PMATH 333 Real Analysis, Solutions to the Exercises for Chapter 3

8
: (a) Let f(z) = 2—2 and let X be the partition of [0,2] into 6 equal-sized subintervals. Find the Riemann sum

3
for f on X which uses the right endpoints of the subintervals.
Solution: The six intervals are of size Az = Lgo = % and the right endpoints are the points z, = 0+ k Ax = g,
that is the points 1,2,1,%, 2 and 2. We have

2
We remark that by using Integration by Parts, one can show that /0 f(z)dx = %.

1
(b) Let f(x) = — and let X be the partition of [%, 15—3] into 6 equal-sized subintervals. Find the Riemann sum
T
for f on X which uses the midpoints of the subintervals.
B_1
Solution: The subintervals are of size Az = b_Ta =S = %, and the endpoints are x, = a + b_Ta k= % + %kz
so that xg,x1,29, - -6 = %, %, g, e 1—;, and the midpoints of the subintervals are ¢ = W# so that
C1,C2,€3, " ",C6 = %7%7%7"'7%' We have
6
Y fle)da = (f(er) + flea) + -+ flco)) (3)
k=1
2(p(2 4 12
=:(FG)+ 1)+ 1(F)
2(5 .5, 5 5
SGHIFs Tt 1)
=1+i+32+3+5+%
60+30+20+15+12410 _ 147 _ 49
60 =60 20
13/5
We remark that / f(z)dx =1n13.
1/5

(c) Let f(z) = 4°% and let X = {0.5,Z,2% 7, 4% 3% 5% 97}, Find the average of the upper and lower
Riemann sums for f on X.

Solution: Note that cosz (and hence f(z)) is decreasing on [0, 7] and increasing on [7.27] and that cosz (hence
f(x)) and the partition X are both symmetric about 7, and so

UK =2(F0) 5 +1(5) F+7 (5

— s ™ ™ 1 . w\ _

=3E
+
~
—
)
<[
SN—
wly
N——

and

—~
Iy
SN—
=3B
+
~
—
3
=
woly
N—

LX) =27 (5) 5+7(5) §+/ (3
=2(2-3+1-3+}-3+1-3)=2r

and so the average of the upper and lower Riemann sums is 3.



2: (a) Suppose that f is increasing on [a,b]. Show that f is integrable on [a, b].
Solution: Suppose that f is increasing (and hence bounded, below by f(a) and above by f(b)) on [a,b]. Notice
that since f is increasing we have My = f(zy) and my = f(xr—1), where My = sup {f(t)‘t € [xk_l,xk]} and

my = inf { f(t)|t € [z5_1,2x]}, and so S0 (M — my) = kXT_L:I (f(zg) = flzr-1)) = f(zn) = flz0) = f(b) = f(a).

Now let € > 0. Choose a partition X = {zg,x1, -, Tn} ofi[a7 b] with | X| < FO~F@- Then

(f, Z MkAkl‘ — kaAkl‘ = Z(Mk — mk)Akz
k=1 k=1
< S (Mg —mi)|X] = (F(b) — F(a))[X] <€
k=1

Thus f is integrable on [a, b] (by Part 2 of Theorem 1.16).

(b) Suppose that f(z) = 0 for all but finitely many points = € [a,b]. Show that f is integrable on [a, b].
Solution: Suppose that f(z) = 0 except possibly at some of the points pg, p1,pe, - - -, Pn, where we have
a=py<p1<--<p=b.
Let M = max {|f(px)||0 < k < ¢}. Let e > 0 be arbitrary. Choose § > 0 so that § < z5; and so that
§ < BEPhet (so that pp—1 +0 < pp — ) forall k = 1,2,---,£. Let X be the partition
X ={po.po+6p1—6,p1+8,p2—6p2+0,-+,pe—1 — 0, pe—1+ 6, pr — 0,pe } -

For each k= 0,1,---¢ let M}, = max{f(px),0} and let my = min{f(px),0}. Note that My —my = |f(px)|, and

we have
U(f,X)=My-6+0+M;-20+0+Ms-20+0+---+Mp_1-20+0+M;-6

L(f,X)=mg-6+04+mq-204+0+mo-204+0+---+my_1-20+0+my-4.
Thus
Uf,X)—L(f,X)=(Mo—mp) -6+ (M1 —mq) -2+ -+ (My_1 —my_1) - 20 + (Mg —my) - §
\f(po)\+2\f(p1)|+2|f(p2)|+"'+2|f(]3271)|+|f(m)|) X
<2M6é <e.

