
PMATH 333 Real Analysis, Solutions to the Exercises for Chapter 5

1: (a) Let A = Range(f) where f : R→ R2 is given by f(t) =
(

cos t, sin 2t
)

and let B = Null(g) where g : R2 → R
is given by g(x, y) = y2 + 4x2(x2 − 1). Prove (algebraically) that A = B.

Solution: Note that A = Range(f) =
{

(cos t, sin 2t)
∣∣t ∈ R

}
and B = Null(g) =

{
(x, y)

∣∣y2 + 4x2(x2− 1) = 0
}

. Let
(x, y) ∈ A. Choose t ∈ R such that x = cos t and y = sin 2t. Then x2 = cos2 t and

y2 = 4 sin2 t cos2 t = 4 cos2 t(1− cos2 t) = 4x2(1− x2)

so we have y2 + 4x2(x2 − 1) = 0 and so (x, y) ∈ B. Thus A ⊆ B.

Conversely, suppose that (x, y) ∈ B so we have y2 = 4x2(1 − x2). Then y = ±2x
√

1− x2 with −1 ≤ x ≤ 1. If
y = 2x

√
1− x2 then we can let t = cos−1 x ∈ [0, π], and then cos t = x and, since sin t ≥ 0,

sin 2t = 2 sin t cos t = 2 cos t
√

sin2 t = 2 cos t
√

1− cos2 t = 2x
√

1− x2 = y .

If y = −2x
√

1− x2 then we can let t = − cos−1 x ∈ [−π, 0], and then cos t = x and, since sin t ≤ 0,

sin 2t = 2 sin t cos t = −2 cos t
√

sin2 t = −2 cos t
√

1− cos2 t = −2x
√

1− x2 = y .

In either case, we can choose t ∈ R such that (x, y) = (cos t, sin 2t) and so (x, y) ∈ A. Thus B ⊆ A.

(b) Let f(x, y) = x2 + 2y2 and g(x, y) = 4x− y2. Find a parametric equation for the curve of intersection of the
two surfaces z = f(x, y) and z = g(x, y).

Solution: Set f(x, y) = g(x, y) to get x2+2y2 = 4x−y2, which we can write as (x−2)2+3y2 = 4. This is an ellipse,
which we can parametrize as (x, y) =

(
2+2 cos t, 2√

3
sin t

)
. We also need to have z = 4x−y2 = 8+8 cos t− 4

3 sin2 t,

so a parametric equation for the curve of intersection is

(x, y, z) = α(t) =
(
2 + 2 cos t, 2√

3
sin t, 8 + 8 cos t− 4

3 sin2 t
)
.

To be rigorous, let us verify that Range(α) = Graph(f)∩Graph(g). Let (x, y, z) ∈ Range(α). Choose t ∈ R such
that (x, y, z) = α(t), so we have x = 2 + 2 cos t, y = 2√

3
sin t and z = 8 + 8 cos t− 4

3 sin2 t. Then we have

f(x, y) = x2 + 2y2 = (2 + 2 cos t)2 + 2
(

2√
3

sin t
)2

= 4 + 8 cos t+ 4 cos2 t+ 8
3 sin2 t = 8 + 8 cos t− 4

3 sin2 t = z

so that (x, y, z) ∈ Graph(f), and we have

g(x, y) = 4x− y2 = 4(2 + 2 cos t)−
(

2√
3

sin t
)2

= 8 + 8 cos t− 4
3 sin2 t = z

so that (x, y, z) ∈ Graph(g). Thus Range(α) ⊆ Graph(f) ∩Graph(g).

Let (x, y, z) ∈ Graph(f) ∩ Graph(g). Since (x, y, z) ∈ Graph(f) we have z = f(x, y) = x2 + 2y2, and since
(x, y, z) ∈ Graph(g) we have z = g(x, y) = 4x− y2. It follows that x2 + 2y2 = 4x− y2, that is (x− 2)2 + 3y2 = 4.

Since (x− 2)2 = 4− 3y2 ≤ 4 we have
∣∣x−2

2

∣∣ ≤ 1. Since 3y2 = 4− (x− 2)2 ≤ 4, we have
∣∣√3

2 y
∣∣ ≤ 1. Let t ∈ [0, 2π)

be the (unique) angle with sin t =
√
3
2 y and cos t = x−2

2 . Then we have x = 2 + 2 cos t, y = 2√
3

sin t and z =

g(x, y) = 4x−y2 = 8+8 cos t− 4
3 sint and so (x, y, z) = α(t) ∈ Range(α). Thus Graph(f)∩Graph(g) ⊆ Range(α).



2: (a) Let A=
{

(x, y)∈R2
∣∣ 0<x, 0<y and xy<1

}
. Show, from the definition of an open set, that A is open in R2.

