and f(n) = —W is k is odd.



4: In this problem, we explore the rate at which the approximations found using Newton’s Method approach
a square root of a positive real number. Let a > 0. To approximate v/a, let 1 > y/a and for k > 1 let
Tht1 = %(azk + m%) For k > 1 let e = z — /a.

(a) Show that (zy) is decreasing with z; — 1/a.
Solution: We are given that x; > v/a. Let k > 1 and suppose, inductively, that xy > y/a. Then
Tpp1 —Va=1(z, + I%) —Vva= i(xkz —2yax, +a) = i(mk - Va2 >0

and so xg41 > v/a. By induction, it follows that x; > \/a for all kK > 1. This shows that the sequence (zy) is
bounded below by \/a. For all k > 1, since 2 > v/a so that 2,2 > a, we have

Tp — That :xk—%(xk—kx%) Z%(fﬂk—x%) zi(x;f—a) >0

and so xg > xr4+1. This shows that the sequence (zy) is decreasing. Since (xy) is decreasing and bounded below
by v/a, it converges with klim xp = sup{zr} > va. Let u= klim z1. By taking the limit on both sides of the
—00 —00

_1 o
formula x4 = § (z + i) we obtain u = (u + %), and
u:%(u—l—%) :>2u2:u2+a:>u2:a:>u:i\/a:>u:\/a
since we know u > y/a. Thus z — /a.

2 2k
(b) Show that for all k > 1 we have e = ;"Tk and that ;’% < (2;&) .

Solution: For k£ > 1 we have

2 2 2
_ _ 1 ay Tk —Zxk\/ﬁ+a_(mk—\/ﬁ) €
Skl = St \/&_2(%4_”) va = 2z B 21y T2y
€k+1 ( €k

2Va

2 2
: . . €k €L
Since x > +/a this gives ex11 = —— < —— so that

21, — 2y/a 2/a =

2
) . Using this formula repeatedly, we

obtain

€h+1 ( €k )2< <€k—1)22 < (Gk—2>23<”.<( €1 )2 '
2v/a ~ \2y/a) —\2y/a) ~\2y/a/ — ~\2ya
(c) Show that when a = 3 and 1 = 2 we have ¢g < 410732,

. B o €1 _xl_\/&_Q—ﬁ_i_l
Solution: Let a = 3 and 21 = 2. Then 2\/&— a =55 =7 5 Note that

1 1 3 —
<qp = 5<i == 5<3V3 = 25<9.3=27,

1

1
V3 o2

. . € .
which is true, and so we have L < 1—10. Using the formula

2/a =

€k+1 ( €1

2v/a — \2v/a

61 )32 S (i)32 _ 10_32

676<(7
2v3 ~ \2y3 10

2k‘
) with a = 3 and k = 5, gives

and so €5 < 2v/3-10732 < 4.10732,



5: Solve the following problems using the definition of the limit and the definition of the derivative as a limit.
(a) Let f(z) = () =3

Solution: First we note that for z € R with x 7é +1 we have

2| = sty | = Ay e 2.

372 ’*‘ 3(;c2 1) 3(@2—1)| ~ 3[z®—1]

Next note that when |z — 2| < 3 we have 2 < 2 < 2 so that £ < (z+2) <  and we have 2 < 2? < 2 5o that

5 lz24+2] _ _a42 5 _6
7 < (22 — 1) < 2L, and so we have 3o = 3(? 7y < 3?% =2
Let € > 0. Choose § =min {3, 55} Let x € R with 0 < |z — 2| < §. As shown above, since |z — 2| < § we
have 3Iz;_2|1‘ < &, and since |z — 2| < 3¢ we have
1 1] _|z+2] 6 . 5c _
7T —5‘ =gyt -2 <5 § =

(b) Let g(x) = v/5 — 22 for |z| < /5. Show that ¢/(2) = —2.

Solution: First we note that for z € R with |z| < /5 and z # 2 we have
g(@)—g(2) _ (72)’ _ ’\/5—1:;—1 4 2‘ _ ‘\/5 z +2JL 5‘ V=22 +(20-5)  VE—a2—(2¢—5)
pr

P z—2 5—x2—(22—5)

(5—x2)— (422 —202+25)
(1—2)(\/5—12—(%—5))

_5(27—2)2 ‘ — 5 . |
(z—2)(vb—z2—(22—5)) V5—x2+(5—2x)
121

x—2|.