(c) Define f : [0,1] — R as follows. Let f(0) = f(1) = 0. For z € (0,1) with z ¢ Q, let f(z) =0. For z € (0,1)
with z € Q, write z = ¢ where 0 < a,b € Z with gcd(a,b) = 1, and then let f(z) = §. Show that f is integrable
in [0,1].

Solution: Let € > 0 be arbitrary. Choose an integer N > 0 so that % < 5. Note that there are only finitely
many points x € [0, 1] such that f(z) > % (indeed the only such points are the points z = ¢ with0 <a <b € Z
with b < N). Say these points are pq, pa, -+, ps—1 Where

O=po<pr<p2<--<pr—1<p=1.
Choose § > 0 so that § < 55 and so that § < 22251 for all k = 1,2,---,£. Let X be the partition
X:{O,p175p1+5p275p2+5~~~,pg 1— 6, Do— 1+51}
Note that L(f, X) = 0 and since f(z) < & for all z # pg, and f(pg) < % for all k=1,2,---,£ — 1, we have
U(f,X)< %m1—6)+ f(p1) 20+ % (p2 — p1 — 26) + f(p2) - 25+"'+f(17£—1) 26+ % (1 — pe—1 — 0)
N1 =2(0=1)8) + (f(p1) + f(p2) + -+ f(pe-1)) - 26
<t+5L2w<tlsi<s+s=



b
3: (a) Let f be continuous with f > 0 on [a,b]. Show that if/ f =0 then f =0 on [a,b].

Solution: Suppose that f # 0 on [a,b]. Choose ¢ € [a,b] so that f(c) # 0. Note that f(c) > 0 since f > 0.
Either ¢ € [a,b) or ¢ € (a,b]. Let us suppose that ¢ € [a,b) (the case ¢ € (a,b] is similar). By the continuity of
f we can choose § > 0 with § < b — ¢ so that for all x € [a,b] we have

z— | <6 = |f(a) - fle)] < L2 = LD < fa) < B

Then by Additivity and Comparison we have
b c c+6 b
L= a+] s
a c+6
/ 0+ / o / 0

(b) Find ¢'(1) where g(z / V1+t3dt.
3x—3

Solution: Let u(z) = 22 + 1 and let v(z) = 3z — 3. Also, let f(t) = v/1+t3 and let F(u / V14 t3dt so

that F'(u) = f(u), by the FTC. Then
241 3x—3

g(z V1+t3dt = / V1+t3dt — V14 t3dt = F(u(z)) — F(v(z))

3x—3
and so g'(z) = F'(u(z))u/(z) — F' (v(z))v'(z) = f(u(x))(Zx) — f(v(z))(3) =2z f(z® +1) — 3 f(3z — 3). Put in
x=1toget ¢'(1) =2f(2) —3f(0) =2y/14+8—-3/1+0=6—-3=3.

n
1
Find 1
(C) m nLH;oZ n—|—z
Solution: Let f(z) = m and let X,, be the partition of [0,1] into n equal-sized subintervals so z, , = % and

Ay gz = l. By recognizing a limit of Riemann sums as an integral, then applying the FTC, we have

o 1 1 - Uode 1
7}1—{20; T = JEI;(,;f(””””“)A"”“x _/0 5z [ln(l—l—x)}o =In2.

n

,HOOZ
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4: (a) Let 0 < a < b. From the definition, show that f(z) = 22 is integrable on [a, b] with / f=30%—d®).

Solution: Let € > 0 be arbitrary. Choose § = 577—5. Let X be any partition of [a,b] with | X| < d. Let ¢, €

[zg_1,xk] be any sample points. Let s = \/% (xg—12 + Tp_178 + T82) € [TK_1, 7x]. Note that Zf(sk)Akx =

k=1
Z% ($k712 + Tp—12k +90k2) (v — 2p-1) % 2 —wp?) = %(53 —a®), so
k=1 k=1
n n n
Z (ts) Agz — 5(b thk AkI—Zf se)Apz| <Y | f(tk) = flsi)|Axa
k= =1 k=1 k=1

n n
= Z ’tk2 — sk2|Akx = Z |tk + 5;€||tk — 8k|Ak$ < ZQb(SAkJJ =e€.
k=1 k=1 k=1

2 if
(b) Define f:[1,2] — R by f(z) = {; e ¢ Q From the definition, show that U(f) =3 and L(f) = %.