Solution: Before beginning our proof, let us discuss our strategy. Suppose that (a, b) ∈ A, so we have a > 0, b > 0
and ab < 1. We want to choose r > 0 so that the disc Br = B

(
(a, b), r

)
is contained in A. Note that the open

square Qr given by |x− a| < r and |y − b| < r contains the disc Br, so it suffices to ensure that Qr is contained
in A. Note that if r < a then |x − a| < r =⇒ |x − a| < a =⇒ 0 < x < 2a =⇒ x > 0. Similarly, if r < b then
|y − b| < r =⇒ y > 0. Note that if r < a and r < b then r < a + b and so (a + r)(b + r) = ab + r(a + b) + r2 <
ab+ r(a+ b) + r(a+ b) = ab+ 2r(a+ b) and we can obtain (a+ r)(b+ r) < 1 by choosing r < 1−ab

2(a+b) .

Now we begin the proof. Let (a, b) ∈ A, so we have a > 0, b > 0 and ab < 1. Choose r = min
{
a, b, 1−ab

2(a+b)

}
.

Let (x, y) ∈ Br = B
(
(a, b), r

)
. Then |x − a| =

√
|x− a|2 ≤

√
|x− a|2 + |y − b|2 =

∣∣(x, y) − (a, b)
∣∣ < r and

similarly |y − b| < r. Since |x − a| < r ≤ a we have 0 ≤ a−r < x < a+r and since |y − b| < r ≤ b we
have 0 ≤ b−r < y < b+r. Since 0 < x < a+r and 0 < y < a+r and r < a+b and r < 1−ab

2(a+b) we have

xy < (a+ r)(b+ r) = ab+ r(a+ b) + r2 < ab+ 2r(a+ b) < ab+ (1− ab) = 1. Since x > 0 and y > 0 and xy < 1
we have (x, y) ∈ A. Thus Br ⊆ A, as required, and so A is open.

(b) Let B=
{(

2t

t2+1
,
t2−1
t2+1

)
∈R2

∣∣∣ t ∈ R
}

. Show that B is not closed in R2.

Solution: To solve this problem, you might find it helpful to draw a picture of the set B by choosing various
values of t and plotting points. You should find that B looks like the unit circle centred at (0, 0) with the point
(0, 1) removed. If you wish, you can show, algebraically, that this is indeed the case.

Let a = (0, 1). Let x(t) = 2t
t2+1 and y(t) = t2−1

t2+1 and f(t) =
(
x(t), y(t)

)
so that B =

{
f(t)

∣∣t ∈ R
}

. We claim
that a ∈ B′ (that is a is a limit point of B) but a /∈ B. It is clear that a /∈ B because to get f(t) = a we need

x(t) = 0 and y(t) = 1, but to get x(t) = 2t
t2+1 = 0 we must choose t = 0, and then y(t) = t2−1

t2+1 = −1 6= 1. To
show that a ∈ B′, we shall show that for all r > 0 we have B(a, r) ∩ B 6= ∅. Let r > 0. Since lim

t→∞
x(t) = 0 and

lim
t→∞

y(t) = 1 we can choose t ∈ R so that
∣∣x(t)− 0

∣∣ < r
2 and

∣∣y(t)− 1
∣∣ < r

2 . Then we have∣∣f(t)− a
∣∣ =

∣∣(x(t), y(t))− (0, 1)
∣∣ =

∣∣(x(t) , y(t)− 1
)∣∣ ≤ |x(t)|+ |y(t)− 1| < r

2 + r
2 = r

and so f(t) ∈ B(a, r) ∩ B. This shows that for all r > 0 we have B(a, r) ∩ B 6= ∅, and so a ∈ B′. Since a ∈ B′
and a /∈ B we do not have B′ ⊆ B and so B is not closed (by Part (2) of Theorem 5.19).

3: Let A ⊆ Rn.

(a) Show that A′ is closed in Rn.

Solution: By Part (2) of Theorem 5.19, we know that A′ is closed if and only if (A′)′ ⊆ A′. Let a ∈ (A′)′, that
is let a be a limit point of A′. Let r > 0. Since a is a limit point of A′, we know that B∗(a, r) ∩ A′ 6= ∅. Choose
b ∈ B∗(a, r) ∩ A′. Note that 0 < |a − b| < r. Let s = min

