PMATH 333 Real Analysis, Solutions to the Exercises for Chapter 5

: (a) Let A = Range(f) where f: R — R? is given by f(t) = (cost,sin2t) and let B = Null(g) where g : R - R
is given by g(z,y) = y? + 42%(2® — 1). Prove (algebraically) that A = B.

Solution: Note that A = Range(f) = {(cost,sin2t)|t € R} and B = Null(g) = {(z,y)|y* +42*(2? — 1) = 0}. Let
(x,y) € A. Choose t € R such that z = cost and y = sin 2¢. Then x? = cos? t and

y? = 4sin®tcos®t = 4cos® t(1 — cos? t) = 4a?(1 — 2?)
so we have y? + 42%(z2 — 1) = 0 and so (z,y) € B. Thus A C B.

Conversely, suppose that (z,y) € B so we have y?> = 42%(1 — 22). Then y = £22v/1 — 22 with -1 <z < 1. If
y = 221 — 22 then we can let t = cos~ 'z € [0, 7], and then cost = x and, since sint > 0,

sin2t = 2sintcost = 2costVsin?t = 20051%\/1 —cos?t = 236\/1 —x2=y.
If y = —22v/1 — 22 then we can let t = —cos™! x € [~7,0], and then cost = z and, since sint < 0,

sin 2t = 2sintcost = —2costVsin?t = —2cost\/1 — cos?t = —2z\/1 — 22 =y.
In either case, we can choose t € R such that (z,y) = (cost,sin2t) and so (z,y) € A. Thus B C A.

(b) Let f(x,y) = 22 4+ 2y? and g(z,y) = 47 — y*. Find a parametric equation for the curve of intersection of the
two surfaces z = f(z,y) and z = g(z, y).

Solution: Set f(z,y) = g(x,y) to get 2% +2y = 4x y?, which we can write as (z—2)%2+3y? = 4. This is an ellipse
which we can parametrize as (z,y) = (2+2 cost, 2 7 sin t) We also need to have z = 42 —y? = 84+8cost — sm t,
so a parametric equation for the curve of intersection is

(z,y,2) = aft) = (2+2cost, % sint,8 + 8cost — 3 sin ’t).

' V3
To be rigorous, let us verify that Range(«) = Graph(f) N Graph(g). Let (x,y,2) € Range( ). Choose t € R such
that (z,y,2) = a(t), so we have © = 2+ 2cost, y = \2[ sint and z = 8 + 8cost — 3 sin?¢t. Then we have

2
flx,y) =22 + 2y? = (24 2cost)? +2(\fs1nt> =4+ 8cost+4cos?t + Ssin’t =8+ 8cost — Fsin’t =2
so that (z,y,2) € Graph(f), and we have
2
g(z,y) = 4o — y? = 4(2 + 2 cost) — (\/gsmt) =8+8cost — §sin’t =2

so that (x,y, z) € Graph(g). Thus Range(«) C Graph(f) N Graph(g).

Let (z,y,2) € Graph(f) N Graph(g). Since (x,y,2) € Graph(f) we have z = f(x,y) = 2% + 2y?, and since
(x,7,2) € Graph(g) we have z = g(x,y) = 42 — y2. It follows that 2% + 2y? = 4z — y?, that is (v — 2)% + 3y = 4.
Since (z —2)? = 4 — 3y? < 4 we have | ;2| < 1. Since 3y* = 4 — (z — 2)? < 4, we have |£ | <1. Let t €0, 27r)

be the (unique) angle with sint = gy and cost = “JT_Q Then we have x = 2 + 2cost, y = \/gsmt and z =

g(z,y) = 4o —y* = 8+8cost— 5 sin and so (z,y, z) = a(t) € Range(a). Thus Graph(f)NGraph(g) C Range(w).



2: (a) Let A= {(x, y) ER? | 0<z,0<y and zy< 1}. Show, from the definition of an open set, that A is open in R2

Solution: Before beginning our proof, let us discuss our strategy. Suppose that (a,b) € A, so we have a > 0,5 > 0
and ab < 1. We want to choose r > 0 so that the disc B, = B((a,b),r) is contained in A. Note that the open
square @, given by |z — a|] < r and |y — b| < r contains the disc B, so it suffices to ensure that @, is contained
in A. Note that if r < a then |z —a| <r= |z —a| <a = 0 < z < 2a = z > 0. Similarly, if » < b then
ly — b <r =y >0. Note that if r <aand r <bthenr <a+bandso (a+7r)(b+r)=ab+r(a+b)+1r?<
ab+r(a+b)+r(a+b) =ab+ 2r(a+b) and we can obtain (a + r)(b+ r) < 1 by choosing r < 2};’;};).