z,ifxeQ.
Solution: First we shall show that U(f) = 3. To do this, we must show that for every partition X of [1,2] we
have 3 < U(f, X), and also that for every ¢ > 0 we can find a partition X of [1,2] such that U(f,X) —3 < e.
Let X = {@o, 21, -+, ®,} be any partition of [1,2]. Let My = sup { f(¢)|t € [xr—_1,x%]}. Note that My = 2y,
(since we can choose t € [zy_1, x] arbitrarily close to x with ¢ € Q so that f(t) = 2t), so we have
X) = ZMkAk-T = Z%k(fﬂk — ZTp—1) Z T+ Tp—1) (T — Tp—1) = (z1® = z-1?)
= = k=1 k=1
=z, —202=22-12=3,
since the sum Z (xkz — xk_12) is a telescoping sum. Now let € > 0 be arbitrary. Choose a partition X =
k=1

{0, 21, -, xn} with |X| < e. Let My = sup {f(¢)|f(t) € [wk—1,2x]} Note, as above, that M}, = 2z and that
Z(xk + xp—1)(xk — TK—1) = 3, so we have
k=1

n n n

U(f,X)-3= ZkaAkx — Z(mk + xp_1)Apz = Z(xk —xp_1) Ak < Z | X|Agx < ZeAkx =€.

k=1 k=1 k=1 k=1

To show that L(f, X) = ;, we must show that for any partition X of [1,2], we have L(f, X) < %, and also

that given any e > 0 there exists a partition X of [1,2] such that 7 L(f,X) <e Let X = {xo,x1, ", xn}

be any partition of [1,2]. Let s = \/g (xp—12 + Tp_178 + T82). Note that, as shown in Part (a), we have
ZstAkm = % (23 - 13) = % Let my, = inf {f(t)‘t € [xk,l,xk]}. Note that mj; = 2,12 (since we can choose

t € [zr—1, )] arbitrarily close to zx_1 with t ¢ Q), and so

n n n
X) = kaAk:L' = Zxk_12Akx < Zsk2Ak$€ =1I.
k=1 k=1 k=1

Now let € > 0 be arbitrary. Choose a partition X = {zg, 71, -+, 7,} of [1,2] with |[X| < £. As above, let

Sp = \/% (xr—12 + zp_12) + x%2) so that Zsszkx = %, and let my, = inf{f(t)|t € [zk_l,zk]} = Tp_12.
b=
Then '
% - L(f,X)= Z s ARz — Zxk,fAkm = Z (sk;2 — xk,lz) Apz < Z (:13;62 — xk,12) Az
k k=1 k=1 k=1
< 2 (mk2 _ xk712) |X]| < ;; (ggk2 _ xk712) _ % (22 _ 12) —

—_
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I
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b
5: (a) Find / 23 dz by evaluating the limit of a sequence of Riemann sums.
a
Solution: Let f(z) = 2 and let X,, = (l’n’(),In’l, e ,xnm) where z, , = a+ b_T“ kso Ay px = b_T“. Then
b n
/a o= Jim 3 f(5n4) s

n

— 1 b—a 1\3 (b—a
= lim Y (a+ 252 k)" (550)

k=1

:nh_{r;oz a® + 3a? k—|—3a( ) k? + (bT)gkg) (*3%)

[\~]

(«
:hm ( 2131—1—3(1 ( )

7’L—>OO

S k30 (t0)” Y R+ (50)" 1 k)
k=1 k=1

k=1

. a 2 n(n+1 —a 3 n(n+1)(2n+1 —a 4 p2 n+1 2
:nlgr;o(a (55 o+ 307 (52) T8 4 3 (1) st ()t %)
= a3(b a)+3a*(b—a)?+ad—a)®+i0b-a)?
=1(b- a)(4a +6a%(b— a) + 4a(b — a)* + (b — a)?)
= 1(b— a)(4a® + 6ab® — 6a® + 4ab* — 8a®b + 4a® + b* — 3ab® + 3a’b — a?)
= 1(b—a)(a® + a®b + ab® + b°)

Lot o).