Next note that when |z — 2| < 1 we have 2 <z < & and since z < £ we have 7?2 < so5—a% > % so that

\/5—x2>7 and we have 2x< so that 5 — 2x>f and so we have T $2+(5 o) < 2i3 =5.

Let e > 0. Choose § = mln{s, 5} Then for 0 < |z — 2| < J, as shown above, since | — 2| < = we have
m < 5 and since |z — 2| < £ we have

‘g(m)—g(Q) _

— 5 € _
v 2 (—2)‘—m'|$—2\<5'5—

(c) Let h(z) = L for & # 0. Show that h/(z) = —;12 for all x # 0.
Solution: First note that for = # 0, u # 0 and u # = we have

h(u)—h(z) LY = |x== = 1l 1 1 —w| 1
Next note that when |u—2z| < ;—l we have |z| = |(z—u)+u| < |z —u|+|u| < |21|+|u| so that |u| > \x|—‘”§—| = ‘gj—l
and hence ——7 < —— = —25.
flleP < Bz = Tal

LetxeRwrcha;;éO Let € > 0. Chooseé—mm{l ,Iz‘ }. Then for u € R with |u — x| < 4, as shown

above, since |u — z| < ‘Il we have Hxlg < mg and since |u — x| < % we have

! B 2 |offe _
e Ut < pEcty e

‘ A k() _(_ ;)‘ —

u—x z2



x smf yifx #0,
0 ,ifz =0,

0 ,ifz¢Q,

6: Let = '
et f(x) { ,if o = ¢ with a € Z, b € Z* and ged(a,b) = 1.

and let g(z) = {

1
b
(a) Show that f is differentiable at x = 0.

Solution: We claim that f is differentiable at 0 with f/(0) = 0. Let € > 0. Choose 6 = e. For z € R with
0 <]z —0] <d we have 0 < |z| < € and so
f@)=JO) _ | - |2lsinz=0
0‘ - z—0

—0’ = |xsin%‘ = |z||sind| <|z|-1<e
since |sinwu| <1 for all u € R.

(b) Determine where g is continuous.

Solution: We claim that g is continuous at a € R if and only if a ¢ Q. Suppose first that a € Q, say a = % with
k€ Z,n € Z" and ged(k,n) = 1 so that g(a) = +. We claim that g is not continuous at a (we need to show
that there exists € > 0 such that for all § > 0 there exists € R such that |z — a| < § and [g(z) — g(a)| > €).

Choose € = % Let § > 0. Choose € R with z ¢ Q and |z —a| < § (for example, choose m € Z* with m > %

and then let x = a + %) Then we have g(z) = 0 and g(a) = + and so [g(z) — g(a)| = + =

Next suppose that a ¢ Q and note that g(a) = 0. We claim that g(z) is continuous at a. Let € > 0. Choose
n € Z* with 2 < e. Let S be the set of all points = € [a — 1,a + 1] of the form = = £ with k € Z and m € Z*
with m <n (we remark that S is not empty because |a] € S). Note that there are only finitely many points in
S since for each choice of m € Z* with m < n there are only finitely many k € Z with m(a—1) < k < m(a+1).
Choose § = min {|z — a||z € S} (we remark that § < 1 because [a| € S). Note that § > 0 since a ¢ Q so
a ¢ S and so |z —al >0 for every z € S. For 0 < |z — a| < d, either ¢ Q in which case g(x) = 0 so that
lg(xz) —g(a)] =0 < ¢, or x € Q in which case z ¢ S (since |x —a| > § for all z € S) and so when we write x = %
with k € Z and m € Z* and ged(k,m) = 1 we must have m > n and so |g(z) — f(z)| = = < L <.

(c) Determine where g is differentiable.

Solution: We claim that g is not differentiable at any point a € R. When a € Q we know from Part (b) that ¢
is not continuous at a, and so g is not differentiable at a. Suppose that a ¢ Q. Suppose, for a contradiction,
that g is differentiable at a. Take € = % in the definition of differentiability and choose & > 0 so that for all

x €R,if 0 < |z —a|] < then W—g’(a) < %, that is

g(x)—=g(a) _ % <g'(a) < W +%

Tr—a

Choose a prime number p € Z% so that 2 < § (we can do this because there are infinitely many prime

numbers). Let k = |ap| (we remark that k # ap since a ¢ Q). Then we have ap —2 < k —1 < k < ap so

thataf%<%<%<a,andwehaveap<k+1<k+2<ap+280thata<%<%<a+%.