1—ab

Now we begin the proof. Let (a,b) € A, so we have a > 0, b > 0 and ab < 1. Choose r = min {a, b, m}

Let (z,y) € B, = B((a,b),r). Then |z —a| = \/|[z —a]*> < /lz —a2+]y—b]> = |(z,y) — (a,b)] < r and
similarly |y — b < 7. Since |[x —a] < r < a we have 0 < a—r < z < a+7r and since |y — b < r < b we
have 0 < b—r <y < b+r. Since0<x<a+rand0<y<a+randr<a+bandr<ﬁwehave
zy<(a+7r)(b+7r)=ab+r(a+b)+7r?<ab+2r(a+b) <ab+ (1 —ab)=1. Since z>0and y >0 and zy < 1

we have (z,y) € A. Thus B, C A, as required, and so A is open.

(b) Let B:{ (%, %) €R2’ te R}. Show that B is not closed in R2.

Solution: To solve this problem, you might find it helpful to draw a picture of the set B by choosing various
values of ¢ and plotting points. You should find that B looks like the unit circle centred at (0,0) with the point
(0,1) removed. If you wish, you can show, algebraically, that this is indeed the case.

Let a = (0,1). Let z(t) = % and y(t) = :z—;} and f(t) = (x(t),y(t)) so that B = {f(t)|t € R}. We claim

that a € B’ (that is a is a limit point of B) but a ¢ B. It is clear that a ¢ B because to get f(¢t) = a we need
x(t) = 0 and y(t) = 1, but to get x(t) = % = 0 we must choose t = 0, and then y(t) = f;jr} =-1#1. To
show that a € B’, we shall show that for all r > 0 we have B(a,r) N B # 0. Let r > 0. Since tli)m z(t) = 0 and

tlim y(t) = 1 we can choose ¢ € R so that |z(t) — 0‘ < 5 and {y(t) — 1| < §. Then we have
—00

|f(t) —a| = (=), y(1) = (0,1)] = [(x(t), y(t) = )| < |z(@®)] +y(t) — 1 < 5+ 5 =7
and so f(t) € B(a,r) N B. This shows that for all r > 0 we have B(a,7) N B # 0, and so a € B’. Since a € B’
and a ¢ B we do not have B’ C B and so B is not closed (by Part (2) of Theorem 5.19).

3: Let A C R"™.

(a) Show that A’ is closed in R™.

Solution: By Part (2) of Theorem 5.19, we know that A’ is closed if and only if (A’) C A’. Let a € (A’)’, that
is let a be a limit point of A’. Let r > 0. Since a is a limit point of A’, we know that B*(a,r) N A’ # (. Choose
b € B*(a,r) N A’. Note that 0 < |a —b| < r. Let s = min (Ja — b|,r — |[a — b]) > 0. Since b € A’ we know that
B*(b,s) N A # (). Choose ¢ € B*(b,s) N A. We claim that ¢ € B*(a,r) N A. By the Triangle Inequality we have
la—c| <la—bl+|b—c| <|a—b+s<l|a—bl+r—|a—>bl =r, and by the Triangle Inequality again, we have
la—bl <|la—c|+|c—blandso|a—c|>]a=bl—|b—c| >]a—bl—s>]a—bl—]a—b=0. Thus0< |a—¢| <r
and so ¢ € B*(a,r) N A, as claimed. Since ¢ € B*(a,r) N A, we see that B*(a,7) N A # (). We have shown that
for every 7 > 0 we have B*(a,7) N A # (), and so a € A’. This proves that (A’)’ C A’, and so A’ is closed.

(b) Show that 9A = A\ A°.

Solution: Let a € dA. We claim first that a € A. Since A = AU A’ it suffices to show that either a € A or
a € A'. Suppose that a ¢ A. Let r > 0 be arbitrary. Since a € A we have B(a,r) N A # 0. Since a ¢ A we have
B*(a,r)N A = B(a,r) N A and so B*(a,r) N A) # (). Since r > 0 was arbitrary, we have a € A’, as required.