8
b) Find / ¥z dr by evaluating the limit of a sequence of Riemann sums.
0

Solution: Let f(z) = ¢/z and let X,, = (xn,o,xn 1y, Tn n) where z,, j = (%)3 We have

At = Ty — Tnpr = (2)7 = (2ED ”) B (k= (k—1)%) = S (3K2 — 3k +1).

n

Note that 3k% — 3k + 1 is increasing for k > 1 (since g(z) = 32% — 3z + 1 is increasing for z > —%) and so we
have | X, | = A, o = 55 (3n® —3n+1) = 0 as n — oo. Thus

| Ve e i > feni)Bnss

= lim > () (&) Bk =3k +1)

k=1

= lim (n4 Z K+ n4 Z K+ 4 é:l k>

n—roo

_ 1 48 n’(n+1)> _ 48 n(n+1)(2n+1) 16 n(n+1)
J (3 2 g st

__ 48
=4 _ 040
=12.



2
1

: (a) Find / — dz by evaluating the limit of a sequence of Riemann sums.
1z

Solution: Let f(x) = % and let X,, = (mn,o,iﬂn,h e ,xnﬁn) with @, = 2k/n Note that
Ap k@ = Ty gy — Ty g1 = 28" — 2071/m = gk/n (1 _9=1/n)

Since 2¥/™ is increasing with k, we have |X,,| = Ay pr =2 (1 — 2_1/”) — 0 as n — 00, and so

2 n n
1 _ N 1 —k/n ok/n —1/n
/1 Edm— lim ;f(xn’k)An)kx_nh_}H;O;Q 2 (1—2 )

n—oo
n 1—271/n

= gim (1-27Y") % = lim (1-27")n= lim ~—F—

n—o00 =1 n—o00 n—o00 o

1—-27% In2.27%

= lim = lim nes by 'Hospital’s Rule

z—0 T z—0 1
=In2.

2
(b) Find / Inz dx by evaluating the limit of a sequence of Riemann sums.
1

n
Solution: We shall need a formula for S = " k7. We have
k=1

S=1r+2r2+3r>+ .- nr" and
rS=1r+2r3 4. 4+ (n— )r" +nr" !

so that
n+1 _ n+2 _ n+1l _ ,.n+l1
rS—Sznr”+1—(7‘+r2+7"3—|—-~-—|—7“"):nr"+1—T T:nT nr r r7
r—1 r—1
and hence o o
ikrk:S:nT 7(n+1)27" —r
k=1 (r—1)
Now let f(z) =Inz and let X, = (Tn,0,Tn,1,"*, Tnn) With @, 5 = b1 2/n — 9k/n a5 above. Then
2 n n
I I kIn2 k/n —1/n
/1 Inz dz = nlgr;o’;f(xn’k)An,k = nh_}rr;o; (T) (2 / ) (1 — 91/ )

= lim (22)(1-2-1/n) kgl k (21/n)k

n—oQ

In2 2Ym—1 2Yr (n 2000/ — (n 4 1)2 + D) by the formula for i krk

= l1m

n—oo 1 - 21/n : (21/n _ 1)2 =
= lim n n. — lim n n

n—o0 21/n 1 n—00 91/n _ 1

. In2(22Y"—1)-1) _ 1

= lim e =In2(2— lim —2—

n—00 21/n _ 1 n—oo 21/n _ 1

1

—1In2 (2 — lim 2f_1> —1In2 <2 —lim 230) , by I'Hospital’s Rule

=In2(2-5) =2mI2-1.



™
7: (a) Find / sinxz dz by evaluating the limit of a sequence of Riemann sums.
0