Pick k1 € {k — 1,k} with p/k; so that ged(ki,p) = 1 and let z; = % Pick ky € {k+ 1,k + 2} with p [k>
so that ged(ka,p) = 1 and let a9 = %. Then we have a — 6 < a—ﬁ <rTi<a<a< a—&—% < a+ 9 and
g(z1) = g(za) = %. It follows that

T2,a 2/p 2

(0-ate) o _1/p _ 1 (e2)=9(a) o 1/p _ 1

and hence that
g'(a) < g(z1)—g(a) + < _% + % =0 and ¢'(a) > g(z2)—g(a) _ % > % _

xr1—a T2—a

N[
\%
jem)

which gives us the desired contradlctlon.



7: (a) Define f: R — R by f(x) = cos (7r:r2). Show that f is not uniformly continuous in R.

Solution: Note that f(y/n) = cos(mn) = (—=1)" for all n € Z*. To show that f is not uniformly continuous in R
we need to show that there exists € > 0 such that for all 6 > 0 there exists a,z € R such that |z —a| < ¢
and |f(x) — f(a)] > €. Choose ¢ = 1. Let 6 > 0. Since vVn+1—/n = m — 0 as n — oo, we

can choose n € Z" so that v/n+1 —/n < 4. Then for a = y/n and z = v/n+1 we have |z — a| < § but
[f(z) = f(@)] = [(=)" = (-D)"[ =2 >«

U e 0,

Use induction to show that 0 = g(0) = ¢'(0) = ¢”(0) = - - -
0 ,ifx=0.

(b) Define g : R — R by g(z) = {e

Solution: When x # 0 we have ¢'(z) = ?236—1/12 and ¢"(z) = (% — i)e_l/‘rz. Let n > 1 and suppose,

z6 x4
1

inductively, that ¢ (z) = pn(;) e~1/2* where pn(t) is a polynomial of degree 3n. Then

g @) =pa’ () (= F) eV +pa(3)  (F) eV = pana(3) eV
where p,1(t) = 2t3p, (¢ ) - t2pn (t), which is a polynomial of degree 3(n + 1). By Induction, it follows that
for z # 0 we have ¢("(z) = pn(%) e~ 1/% for all n > 0, where p,(t) is the polynomial of degree 3n defined
recursively by po(z) = 1 and Pni1(t) = 2t3p,(t) — t2p,'(t) for n > 0. From the definition of the derivative we
have —1/2?
oy — o 9@) —g(0) e —0 1z
O =t =0 T oo T
As 2 — 0 we have & — 0o so e!/%° — 00, as © — 07 we have % — +o00 and as x — 0~ we have % — —00, and

so by "Hopital’s Rule we have

1 1
1) — _T — r _ o0 _
g0y = Jy i = I T = I g = =0

Let n > 0 and suppose, inductively, that g(™ (0) =0. Then we have
2,
gy = | PrlE) i £0,
0 if z =0.
From the definition of the derivative, we have

) () — g™ (0 (;) e—1/2® 1 (1)
1)y — i 9 @) =g (0) Py -3 1 ¢
g (O) alclir(l) x—0 31:13%) x xhir%) el/z?
2 Pa(z) 1/z*
Note that in order to show that hn%) T = 0, it suffices to show that hm sy =0forall k>0 (because
%S”) is equal to a sum of terms of the form 11/ /“iz ). We already know that this is true when k =
1 k
and when k = 1 (we shall need two base cases). Let k > 0 and suppose, inductively, that hm 1//36 = 0. Then
by 'Hopital’s Rule yet again we have
1 k+2 1
k+2 %
wk +2 xk+3 T . $k _
ili% el/z? :11—% = (31/m2 ili% 2 el/z?

/:c =0 for all n > 0, andboth():Oforall

By the Strong Induction Principle, it follows that hm /a7 Y
z—

1, (1
n > 0, hence g™ (0) = lim #(f) =0 for all n > 0, as required.

z—0 e [
(c) Find a function h : R — R which is differentiable in R with A’(0) = 1 such that for all 6 > 0 the function h
is not increasing in the interval (=4, 9).