Next we claim that a ¢ A°. Suppose, for a contradiction, that a € A°. By Part (b), a is an interior point of
A so we can choose r > 0 so that B(a,r) C A. Since B(a,r) C A we have B(a,r) N A° = (). But since a € A we
have B(a,r) N A¢ # (), so we have obtained the desired contradiction. Thus a ¢ A°, as claimed. This completes
the proof that 4 C A\ A°.

Now let a € A\ A, that is let a € A with a ¢ A°. Let r > 0 be arbitrary. Case 1: suppose that a € A. Let
r > 0 be arbitrary. Since a € A and a € B(a,r) we have B(a,7)NA # ). Since a ¢ A° we have B(a,r) € A and so
B(a,r)N A€ # (. Thus a € JA. Case 2: suppose that a ¢ A. Let r > 0 be arbitrary. Since a ¢ A and a € B(a,r)
we have B(a,r) N A¢ # (). Sincea € A = AUA" and a ¢ A we have a € A’ and so B*(a,r) N A # () hence
B(a,7)N A # (. Thus a € JA. In either case we find that a € A. This completes the proof that A\ A° C JA.



4: (a) Let A, B C R™ show that if A is connected and A C B C A then B is connected.

Solution: Suppose that A is connected and that A C B C A. Suppose, for a contradiction, that B is disconnected.
Choose open sets U,V C R™ which separate B, so we have UNB # 0, VNB # 0, UNV =0 and BCUUV.
We claim that U and V also separate A (contradicting the fact that A is connected). Since AC B C U UV, it
suffices to prove that UN A # 0 and VN A # . We claim that UN A # (. Since U N B # () we can choose
beUNDB. Then we have be BC A= AUA’, and so either be Aorbe A’. If b € A then we have be UN A
so that U N A # (. Suppose that b € A’. Since b € U and U is open, we can choose r > 0 such that B(b,r) C U.
Since b € A’ we have B(b,r) N A # () so we can choose ¢ € B(b,r) N A. Then we have ¢ € B(b,r) CU and ¢ € A,
hence c € UN A, and so UN A # (. This proves that U N A # (), as claimed. The proof that V' N A # () is similar,
and so U and V separate A giving the desired contradiction.

(b) Let S be a nonempty set and let A; C R” for each j € S. Suppose that A; is connected for all j € S and
that Ay N Ay # 0 for all k,£ € S. Show that |J A, is connected.
je€Ss
Solution: Let B = |J A;. Suppose, for a contradiction, that B is disconnected. Choose open sets U,V C R"
jES
which separate B, that is BNU #0, BNV #0, UNV =@ and BCUUV. Choosea € BNU andbe BNV.
Since a € B = |J A;, we can choose k € S such that a € A;. Similarly we can choose ¢ € S such that b € A,.
jE€S
Then we have a € A, NU and b € Ay NV. Since Ay is connected, and a € A N U so that A, N U # B, and
A, C |J Aj =B CUUYV, it follows that we must have Ay, C U because otherwise we would have Ay NV # ()
jes

and so U and V would separate Aj. Similarly, we must have Ay C V. Since Ay C U and Ay C V we have
AN A, CUNV = (). This contradicts our assumption that Ay N Ay # (), and so B is connected, as required.

5: Let A C P C R". Define the interior of A in P to be the union of all sets £ C P such that F is open in P and
E C A. Define the closure of A in P to be the intersection of all sets F' C P such that F' is closed in P and
A C F. Denote the interior of A in R” and the closure of A in R” by A° and A (as usual). Denote the interior
of A in P and the closure of A in P by Intp(A) and Clp(A).

(a) Show that Clp(A) = AN P.

Solution: Since A is closed in R™ it follows that AN P is closed in P. Since A C A and A C P we have A C ANP.
Since AN P is closed in P and A C AN P, it follows from the definition of Clp(A) that Clp(A) C AN P.

Let F be any closed set in P with A C F. Choose a closed set K in R™ such that F = K N P. Since K is
closed in R® and A C K we have A C K. Thus ANP C KNP =F. Since AN P C F for every closed set F in
P which contains A, it follows, from the definition of Clp(A), that AN P C Clp(A).

(b) Show that Intp(A) = (AU P°)°N P, where P° =R"\ P.

Solution: Let F' = (AU P°)° N P. Since (AU P°)° is open in R™ it follows that F' = (AU P¢)°N P is open in P.
Also note that we have FF = (AUP)°NP C (AUP)NP=(ANP)U(P°NP)=(ANP)UD=ANP=A,
since A C P. Since F is open in P and F' C A it follows, from the definition of Intp(A), that F' C Intp(A).