(
|a − b| , r − |a − b|

)
> 0. Since b ∈ A′ we know that

B∗(b, s) ∩ A 6= ∅. Choose c ∈ B∗(b, s) ∩ A. We claim that c ∈ B∗(a, r) ∩ A. By the Triangle Inequality we have
|a− c| ≤ |a− b|+ |b− c| < |a− b|+ s ≤ |a− b|+ r − |a− b| = r, and by the Triangle Inequality again, we have
|a− b| ≤ |a− c|+ |c− b| and so |a− c| ≥ |a− b| − |b− c| > |a− b| − s ≥ |a− b| − |a− b| = 0. Thus 0 < |a− c| < r
and so c ∈ B∗(a, r) ∩ A, as claimed. Since c ∈ B∗(a, r) ∩ A, we see that B∗(a, r) ∩ A 6= ∅. We have shown that
for every r > 0 we have B∗(a, r) ∩A 6= ∅, and so a ∈ A′. This proves that (A′)′ ⊆ A′, and so A′ is closed.

(b) Show that ∂A = A \Ao.
Solution: Let a ∈ ∂A. We claim first that a ∈ A. Since A = A ∪ A′ it suffices to show that either a ∈ A or
a ∈ A′. Suppose that a /∈ A. Let r > 0 be arbitrary. Since a ∈ ∂A we have B(a, r) ∩A 6= ∅. Since a /∈ A we have
B∗(a, r) ∩A = B(a, r) ∩A and so B∗(a, r) ∩A) 6= ∅. Since r > 0 was arbitrary, we have a ∈ A′, as required.

Next we claim that a /∈ A0. Suppose, for a contradiction, that a ∈ A0. By Part (b), a is an interior point of
A so we can choose r > 0 so that B(a, r) ⊆ A. Since B(a, r) ⊆ A we have B(a, r)∩Ac = ∅. But since a ∈ ∂A we
have B(a, r) ∩ Ac 6= ∅, so we have obtained the desired contradiction. Thus a /∈ A0, as claimed. This completes
the proof that ∂A ⊆ A \A0.

Now let a ∈ A \ A0, that is let a ∈ A with a /∈ A0. Let r > 0 be arbitrary. Case 1: suppose that a ∈ A. Let
r > 0 be arbitrary. Since a ∈ A and a ∈ B(a, r) we have B(a, r)∩A 6= ∅. Since a /∈ A0 we have B(a, r) 6⊆ A and so
B(a, r)∩Ac 6= ∅. Thus a ∈ ∂A. Case 2: suppose that a /∈ A. Let r > 0 be arbitrary. Since a /∈ A and a ∈ B(a, r)
we have B(a, r) ∩ Ac 6= ∅. Since a ∈ A = A ∪ A′ and a /∈ A we have a ∈ A′ and so B∗(a, r) ∩ A 6= ∅ hence
B(a, r) ∩A 6= ∅. Thus a ∈ ∂A. In either case we find that a ∈ ∂A. This completes the proof that A \A0 ⊆ ∂A.



4: (a) Let A,B ⊆ Rn show that if A is connected and A ⊆ B ⊆ A then B is connected.

Solution: Suppose that A is connected and that A ⊆ B ⊆ A. Suppose, for a contradiction, that B is disconnected.
Choose open sets U, V ⊆ Rn which separate B, so we have U ∩ B 6= ∅, V ∩ B 6= ∅, U ∩ V = ∅ and B ⊆ U ∪ V .
We claim that U and V also separate A (contradicting the fact that A is connected). Since A ⊆ B ⊆ U ∪ V , it
suffices to prove that U ∩ A 6= ∅ and V ∩ A 6= ∅. We claim that U ∩ A 6= ∅. Since U ∩ B 6= ∅ we can choose
b ∈ U ∩ B. Then we have b ∈ B ⊆ A = A ∪ A′, and so either b ∈ A or b ∈ A′. If b ∈ A then we have b ∈ U ∩ A
so that U ∩A 6= ∅. Suppose that b ∈ A′. Since b ∈ U and U is open, we can choose r > 0 such that B(b, r) ⊆ U .
Since b ∈ A′ we have B(b, r) ∩A 6= ∅ so we can choose c ∈ B(b, r) ∩A. Then we have c ∈ B(b, r) ⊆ U and c ∈ A,
hence c ∈ U ∩A, and so U ∩A 6= ∅. This proves that U ∩A 6= ∅, as claimed. The proof that V ∩A 6= ∅ is similar,
and so U and V separate A giving the desired contradiction.

(b) Let S be a nonempty set and let Aj ⊆ Rn for each j ∈ S. Suppose that Aj is connected for all j ∈ S and
that Ak ∩A` 6= ∅ for all k, ` ∈ S. Show that

⋃
j∈S

Aj is connected.