Solution: Let h(z) = z + 2f(z) where f(x) is the function from Problem 2. By Part (a) of Problem 2 we have
R(0) =14 0=1, and for z # 0 we have h(z) = z 4+ 22?sin 2 so that #’(z) = 1+ 4asin 2 — 2cos 2. Note that
B (x) is continuous for all z # 0. Let 0 > 0. We claim that h( ) is not increasing in the interval (— (5 5). Choose
k € Z* so that - < 6 and let a = z2. Since sin 27k = 0 and COSQ?T]C =1 we have h/(a) =14+0—2 = —1. Since
KW (x) is contmuoub for £ > 0 we can choose §; with 0 < §; < 12 k so that for all z > 0 with |z — a| < §; we have
|W (z)—h'(a)] < 1 and hence h'(z) < h/(a)+1 = —1+3 = —7. Since h/(z )<75<0f0rallx€(a 61,a+61)
it follows that h(x) is decreasing in the interval (a — d1,a + 51). Since (a — d1,a+ 1) € (0,) C (=6,0), it
follows that h(x) is not increasing in the interval (=6, 6).



8: (a) Let f : [a,b] — R be differentiable on [a,b]. Let m > 0 and suppose that f’(xz) > m for all x € [a,b]. Show
that f(b) > f(a) + m(b— a).
Solution: By the Mean Value Theorem, we can choose x € [a,b] such that W = f’(x) and then, since
f'(z) > m, we have W > m so that f(b) — f(a) > m(b— a) and hence f(b) > f(a) +m(b— a).

(b) Let f : [a,b] — R be differentiable on [a,b]. Let m € R and suppose that f'(a) < m < f’(b). Show that
there exists ¢ € (a,b) such that f/(¢) = m. (Hint: consider the function g(x) = f(z) — mx).

Solution: Let g(z) = f(x) — maz. Since f is differentiable on [a,b], so is g and we have ¢'(z) = f'(x) —m.
Since g is differentiable on [a,b], it follows that g is also continuous on [a,b], and so by the Extreme Value
Theorem, g attains its minimum value on [a,b]. Choose ¢ € [a,b] so that g(c) < g(z) for all x € [a,b].
Since f’(a) < m we have ¢’(a) = f'(a) —m < 0 and so g does not attain its minimum value at a (indeed

we can choose § > 0 such that for all  with a < < a + § we have W - g’(a)’ < WT‘I)‘ so that

w < ¢'(a)+ w =4'(a) — # = # < 0 which implies that g(z) = g(a) < 0 so that g(z) < g(a)).
Since f’(b) > m we have ¢'(b) = f/(b) —m > 0 and so g does not attain its minimum value at b. Since g does
not attain its minimum value at a or b we must have ¢ € (a,b). Since g has a minimum value at ¢ € (a,b), it

follows from Fermat’s Theorem that ¢'(c) = 0, and hence f'(¢) = ¢'(¢) + m = m.

(c) Let f,g : [a,b] — R be differentiable on [a,b] with f'(z)g(z) = f(z)¢'(z) for all z € [a,b]. Suppose that
f(a) = f(b) =0, f(x) #0 for all z € (a,b), and g(a) # 0. Show that there exists ¢ € (a,b) such that g(c) = 0.

Solution: Suppose, for a contradiction, that ¢’(z) # 0 for all x € (a,b). Since g(a) # 0 we have g(x) # 0 for all

x € [a,b). Since f and g are differentiable with g(z) # 0 for all « € [a, D) it follows that the function h(z) = J;((;;

is differentiable with h'(x) = f/(x)g(z)(;)fz(x)gl(x) for all x € [a,b). Since f'(z)g(z) = f(x)g'(z) for all x € [a, ] it
follows that h'(z) = 0 for all € [a,b). Since h'(xz) = 0 for all z € [a,b) it follows that h is constant in [a,b).
Since h is constant in [a,b) with h(a) = ﬁEZ; = ﬁ = 0, it follows that h(xz) = 0 for all « € [a,b). This gives

the desired contradiction because for all x € (a,b) we have f(z) # 0 and g(x) # 0 so that h(x) = % # 0.




9: In this problem we explore a uniqueness theorem for differential equations.

(a) Let f : [a,b] — R be differentiable on [a, b] with f(a) = 0. Suppose that there exists a constant ¢ > 0 such
that

[f(@)] < clf ()]
for all « € [a,b]. Show that f(z) =0 for all z € [a, b].