Let F be any open set in P with £ C A. Choose an open set U in R™ such that U N P = E. Then we have
U=UNR"=UNPUP)=(UNP)UUNP)=EU({UNP) CAUP since EC Aand UNP°C P°.
Since U is open in R™ and U C A U P¢ it follows that U C (AU P¢)°. Since E=UNP CU C (AU P9)° and
ECACPwehave EC (AUP®)°NP =F. Since E C F for every open set F in P with E C A it follows, from
the definition of Intp(A), that Intp(A) C F.



6: (a) Show, from the definition of compactness, that the set A = QN [0, 1] is not compact.

Solution: Let a € [0,1] with a ¢ Q and note that a is a limit point of A because Q is dense in R. For each
neZt let U, = B(a 7)6 = (—o0,a—2) U (a+2x,00), and let S = {Up|n € ZT}. Note that each U, is

open and we have U U, = R\ {a}, so S is an open cover of A. Let T be any nonempty finite subset of
A, say T = {Unl,[;n::,-~ Um} with ny < ng < .-+ < ny. Note that U; C Uy C Uz C --- and so we have
UrT = U Un, = Un, = B(a, ) Since a is a limit point of A we have B(a,2) N A # 0, hence B(a, L) NA # 0,
and so A is not a subset of | JT. Since no finite subset of S covers A, it follows that A is not compact.

Inl
1+n

(b) Show, from the definition of compactness, that the set B = {

Solution: Note that lim nin| =1and lim nin]
n—oo 1 + n? n——oo 1 +n2

and £1 € B we can choose V,W € S such that 1 € V and —1 € W. Since V and W are open we can choose r > 0

such that B(1,7) C V and B(—1,r) C W. Since lim ninl =1and lim ninl
n— 00 1+’I”L2 n—oo 1 + n2

such that for all n € Z, if n > N then | "‘"I — 1‘ < 7 so that "‘"I € V and if n < —N then "‘"I +1
so that nl"‘z € W. For each n € Z with —N < n < N, choose U, € S so that -4 ¢ ©,. Then the set

n e Z} U{1,—1} is compact.

= —1. Let S be any open cover of B. Since S covers B

= —1 we can choose N € Zt

14+n2
T={U, } — N <n<n}U{V,W} is a finite subcover of S. Thus B is compact.
(c) Show that the set O, (R) = {4 € M, ( )|ATA = I} is compact. Here, we are identifying M, (R) with R", so
that the dot product of tvvo matrices is glven by A« B =Y Ay By = trace(BTA).
kb

Solution: Note that for A € M, (R) we have

A€cO,R) <= ATA=1 <= (ATA), =1, forall k,l <= > A;1A;; = g, for all k,1,

i=1
lifk=1

O, = .
0if k #1.

For each pair k,l, define f; : M,(R) — R by fr.(4) = Z A; kAig — 0. Note that each function fi; is

=
continuous since it is an elementary function on the n? varlables A; j. We have

On(R) = {A € M,(R)|fi1(A) =0 for all k, 1} = (| {A € Mp(R)|fru(A) =0} =) £} (0)
k.l
Note that f,;ll (0) is the complement in M, (R) of the set f,;ll (R\ {0}). Since R\ {0} is open in R and each

function f,; is continuous, it follows that each set f,;ll (R\ {0}) is open, and hence each set f,;ll (0) is closed.
Thus O, (R) is closed because it is the intersection of finitely many closed sets.
We claim that O, (R) is bounded. Let A € O, (R). Let uy, ug,- -, uy, be the columns of A. Note that

ur’ Up Uy U UL e UL e Up

AT A = : (u17~~~,un):

Up, Up * UL Up * U2 - Up * Up

where

and so
ATA=T= (ATA)pp=1forall k = uy, » uj, = 1 for all k = |uy| = 1 for all k,1

— |42 = zz< 2= =Y 1=n.

=1i=1 k=1 k=1

Thus for every A € O, (R™) we have |A| = /n and so O, (R) is bounded, as claimed. We have shown that O,,(R)
is closed and bounded, and so it is compact, by the Heine Borel Theorm (which we can apply because we are

identifying M, (R) with R"").



7: For each of the following functions f : R\ {0} = R, find lim  f(z,y) or show that the limit does not exist.