Solution: Let B =
⋃
j∈S

Aj . Suppose, for a contradiction, that B is disconnected. Choose open sets U, V ⊆ Rn

which separate B, that is B ∩ U 6= ∅, B ∩ V 6= ∅, U ∩ V = ∅ and B ⊆ U ∪ V . Choose a ∈ B ∩ U and b ∈ B ∩ V .
Since a ∈ B =

⋃
j∈S

Aj , we can choose k ∈ S such that a ∈ Ak. Similarly we can choose ` ∈ S such that b ∈ A`.

Then we have a ∈ Ak ∩ U and b ∈ A` ∩ V . Since Ak is connected, and a ∈ Ak ∩ U so that Ak ∩ U 6= ∅, and
Ak ⊆

⋃
j∈S

Aj = B ⊆ U ∪ V , it follows that we must have Ak ⊆ U because otherwise we would have Ak ∩ V 6= ∅

and so U and V would separate Ak. Similarly, we must have A` ⊆ V . Since Ak ⊆ U and A` ⊆ V we have
Ak ∩A` ⊆ U ∩ V = ∅. This contradicts our assumption that Ak ∩A` 6= ∅, and so B is connected, as required.

5: Let A ⊆ P ⊆ Rn. Define the interior of A in P to be the union of all sets E ⊆ P such that E is open in P and
E ⊆ A. Define the closure of A in P to be the intersection of all sets F ⊆ P such that F is closed in P and
A ⊆ F . Denote the interior of A in Rn and the closure of A in Rn by Ao and A (as usual). Denote the interior
of A in P and the closure of A in P by IntP (A) and ClP (A).

(a) Show that ClP (A) = A ∩ P .

Solution: Since A is closed in Rn it follows that A∩P is closed in P . Since A ⊆ A and A ⊆ P we have A ⊆ A∩P .
Since A ∩ P is closed in P and A ⊆ A ∩ P , it follows from the definition of ClP (A) that ClP (A) ⊆ A ∩ P .

Let F be any closed set in P with A ⊆ F . Choose a closed set K in Rn such that F = K ∩ P . Since K is
closed in Rn and A ⊆ K we have A ⊆ K. Thus A ∩ P ⊆ K ∩ P = F . Since A ∩ P ⊆ F for every closed set F in
P which contains A, it follows, from the definition of ClP (A), that A ∩ P ⊆ ClP (A).

(b) Show that IntP (A) = (A ∪ P c)o ∩ P , where P c = Rn \ P .

Solution: Let F = (A ∪ P c)o ∩ P . Since (A ∪ P c)o is open in Rn it follows that F = (A ∪ P c)o ∩ P is open in P .
Also note that we have F = (A ∪ P c)o ∩ P ⊆ (A ∪ P c) ∩ P = (A ∩ P ) ∪ (P c ∩ P ) = (A ∩ P ) ∪ ∅ = A ∩ P = A,
since A ⊆ P . Since F is open in P and F ⊆ A it follows, from the definition of IntP (A), that F ⊆ IntP (A).

Let E be any open set in P with E ⊆ A. Choose an open set U in Rn such that U ∩ P = E. Then we have
U = U ∩ Rn = U ∩ (P ∪ P c) = (U ∩ P ) ∪ (U ∩ P c) = E ∪ (U ∩ P c) ⊆ A ∪ P c, since E ⊆ A and U ∩ P c ⊆ P c.
Since U is open in Rn and U ⊆ A ∪ P c it follows that U ⊆ (A ∪ P c)o. Since E = U ∩ P ⊆ U ⊆ (A ∪ P c)o and
E ⊆ A ⊆ P we have E ⊆ (A∪P c)o ∩P = F . Since E ⊆ F for every open set E in P with E ⊆ A it follows, from
the definition of IntP (A), that IntP (A) ⊆ F .



6: (a) Show, from the definition of compactness, that the set A = Q ∩ [0, 1] is not compact.

Solution: Let a ∈ [0, 1] with a /∈ Q and note that a is a limit point of A because Q is dense in R. For each
n ∈ Z+ let Un = B

(
a, 1

n

)c
=
(
− ∞, a− 1

n

)
∪
(
a+ 1

n ,∞
)
, and let S =

{
Un
∣∣n ∈ Z+

}
. Note that each Un is

open and we have
∞⋃
n=1

Un = R \ {a}, so S is an open cover of A. Let T be any nonempty finite subset of

A, say T =
{
Un1 , Un2 , · · · , Un`

}
with n1 < n2 < · · · < n`. Note that U1 ⊆ U2 ⊆ U3 ⊆ · · · and so we have⋃

T =
⋃̀
k=1

Unk
= Un`

= B
(
a, 1

n`

)c
. Since a is a limit point of A we have B

(
a, 1

n

)
∩A 6= ∅, hence B

(
a, 1

n

)
∩A 6= ∅,

and so A is not a subset of
⋃
T . Since no finite subset of S covers A, it follows that A is not compact.