Solution: We wish to show that f(x) = 0 for all z € [a,b]. We have f(a) = 0. Let & € N and suppose,
inductively, that f(z) = 0 for all z € [a,b] with a <z < a+ 4. We need to show that f(z) = 0 for all z € [a, ]
with a + % <z<a+ % If a + % > b then we have f(z) = 0 for all x € [a,b] so there is nothing to prove.
Suppose that a+ % < b. To simplify our notation, write d = a+ —C < b Then we have f(x) = 0 for all z € [a, d]
and we need to show that f(z) =0 for all z € [a, b] withd <z <d+ o

Let x € [a,b] with d <z < d+ 5. Let £ =sup {|f(t)||[d <t <z} and let m = sup {|f'(t)||d <t < z}.

We claim that m < ¢f. Suppose, for a contradiction, that m > ¢f. Let ¢ = m — ¢f. By the Approximation
Property, we can choose ¢ € [d, z] so that m —e < |f'(t)] < m. Then we have m —e < |f'(t)| < c|f(t)] < L.
But then € > m — ¢/ = € giving the desired contradiction. Thus m < ¢/, as claimed.

Next, we claim that |f(t)| < £ for all t € [d,2]. We know that f(d) = 0, so suppose that ¢t € (d,z]. By the

Mean Value Theorem, we can choose s € (d, z) such that f/(s) = f(tzig(d) = @ and then f(t) = f/'(s)(t —d).

It follows that | f(t)] = |f'(s)|(t — d) < m(t — d) < m(z — )<c€(x—d)<c€ + = £, as claimed.

We claim that ¢ = 0. Note that since £ = sup {|f(t |t € [d,z]} we have £ > |f(d)] = 0. Suppose, for a
contradiction, that £ > 0. By the Approximation Property, we can choose ¢ € [d, z] such that 5 < |f(t)| < £.
But this contradicts the fact that |f(t)| < £ for all t € [d, 2] (as we just proved)and so £ = 0, as clalmed

Finally note that since ¢ = sup {|f(¢ ||t € [d,z]} = 0 it follows that |f(¢)] = 0 for all ¢ € [d,z], so in
particular f(x) = 0. Since x was arbitrary, this proves that f(x) = 0 for every z € [a,b] with d < x < d+ 2—0,
as required.

(b) Let A = {(z,y) |z € [a,b] and y € [r,s]} and let F : A — R. Suppose there exists a constant ¢ > 0 such
that

|F(2,y1) — F(x,y2)| < clyr — vz
for all z € [a,b] and y1,y2 € [r, s]. Show that for each p € [r, s] there exists at most one function f : [a,b] — [r, 5]
with f(a) = p such that f'(z) = F(z, f(z)) for all z € [a, b].
Solution: Suppose that fi, fo : [a,b] — [r,s] with fi(a) = fa(a) =

F(z, f2(x)). We must show that fi(z) = fo(z) for all z € [0,1]. Let ( )1
x € [0,1] we have

(@) = (@) = (@) = |F (2. fi(2) = F o, L(@)] < | fale) = fol)| = el f(2)

By Part (1) it follows that f'(z) = 0 for all z € [0,1]. Since f'(z) = 0 for all z € [0,1] it follows that f(x) is
constant. Since f(0) = f1(0) — f2(0) =p—p =0 and f(z) is constant, it follows that f(z) =0 for all z € [0, 1].
Thus for all x € [0,1] we have 0 = f(z) = f1(x) — f2(z) so that f1(z) = f2(z), as required.

(:L' fl(x)) and fi(x) =

(t) =
= fi(z) = f2(z). Then for all



(c) Find every function f : [0,1] — [0, 1] such that f'(z) = 24/f(z) (there is more than one such function).

Solution: Will will show that the required functions are given by

0 ifo<z<e,
f@{(

ZC—C)Q fe<z<l1.
where ¢ is a constant with 0 < ¢ < 1. Note that f is increasing with f(0) = 0 and f( y=(1-¢?<1.