(z,y)—(0,0)

2 .2
() fe9) = s

Solution: Let # € R and define o : R — R? by «a(t) = (tcosf,tsinf). Then we have }in(l) a(t) = (0,0) and
—

flat)) = % = cos 26 for all ¢t # 0, and so (by Composites and Limits) if ( %Hn( )f(m,y) existed
x,y)—(0,0

then it would be equal to cos26. Since different choices of @ yield different values for the limit, the limit cannot
exist,.

2243
JJ4 + y6

(b) flz,y) =

Solution: Consider the graph z = f(x,y). The level set y = ¢ > 0 is given by z = g(x) = f(z,¢) = % Then

C3 xT Zl)4 CG — I2 CEB C3 xr 667I4
Y = gf(r) = SO _ Seniss

SO Weshz%ve 2 = 0 when z = 0 and when 2 = +¢3/2. When 2 = 0 we have z = 0 and when 2 = +¢3/2 we have
r= G = 5. The graph z = f(x,y) with y > 0 has a maximum ridge of height z = 3 along z = +9%/2, that is
% =3,

Define o : R — R? by a(t) = (0,¢). Then tlir% a(t) = (0,0) and f(«a(t)) = 0forall t # 0, and so (by Composites
—

and Limits) if ( %im(0 0 f(z,y) existed then it would be equal to 0. Define 3 : R — R? by §(t) = (t3,¢%). Then
)= (0,

lim B(t) = (0,0) and f(B(t)) = oz = & forall t £0, and so if  lim  f(x,y) existed then it would be equal
t—0 (z,y)%(0,0)

to % Thus the limit cannot exist.

4,5
@) f@y) = s

Solution: Recall that for all u,v € R we have 0 < (Ju| —[v])? = u® — 2|uv|+v? and so |uv| < $(u? +v?). It follows
that for all (z,y) # (0,0) we have

4,5

|f(x,y) - 0’ = ‘I‘nys

Given € > 0 choose § = v/2¢. Then for all z,y with 0 < |(x, y)| < & we have 0 < 22 + y% < §2 and so
|flz,y) =0 < 392 < 3% +4%) < $6% =«

_ ety o 3@ 1 0
T By S T s T 2Y




8: Let f: ACR" - B CR™.

(a) Show that f is continuous if and only if f~1(F) is closed in A for every closed set F in B.

Solution: We already know that f is continuous if and only if f~1(E) is open in A for every open set E in B.
Suppose that f is continuous. Let F be a closed set in B. Then B\ F is open in B and so f~!(B\ F) is open in
A and hence A\ f~1(B\ F) is closed in A. But notice that f~1(F) = A\ f~1(B\ F) because for a € A we have

ac fTYF) <= f(a)eF < f(a) ¢ B\F <= a¢ f"Y(B\F) < ac A\ f Y (B\F).

Thus f~1(F) is closed in A for every closed set F in B.

Conversely, suppose that f~1(F) is closed in A for every closed set F' in B. Let E be an open set in B.
Then B\ E is closed in B, hence f~1(B\ E) is closed in B, and so A\ f~!(B\ E) is open in A. But notice that
f7YE)= A\ f~Y(B\ E), as above. This shows that that f~1(FE) is open in A for every open set E in B, and
so f is continuous.

(b) Let E and F be closed sets in A with EU F = A. Let g be the restriction of f to E, and let h be the
restriction of f to F. Show that f is continuous if and only if both g and h are continuous.

Solution: We begin by remarking that when S C A C R"”, the open sets in S are the sets of the form L NS
with L being an open set in A. Indeed when L is open in A we can choose an open set U in R™ such that
L=UnA, and then we have LNS = (UNA)NS =UnNS since S C A. On the other hand, when FE is open
in S we can choose an open set U in R™ such that £ = U N S and then the set L = U N A is open in A with
LNS={UNA)NS=UNS = E. Similarly, the closed sets in S are the sets of the form K NS with K being a
closed set in A.

Suppose f: A — B is continuous. We claim that the restriction of f to any subset S C A is continuous. Let
S C Aandlet p: S C A— B be the restriction of f to S. Let E be an open set in B. Then f~1(E) is open in
A and so SN f~1(E) is open in S. But notice that p~'(E) = SN f~1(E) since for a € A we have

ac€p Y (E) —<= acSandp(a) €E < ac Sand f(a) € E
< acSandac fHE) <= acSnfYE).