(b) Show, from the definition of compactness, that the set B =
{
n|n|
1+n2

∣∣∣n ∈ Z
}
∪ {1,−1} is compact.

Solution: Note that lim
n→∞

n|n|
1 + n2

= 1 and lim
n→−∞

n|n|
1 + n2

= −1. Let S be any open cover of B. Since S covers B

and ±1 ∈ B we can choose V,W ∈ S such that 1 ∈ V and −1 ∈W . Since V and W are open we can choose r > 0

such that B(1, r) ⊆ V and B(−1, r) ⊆ W . Since lim
n→∞

n|n|
1+n2

= 1 and lim
n→∞

n|n|
1 + n2

= −1 we can choose N ∈ Z+

such that for all n ∈ Z, if n ≥ N then
∣∣ n|n|
1+n2 − 1

∣∣ < r so that n|n|
1+n2 ∈ V and if n ≤ −N then

∣∣ n|n|
1+n2 + 1

∣∣ < r

so that n|n|
1+n2 ∈ W . For each n ∈ Z with −N < n < N , choose Un ∈ S so that n|n|

1+n2 ∈ Un. Then the set

T =
{
Un
∣∣−N < n < n

}
∪ {V,W} is a finite subcover of S. Thus B is compact.

(c) Show that the set On(R) =
{
A ∈Mn(R)

∣∣ATA = I
}

is compact. Here, we are identifying Mn(R) with Rn2

, so
that the dot product of two matrices is given by A.B =

∑
k,`

Ak,`Bk,` = trace(BTA).

Solution: Note that for A ∈Mn(R) we have

A ∈ On(R) ⇐⇒ ATA = I ⇐⇒ (ATA)k,l = Ik,l for all k, l ⇐⇒
n∑
i=1

Ai,kAi,l = δk,l for all k, l,

where

δk,l =

{
1 if k = l

0 if k 6= l.

For each pair k, l, define fk,l : Mn(R) → R by fk,l(A) =
n∑
i=1

Ai,kAi,l − δk,l. Note that each function fk,l is

continuous since it is an elementary function on the n2 variables Ai,j . We have

On(R) =
{
A ∈Mr(R)

∣∣fk,l(A) = 0 for all k, l
}

=
⋂
k,l

{
A ∈Mn(R)

∣∣fk,l(A) = 0
}

=
⋂
k,l

f−1k,l (0).

Note that f−1k,l (0) is the complement in Mn(R) of the set f−1k,l (R \ {0}). Since R \ {0} is open in R and each

function fk,l is continuous, it follows that each set f−1k,l (R \ {0}) is open, and hence each set f−1k,l (0) is closed.
Thus On(R) is closed because it is the intersection of finitely many closed sets.

We claim that On(R) is bounded. Let A ∈ On(R). Let u1, u2, · · · , un be the columns of A. Note that

ATA =

 u1
T

...
un

T

(u1, · · · , un) =

 u1 .u1 u1 .u2 · · · u1 .un
...

...
un .u1 un .u2 · · · un .un


and so

ATA = I =⇒ (ATA)k,k = 1 for all k =⇒ uk .uk = 1 for all k =⇒ |uk| = 1 for all k, l

=⇒ |A|2 =
n∑
k=1

n∑
i=1

(Ai,k)2 =
n∑
k=1

|uk|2 =
n∑
k=1

1 = n.

Thus for every A ∈ On(Rn) we have |A| =
√
n and so On(R) is bounded, as claimed. We have shown that On(R)

is closed and bounded, and so it is compact, by the Heine Borel Theorm (which we can apply because we are

identifying Mn(R) with Rn2

).



7: For each of the following functions f : R2 \ {0} → R, find lim
(x,y)→(0,0)

f(x, y) or show that the limit does not exist.

(a) f(x, y) =
x2 − y2

x2 + y2

Solution: Let θ ∈ R and define α : R → R2 by α(t) = (t cos θ, t sin θ). Then we have lim
t→0

α(t) = (0, 0) and

f(α(t)) = t2 cos2 θ−t2 sin2 θ
t2 cos2 θ+t2 sin2 θ

= cos 2θ for all t 6= 0, and so (by Composites and Limits) if lim
(x,y)→(0,0)

f(x, y) existed

then it would be equal to cos 2θ. Since different choices of θ yield different values for the limit, the limit cannot
exist.