First let us show that for the above functions f we do indeed have f/(z) = 24/ f(x) for all € [0,1]. When
0 <x<cwehave /f —\f—Oandwhenchglwehave\/f \/(x—c)2—|x—c|—x—c. On the
other hand, when 0 S x < ¢ we have f(z) =0 so that f/(z) =0, and When c <z <1 wehave f(z) = (z — ¢)?
so that f'(z) = 2(x — ¢), and we have

- 0-0 - —¢)2 -0
lim M: lim —— =0 and lim M: lim (:507): lim (x—¢)=0

T—c xr—cC z—c~ T — C z—ct xr—cC z—ct xr—cC z—ct
so that f/(¢) = 0, and so in all cases we have f'(x) = 24/ f(x), as required. It remains to show that we have
found all of the solutions.

Let f be any function f : [0,1] — [0,1] with f/(z) = 24/f(x) for all z € [0,1]. We remark that f is
differentiable because f’(x) exists. We also remark that f must be i 1ncreasmg on [0,1] because f'(z) = v/f(x) >0
for all z € [0, 1].

First we claim that for any nonempty interval I C [0,1], if f(x) > 0 for all € I then there exists b € R
such that f(z) = (v — b)? for all x € I. Let I be any nonempty interval with I C [0,1] and suppose that
f(z) > 0 for all z € I. Let g(z) = 24/f(z) — 2z for all z € I. Then g is differentiable in I (since f is

. . . . . . . , (=) 24/ f(= _
differentiable and the function \/u is differentiable for v > 0) with ¢'(z) = Ve 2 = = 2 =0.
Since ¢'(z) = 0 for all x € I it fOHOWb that ¢ is constant in I. Choose a € I. Then for all x € I we have
2v/f(@) =2z = g(z) = g(a) = 2¢/f(a) — 2a and so f(z) = (z++/f(a —a) . Thus we have f(x) = (z —b)? for
all x € I, where b =a — f(a).

Next we claim that f(0) = 0. Suppose, for a contradiction, that f(0) = p > 0. Since f is increasing on
[0,1] with f(0) = p > 0, we have f(x ) f(0) =p > 0 for all x € [0,1]. By the previous paragraph, we can
choose b € R so that f(z) = (z — b)? for all z € I. Since f'(z) = 24/ f(x) we have f'(0) = 2,/p and since
f(x) = (z — b)? we have f'(z) = 2(z — b) and so f/(0) = —2b. It follows that —2b = 2,/p so that b = —/p.
Thus we must have f(z) = (z + ,/p)? for all z € [0,1]. In particular, we must have f(1) = (1+ ,/p)® > 1 which
is not possible since f : [0,1] — [0, 1]. Thus f(0) = 0, as claimed.

We claim that there exists ¢ € [0, 1] such that f(z) =0 for 0 <z < cand f(z) > 0for ¢ < z < 1. Let
S = {33 € [0, 1”f(at) = O}. Note that S # () because 0 € S and S is bounded above by 1. Let ¢ = sup S. Since
0 € S we have ¢ > 0 and since 1 is an upper bound for S we have ¢ < 1 and so ¢ € [0,1]. Since ¢ is an upper
bound for S it follows that f(z) > 0 for all z > ¢ (when z > ¢ we must have x ¢ S and so f(z) > 0). It remains
to show that f(x) =0 for all € [0,¢]. In the case that ¢ = 0 there is nothing to prove, so suppose that ¢ > 0.
Suppose first that « € [0,¢). By the Approximation Property we can choose ¢ € S with <t < c¢. Since t € §
we have f(t) = 0. Since f is increasing and z < ¢ we have f(z) < f(¢t) = 0 and so f(z) = 0. This shows that
f(z) =0 for all x € [0,¢). Since f is continuous at ¢, it follows that f(¢) = lim f(x) = 0. Thus f(z) = 0 for

r—Cc™

all x € [0, ¢], as required.

Let ¢ € [0,1] be as above so that f(z) =0 for all € [0,¢] and f(z) > 0 for all z € (¢,1]. When ¢ =1 we
have f(z) = 0 for all € [0,1]. Suppose that ¢ < 1 and note that the interval (¢, 1] is nonempty. As shown
above, since f(z) > 0 for all z € (¢, 1] we can choose b € R so that f(z) = (z — b)? for all z € (c,1]. Since
f(e) =0 and f is continuous at ¢ we have 0 = f(c) = Tl;ncl+ flx) = zlggr(x —b)? = (¢ — b)? and hence we must

have b = c. Thus f(z) =0 for 0 <z < c and f(x) = (x — ¢)? for ¢ < x < 1, as required.
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