This shows that p~1(E) is open in S for every open set E in B, and so p is continuous in S.

Conversely, suppose that both of the two restrictions g and h are continuous. Let C' be a closed set in B.
Then g~1(C) is closed in E and h=1(C) is closed in F. Since g~1(C) is closed in E we can choose a closed set K in
A so that g71(C) = ENK. Since E and K are both closed in A4, it follows that g=!(C) is closed in A. Similarly,
since h=1(C) is closed in F and F is closed in A, it follows that h~1(C) is closed in A. Since g~!(C) and h=1(C)
are both closed in A, their union g=1(C) U h=1(C) is closed in A. But notice that f~1(C) = g~ 1(C) Uh~1(O)
because for a € A we have

ac f7H0) <= acAand f(a) €C <= a€ EUF and f(a) €C
< (a€ Eand f(a) € C) or (a € F and f(a) € C)
<= (a€ Eand g(a) € C) or (a € F and h(a) € C)

— acg (C)orach }(C).

(c) Show that f is continuous if and only if for every E C A we have f(E) C f(E).

Solution: Suppose that f is continuous. Let £ C A. Let b € f(E), say b = f(a) where a € AN E. We must show
that b € f(E). Let r > 0. Since Bp(b,r) is open in B and f is continuous, f~*(Bp(b,r)) is open in A, so we can
choose s > 0 so that Ba(a,s) C f~'(Bg(b,r)). Since a € AN E, we have B4(a,s) N E # (), so we can choose a
point ¢ € Ba(a,s) N E. Since ¢ € Ba(a,s) C f‘l(BB(b,r)) we have f(c) € Bp(b,r), and since ¢ € E we have

f(e) € f(E), and so f(c) € Bg(b,r) N f(E). Thus Bg(b,r) N f(E) #( for all » > 0, so b € f(E), as required.

Conversely, suppose that for every E C A we have f (E) C f(E). Let K C B be closed in B. We claim that
f7H(K) is closed in A. Let C = f~1(K). Note that f(C) C K. Let x € C. Then f(z) € f(C) C f(C)C K=K
and so x € f’l(K) = C. Thus C C C. Of course we also have C C C, so C = C, and so C is closed, as claimed.

Thus f is continuous.




9: (a) Let f: A CR™ — R™. Show that if A is compact and f is continuous then f is uniformly continuous.

Solution: Suppose that A is compact and f is continuous. Let € > 0. For each a € A, since f is continuous at a
we can choose §, > 0 such that |z —a| < 26, = |f(z) — f(a)| < §. Let S = {B(a,d,)|a € A} and note that S is
an open cover of A. Since A is compact, we can choose a finite subcover T of S, say T' = {B(ak, 5ak)|1 <k< é}.
Let 0 = min {44, |1 < k < ¢}. Let x,y € A with [z — y| < §. Since T covers A we can choose an index k such
that « € B(ag,dq, ). Since |x — ag| < dq, and |x —y| < § < d,, we have |y — ax| < 20,,. Since |z — ag| < 204,
and |y — ax| < 284, we have |f(z) — f(ax)| < § and |f(y) — f(ax)| < § and hence |f(z) — f(y)| <.

(b) Let f: ACR" — BCR™. Show that if A is compact and f is continuous and bijective then f~! is continuous.

Solution: Suppose that A is compact and f is continuous and bijective, and let g = f~! : B — A. Let E be a
closed set in A. By the Heine-Borel Theorem, A is closed and bounded. Since F is closed in A we can choose a
closed set K in R™ such that E = K N A (by Theorem 5.31). Since K and A are closed in R", sois E = KN A
(by Theorem 5.14). Since E C A C R™ with E closed and A compact, it follows that E is compact (by Theorem
5.28). Since F is compact and f is continuous, it follows that f(E) is compact (by Theorem 5.70 Part 2) hence
f(E) closed (by the Heine-Borel Theorem). Since f and g are inverses, we have g~!(E) = f(E), which is closed.
Since g~ 1(E) is closed for every closed set E in A, it follows that g is continuous (by Theorem 5.69 Part 2, proved
in Problem 8 (a)).

(c) Let ) # A, B C R™. Define the distance between A and B to be
d(A,B) =inf {|z —y||z € A,y € B}.
Show that if A is compact and B is closed and AN B = () then d(A, B) > 0.