(b) f(x, y) =
x2y3

x4 + y6

Solution: Consider the graph z = f(x, y). The level set y = c > 0 is given by z = g(x) = f(x, c) = c3x2

x4+c6 . Then

z′ = g′(x) = c3(2x(x4+c6)−(x2)(4x3))
(x4+c6)2 = c3(2x)(c6−x4)

(x4+c6)2 ,

so we have z′ = 0 when x = 0 and when x = ±c3/2. When x = 0 we have z = 0 and when x = ±c3/2 we have
z = c3·c3

c6+c6 = 1
2 . The graph z = f(x, y) with y > 0 has a maximum ridge of height z = 1

2 along x = ±y3/2, that is

x2 = y3.
Define α : R→ R2 by α(t) = (0, t). Then lim

t→0
α(t) = (0, 0) and f(α(t)) = 0 for all t 6= 0, and so (by Composites

and Limits) if lim
(x,y)→(0,0)

f(x, y) existed then it would be equal to 0. Define β : R → R2 by β(t) = (t3, t2). Then

lim
t→0

β(t) = (0, 0) and f(β(t)) = t6·t6
t12+t12 = 1

2 for all t 6= 0, and so if lim
(x,y)→(0,0)

f(x, y) existed then it would be equal

to 1
2 . Thus the limit cannot exist.

(c) f(x, y) =
x4y5

x8 + y6

Solution: Recall that for all u, v ∈ R we have 0 ≤ (|u|− |v|)2 = u2−2|uv|+v2 and so |uv| ≤ 1
2 (u2 +v2). It follows

that for all (x, y) 6= (0, 0) we have∣∣f(x, y)− 0
∣∣ =

∣∣ x4y5

x8+y6

∣∣ = |x4y3|y2
x8+y6 ≤

1
2 (x

8+y6)y2

x8+y6 = 1
2 y

2.

Given ε > 0 choose δ =
√

2ε. Then for all x, y with 0 <
∣∣(x, y)

∣∣ < δ we have 0 < x2 + y2 < δ2 and so∣∣f(x, y)− 0
∣∣ ≤ 1

2 y
2 ≤ 1

2 (x2 + y2) < 1
2δ

2 = ε.



8: Let f : A ⊆ Rn → B ⊆ Rm.

(a) Show that f is continuous if and only if f−1(F ) is closed in A for every closed set F in B.

Solution: We already know that f is continuous if and only if f−1(E) is open in A for every open set E in B.
Suppose that f is continuous. Let F be a closed set in B. Then B \F is open in B and so f−1(B \F ) is open in
A and hence A \ f−1(B \ F ) is closed in A. But notice that f−1(F ) = A \ f−1(B \ F ) because for a ∈ A we have

a ∈ f−1(F ) ⇐⇒ f(a) ∈ F ⇐⇒ f(a) /∈ B \ F ⇐⇒ a /∈ f−1(B \ F ) ⇐⇒ a ∈ A \ f−1(B \ F ).

Thus f−1(F ) is closed in A for every closed set F in B.
Conversely, suppose that f−1(F ) is closed in A for every closed set F in B. Let E be an open set in B.

Then B \E is closed in B, hence f−1(B \E) is closed in B, and so A \ f−1(B \E) is open in A. But notice that
f−1(E) = A \ f−1(B \ E), as above. This shows that that f−1(E) is open in A for every open set E in B, and
so f is continuous.

(b) Let E and F be closed sets in A with E ∪ F = A. Let g be the restriction of f to E, and let h be the
restriction of f to F . Show that f is continuous if and only if both g and h are continuous.

Solution: We begin by remarking that when S ⊆ A ⊆ Rn, the open sets in S are the sets of the form L ∩ S
with L being an open set in A. Indeed when L is open in A we can choose an open set U in Rn such that
L = U ∩ A, and then we have L ∩ S = (U ∩ A) ∩ S = U ∩ S since S ⊆ A. On the other hand, when E is open
in S we can choose an open set U in Rn such that E = U ∩ S and then the set L = U ∩ A is open in A with
L ∩ S = (U ∩A) ∩ S = U ∩ S = E. Similarly, the closed sets in S are the sets of the form K ∩ S with K being a
closed set in A.

Suppose f : A→ B is continuous. We claim that the restriction of f to any subset S ⊆ A is continuous. Let
S ⊆ A and let p : S ⊆ A→ B be the restriction of f to S. Let E be an open set in B. Then f−1(E) is open in
A and so S ∩ f−1(E) is open in S. But notice that p−1(E) = S ∩ f−1(E) since for a ∈ A we have

a ∈ p−1(E) ⇐⇒ a ∈ S and p(a) ∈ E ⇐⇒ a ∈ S and f(a) ∈ E
⇐⇒ a ∈ S and a ∈ f−1(E) ⇐⇒ a ∈ S ∩ f−1(E).