Solution: Let f(z) = sinz and let X,, be the partition of [0, 7] into n equal-sized subintervals, so =, = %k
and A, yz = 7. Then we have
P n n
. o . . k
/0 sinz dz = nl;rgo ; f@n k) Anpx = nl;rgo Zl T sin (7”)
To find a formula for the sum Zsm 7’7) let o = ™™ s0 sin %T = Im(a*). Note that a® = —1 and a@ = 1,
k=1
so we have
n n
1-a” 2 20(1 — @
Zsink—’rzlm Zak =Im M =1Im @ =Im a(—a)i
n 11—« 11—« (1-a)(1-a)
k=1 k=1
Im 2(a — a@) ) —1m a—1 _ Im(a) _ sin%ﬁ'
1 —2Re() + o 1 — Re(a) I —-Re(a) 1—cos™
Thus we have N
g TsinZ i
/ sinx d = lim Z% Sin(%) = lim *—7"- = limm
0 n—voo £ n—oo 1 —cos - z—01 —cosx
= lim w , by ’'Hospital’s Rule
z—0 sin
= lim COST F COST — xSINT , by 'Hospital’s Rule again
z—0 CoS T
=2.
1
(b) Find / V1 — 22 dx by evaluating the limit of a sequence of Riemann sums.
0
Solution: Let f(x) = v1 —22. Let X,, = {zn0,%n,1,  *,Tn,n} where z, ; = sin (2—”) We have
Az = sin (52) — sin (LC;;)”)
= sin (g—:{) — sin (’2“2) oS ( ) + cos (g") sin (g—z)
. k k
= sin (57) (1 — cos (55)) + cos (57) sin (35) -
n T
sin ©
Note that |X,| < A, px < 1—cos 5 +sin g~ — 0 as n — oo . Using the formula Z sin &7 17”7” which
—cos =
k=1 n
we derived in the solution to Part (a), and the formula Z cos %’T =-1 (Which could be derived in the same
k=1
way as the previous formula, but can also be seen immediately using the symmetry cos %’T = —cos (”;Lk)” ), we
have
1 n
/ o / k k k
/0 1_$2dx_,}1_{202 1 — sin? 2— Appr = hm ;(C%;) (sln—(l—c052 )—|—c052”b1n2n>
:7}i—>ngo (zsm—(l—cos2 )—i—%(l—l—cos%”)sm%)
k=1

l\’)\»—l
l\)‘:l

n n n
:nh_{r;o(% (l—cos%)kz_zlsin%’T f" %; 2_: )

n— 00 COSs
n

. 1 sin © 1
= lim 2(1—608%)1_7-1- nsm%—ism%

=0+ 7% —0= 7, where we used I'Hopital’s Rule.



8: (a) Show that if f is integrable on [a,b] then f? is integrable on [a, b].

Solution: Suppose that f is integrable on [a,b]. Then we know that |f| is also integrable on [a, b]. Let M be an
upper bound for |f|. Let € > 0 be arbitrary. Choose a partition X of [a, b] so that U(|f], X) — L(| f|, X) < 55z
Note that My, (f?) = My (| f])? and mi(f?) = my(|f])? so we have
Mi(f?) = mi(f?) = Mi(|f])? — mu(|f])?
= (M (1) = ma(I£D) (Mi(I]) + mi(I£])) -
< (Mi(f1) = ma(1£) - 2M
Thus

n

U2, X) = L(f2 X) = > (Mi(f2) — ma(f2)) Aga

k—1

<Z My (1f) = me(|f]) - 2M - Ay
_2M( (IF, X) = L(|f], X)) <€

(b) Show that if f and g are both integrable on [a,b], then fg is integrable on [a, b].

Solution: Suppose that f and g are both integrable on [a,b]. Then, by linearity, (f + g) is also integrable and
so f2, g% and (f + g)? are all integrable by part (a). Since fg = ((f +g)? — f* — ¢%), it is integrable too, by
linearity.

(c) Show that if f is integrable and non-negative on [a, b], then /f is integrable on [a, b].

Solution: Suppose that f is integrable and non-negative on [a,b]. When X = {zg,x1,---,2,} is a partition of
[a,b], let us write My (\/f) = sup {\/m‘t € [zr—1, 2]} and Mi(f) = sup {f(t)|t € [wk—1, 2k}, and similarly
for my(v/f) and my(f). Note that My (f) = My(v/f)? and my(f) = mp(v/f)?, and so we have

My (f) = mi(f) = (M (VF) = ma(V/ 1)) (Mo (V) +mi (V1)) -
For any constant ¢ > 0, when My(v/f) < ¢ we have My(v/f) — mi(V/f) < ¢, and when My(v/f) > ¢ we

have My (v/f) + mi(\V/f) > ¢ so that Mi(f) — mi(f) > (Mp(VF) — mie(VF)) ¢, that is My(v/f) — mr(v/) <
%(Mk(f) —my (f)) Thus for any partition X and any constant ¢ > 0 we have