Solution: Since B is closed, hence B¢ = R™\ B is open, for each a € A we can choose r, > 0 so that B(a, 2r,) C B°.
The set S = {B(a, ra)‘a € A} is an open cover of A. Since A is compact, we can choose a finite subcover T' C S,
say T = {B(a1,7a,), B(az,7a,), -, Blag, rq,) } where each ay, € A. Let r = min{rq,,7q,,"*+,7q,}. We claim that
d(A,B) > r. Let x € A and y € B. Since T covers A, we can choose an index k so that z € B(ag,r,, ) hence
|z — ag| < 7q,. Since y € B and B(ag, 2r,,) C B°® we must have |y — ax| > 2r,,. By the Triangle Inequality,
ly —ai| < |y — |+ |x — ag| hence |y — z| > |y — ax| — | — ar| > 2rq,, — Ta), = ra, > 7. Since |y — x| > r for all
x € Aand y € B we have d(A, B) = inf{|y—x\ |x € Ayce B} > r, as claimed.



10: Let A C R".

(a) For a,b € A, write a ~ b when there exists a continuous path in A from a to b. Show that ~ is an equivalence
relation on A (this means that for all a,b,c € A we have a ~ a, and if a ~ b then b ~ a, and if a ~ b and b ~ ¢
then a ~ ¢).

Solution: Let a,b,c € A. We have a ~ a because we can define « : [0,1] = A by «(t) = a for all ¢, and then « is
continuous with «(0) = a and a(1) = a, so « is a path in A from a to a.

Suppose that a ~ b. Let «a be a path in A from a to b, so « : [0,1] — A is continuous with a(0) = a
and a(1) = b. Define 8 : [0,1] — A by S(¢t) = a(1 —t). Note that g is continuous since it is the composite of
the continuous map « with the continuous map s : [0,1] — [0, 1] given by s(¢) = 1 — ¢, and note that we have
B(0) = a(l) =b and (1) = «(0) = a. Thus 8 is a path in A from b to a and so b ~ a.

Finally, suppose that a ~ b and b ~ ¢. Let a be a path from a to bin A and let 8 be a path from b to ¢ in

A. Define v : [0,1] = A by
a(2t) ,for0<¢<
V() = {
B <

1

2
(2t—1),for i <t<1
Note that v(0) = a(0) = a, 7 (3) = (1) = B(0) = b, and (1) = B(1) = c. Gamma is continuous by Problem
8(b), because the sets E = [0, 3] and F = [£,1] are closed in [0,1] with EU F = [0, 1], and the restriction of
to E is given by «(2t), which is continuous (being the composite of two continuous functions), and the restriction
of v to F is given by S(2t — 1), which is also continuous.

(b) Suppose that A is open and connected. Show that A is path connected.
Solution: The empty set is open, connected and path-connected (vacuously). Suppose A # () and let a € A. Let
E:{b€A|a~b}.

We claim that E is open in A. Let b € F. Since b € A and A is open in R", we can choose r > 0 so that
B(b,r) C A. Let ¢ € B(b,r). Since b € E we have a ~ b. Since ¢ € B(b,r) C A we have b ~ ¢, indeed we can
define « : [0,1] — B(b,r) C A by a(t) = b+ t(c — b) and then « is continuous (since it elementary), and a(0) = b
and a(1) = ¢, and a(t) € B(b,r) for all t € [0,1] because |a(t) — b| = |t(c — b)| = [t|lc — b < |c —b| < r. Since
a~band b~ ¢ we have a ~ ¢ by Part (a). Since a ~ ¢ we have ¢ € E, hence B(b,r) C E. This shows that E is
open in R™ hence also in A.

We claim that F is also closed in A. Let b€ A\ E. Since b € A and A is open in R™, we can choose 7 > 0 so
that B(b,r) C A. Let ¢ € B(b,r). Since b ¢ E we have a ¢ b. Since ¢ € B(b,7) C A we have b ~ ¢, as above. It
follows from Part (a) that a % ¢ since otherwise we would have a ~ ¢ and ¢ ~ b and hence a ~ b. Since ¢ ¢ a we
have ¢ € A\ E. Thus B(b,r) C A\ E. This shows that A\ E is open (both in R™ and in A) so that E is closed
in A.

Since A is connected, the only subsets of A which are both open and closed are () and A. Since E is both
open and closed we must have E = ) or E = A. Since a ~ a we have a € E so E # () and so E = A. Since
A=E={be Ala~b} we have a ~ b for every b € A. Thus A is path connected.