This shows that p−1(E) is open in S for every open set E in B, and so p is continuous in S.
Conversely, suppose that both of the two restrictions g and h are continuous. Let C be a closed set in B.

Then g−1(C) is closed in E and h−1(C) is closed in F . Since g−1(C) is closed in E we can choose a closed set K in
A so that g−1(C) = E ∩K. Since E and K are both closed in A, it follows that g−1(C) is closed in A. Similarly,
since h−1(C) is closed in F and F is closed in A, it follows that h−1(C) is closed in A. Since g−1(C) and h−1(C)
are both closed in A, their union g−1(C) ∪ h−1(C) is closed in A. But notice that f−1(C) = g−1(C) ∪ h−1(C)
because for a ∈ A we have

a ∈ f−1(C) ⇐⇒ a ∈ A and f(a) ∈ C ⇐⇒ a ∈ E ∪ F and f(a) ∈ C
⇐⇒

(
a ∈ E and f(a) ∈ C

)
or
(
a ∈ F and f(a) ∈ C

)
⇐⇒

(
a ∈ E and g(a) ∈ C

)
or
(
a ∈ F and h(a) ∈ C

)
⇐⇒ a ∈ g−1(C) or a ∈ h−1(C).

(c) Show that f is continuous if and only if for every E ⊆ A we have f
(
E
)
⊆ f(E).

Solution: Suppose that f is continuous. Let E ⊆ A. Let b ∈ f
(
E
)
, say b = f(a) where a ∈ A∩E. We must show

that b ∈ f(E). Let r > 0. Since BB(b, r) is open in B and f is continuous, f−1
(
BB(b, r)

)
is open in A, so we can

choose s > 0 so that BA(a, s) ⊆ f−1
(
BB(b, r)

)
. Since a ∈ A ∩ E, we have BA(a, s) ∩ E 6= ∅, so we can choose a

point c ∈ BA(a, s) ∩ E. Since c ∈ BA(a, s) ⊆ f−1
(
BB(b, r)

)
we have f(c) ∈ BB(b, r), and since c ∈ E we have

f(c) ∈ f(E), and so f(c) ∈ BB(b, r) ∩ f(E). Thus BB(b, r) ∩ f(E) 6= ∅ for all r > 0, so b ∈ f(E), as required.

Conversely, suppose that for every E ⊆ A we have f
(
E
)
⊆ f(E). Let K ⊆ B be closed in B. We claim that

f−1(K) is closed in A. Let C = f−1(K). Note that f(C) ⊆ K. Let x ∈ C. Then f(x) ∈ f(C) ⊆ f(C) ⊆ K = K

and so x ∈ f−1(K) = C. Thus C ⊆ C. Of course we also have C ⊆ C, so C = C, and so C is closed, as claimed.
Thus f is continuous.



9: (a) Let f : A ⊆ Rn → Rm. Show that if A is compact and f is continuous then f is uniformly continuous.

Solution: Suppose that A is compact and f is continuous. Let ε > 0. For each a ∈ A, since f is continuous at a
we can choose δa > 0 such that |x−a| < 2δa =⇒

∣∣f(x)−f(a)
∣∣ < ε

2 . Let S =
{
B(a, δa)

∣∣a ∈ A} and note that S is

an open cover of A. Since A is compact, we can choose a finite subcover T of S, say T =
{
B(ak, δak)

∣∣1 ≤ k ≤ `}.

Let δ = min
{
δak
∣∣1 ≤ k ≤ `

}
. Let x, y ∈ A with |x − y| < δ. Since T covers A we can choose an index k such

that x ∈ B(ak, δak). Since |x − ak| < δak and |x − y| < δ ≤ δak we have |y − ak| ≤ 2δak . Since |x − ak| < 2δak
and |y − ak| < 2δak we have

∣∣f(x)− f(ak)
∣∣ < ε

2 and
∣∣f(y)− f(ak)

∣∣ < ε
2 and hence

∣∣f(x)− f(y)
∣∣ < ε.

(b) Let f :A⊆Rn→B⊆Rm. Show that if A is compact and f is continuous and bijective then f−1 is continuous.

Solution: Suppose that A is compact and f is continuous and bijective, and let g = f−1 : B → A. Let E be a
closed set in A. By the Heine-Borel Theorem, A is closed and bounded. Since E is closed in A we can choose a
closed set K in Rn such that E = K ∩ A (by Theorem 5.31). Since K and A are closed in Rn, so is E = K ∩ A
(by Theorem 5.14). Since E ⊆ A ⊆ Rn with E closed and A compact, it follows that E is compact (by Theorem
5.28). Since E is compact and f is continuous, it follows that f(E) is compact (by Theorem 5.70 Part 2) hence
f(E) closed (by the Heine-Borel Theorem). Since f and g are inverses, we have g−1(E) = f(E), which is closed.
Since g−1(E) is closed for every closed set E in A, it follows that g is continuous (by Theorem 5.69 Part 2, proved
in Problem 8 (a)).