Z (Mk(\/?) —mk(\/?)) Apr < ZcAkxzc(b—a) , and

k such that My(\/f) < ¢ k=1
> (MH-mVf < D0 (M) = mi() D=L (U(£.X) = L(f. X))
k such that My(\/f) > ¢ k=1
Now, let € > 0. Set ¢ = Q(be— ) and choose a partition X of [a,b] such that U(f,X) — L(f,X) < 4({,62 5
Then
UWFX) =LV X) = Y (M) = mi(V/F)) A
k=1
= Y. M(H-m(VD) Mex + Y (M) - m(V D)) Ape
k with Mk(\/f) <c k with My(\/f) > ¢
< c(b—a)+ ¢ (U(f,X) - L(f. X))
€ 2(b—a) €

<

S R o S
Thus /f is integrable on [a, b].



9: Determine (with proof) which of the following statements are true.

(a) If f : [a,b] — [e,d] is integrable on [a,b] and ¢ : [¢,d] — R is integrable on [c¢, d] then the composite g o f
must be integrable on [a, b].

Solution: This is false. Indeed let f : [0,1] — [0, 1] be an integrable function with f(z) > 0 whenever z € Q
and f(z) = 0 whenever z ¢ Q, such as the function f(z) from Problem 2(c), and let g : [0,1] — [0,1] be the
map given by g(0) = 0 and g(z) = 1 for x > 0. We know that g is integrable on [0, 1] by Problem 2(b). But the
composite function go f is not integrable on [0, 1], indeed we have g(f(z)) = 0 whenever z ¢ Q and g(f(x)) =1
whenever z € Q, and we have seen (in Example 1.4) that this function is not integrable.

(b) If f(x) = 0 for all but countably many z € [a,b] and f(z) = 1 for countably many « € [a,b], then f cannot
be integrable on [a, b].

Solution: This is false. Indeed, let

fx) =

life=1- % for some integer n > 1,
0 otherwise .

We shall show that f is integrable on [0,1]. Let ¢ > 0. We shall find a partition X of [a,b] such that
U(f,X)—L(f,X) <e. Choose n so that 51 < ¢ (we can do this since lim %L =0, by I'Hoptal’s Rule). For

n
n— oo 2

k:1,2,~-~,nlet$k:1—2ik—2n% andykzl—zik—i—%%. Thenyk—xkzz—ln,andxk—yk,l:2%—2—1”,
so for kK < n we have xr; > yr_1 and we have z, = y,_1 and y, = 1 — 271% Let X be the partition
{0, T1, Y1, T2, Y2, s Tne1>Yn-1 = Tn, Yn, 1}. On every subinterval, the minimum value of f is equal to 0, and

so L(f, X) = 0. On each of the subintervals [z, yx], and also in the final subinterval [y,, 1], the maximum value
of f is equal to 1, while in all the other subintervals, the maximum value of f is 0, and so

Ulf,X) =0+ (y1—21) +0+ (g2 —22) + 0+ + 0+ (Yn—1 — Tn-1) + (Yn — ) + (1 — yn))
bt < m

Thus U(f, X) — L(f, X) < € as required.

T
(c) If f is integrable on [a,b] and the function F(z) = / f(¢) dt is differentiable with F' = f on [a,b] then f
a

is continuous on [a, b].

Solution: This is false. To find a counterexample, consider the function G given by G(z) = 22 sin % when = # 0

and G(0) = 0. Note that G is differentiable. Let f(z) = G'(z) forz € [-1, 1], so we have f(z) = 2z sin 1 —cos 2

for x # 0 and f(0) = 0. Since f is continuous except at 0, f is integ;al;rle by part (a). We know, from the

Fundamental Theorem, that the function F(z) = / f(t)dt is continuous on [ — L, 1] and is differentiable
—1/m

with F'(z) = f(x) for all x # 0. For x < 0 we have F = f = G’ so F = G + ¢; for some constant ¢;. Since

F(-1) =0=G(-1), we must have ¢; = 0, and so F(z) = G(z) for all # < 0. Since F and G are both

continuous at 0, we also have have F(0) = G(0) = 0. For z > 0 we again have F/ = f = G so F = G + ¢

for some constant cy. Since F' and G are both continuous at 0 with F/(0) = G(0), we must have co = 0 and so

F(z) = G(x) for all . Thus F is differentiable with F’ = f for all z (including 0), but f is not continuous at 0.