(c) Let ∅ 6= A,B ⊆ Rn. Define the distance between A and B to be

d(A,B) = inf
{
|x− y|

∣∣x ∈ A, y ∈ B}.
Show that if A is compact and B is closed and A ∩B = ∅ then d(A,B) > 0.

Solution: Since B is closed, hence Bc = Rn\B is open, for each a ∈ A we can choose ra > 0 so that B(a, 2ra) ⊆ Bc.
The set S =

{
B(a, ra)

∣∣a ∈ A} is an open cover of A. Since A is compact, we can choose a finite subcover T ⊆ S,

say T =
{
B(a1, ra1), B(a2, ra2), · · · , B(a`, ra`)

}
where each ak ∈ A. Let r = min{ra1 , ra2 , · · · , ra`}. We claim that

d(A,B) ≥ r. Let x ∈ A and y ∈ B. Since T covers A, we can choose an index k so that x ∈ B(ak, rak) hence
|x − ak| < rak . Since y ∈ B and B(ak, 2rak) ⊆ Bc we must have |y − ak| ≥ 2rak . By the Triangle Inequality,
|y − ak| ≤ |y − x|+ |x− ak| hence |y − x| ≥ |y − ak| − |x− ak| ≥ 2rak − rak = rak ≥ r. Since |y − x| ≥ r for all
x ∈ A and y ∈ B we have d(A,B) = inf

{
|y − x|

∣∣x ∈ A, y ∈ B} ≥ r, as claimed.



10: Let A ⊆ Rn.

(a) For a, b ∈ A, write a ∼ b when there exists a continuous path in A from a to b. Show that ∼ is an equivalence
relation on A (this means that for all a, b, c ∈ A we have a ∼ a , and if a ∼ b then b ∼ a, and if a ∼ b and b ∼ c
then a ∼ c).
Solution: Let a, b, c ∈ A. We have a ∼ a because we can define α : [0, 1]→ A by α(t) = a for all t, and then α is
continuous with α(0) = a and α(1) = a, so α is a path in A from a to a.

Suppose that a ∼ b. Let α be a path in A from a to b, so α : [0, 1] → A is continuous with α(0) = a
and α(1) = b. Define β : [0, 1] → A by β(t) = α(1 − t). Note that β is continuous since it is the composite of
the continuous map α with the continuous map s : [0, 1] → [0, 1] given by s(t) = 1 − t, and note that we have
β(0) = α(1) = b and β(1) = α(0) = a. Thus β is a path in A from b to a and so b ∼ a.

Finally, suppose that a ∼ b and b ∼ c. Let α be a path from a to b in A and let β be a path from b to c in
A. Define γ : [0, 1]→ A by

γ(t) =

{
α(2t) , for 0 ≤ t ≤ 1

2 ,

β(2t− 1) , for 1
2 ≤ t ≤ 1.

Note that γ(0) = α(0) = a, γ
(
1
2

)
= α(1) = β(0) = b, and γ(1) = β(1) = c. Gamma is continuous by Problem

8(b), because the sets E =
[
0, 12
]

and F =
[
1
2 , 1
]

are closed in [0, 1] with E ∪ F = [0, 1], and the restriction of γ
to E is given by α(2t), which is continuous (being the composite of two continuous functions), and the restriction
of γ to F is given by β(2t− 1), which is also continuous.

(b) Suppose that A is open and connected. Show that A is path connected.

Solution: The empty set is open, connected and path-connected (vacuously). Suppose A 6= ∅ and let a ∈ A. Let

E =
{
b ∈ A

∣∣a ∼ b} .
We claim that E is open in A. Let b ∈ E. Since b ∈ A and A is open in Rn, we can choose r > 0 so that
B(b, r) ⊆ A. Let c ∈ B(b, r). Since b ∈ E we have a ∼ b. Since c ∈ B(b, r) ⊆ A we have b ∼ c, indeed we can
define α : [0, 1]→ B(b, r) ⊆ A by α(t) = b+ t(c− b) and then α is continuous (since it elementary), and α(0) = b
and α(1) = c, and α(t) ∈ B(b, r) for all t ∈ [0, 1] because

∣∣α(t) − b
∣∣ =

∣∣t(c − b)∣∣ = |t||c − b| ≤ |c − b| < r. Since
a ∼ b and b ∼ c we have a ∼ c by Part (a). Since a ∼ c we have c ∈ E, hence B(b, r) ⊆ E. This shows that E is
open in Rn hence also in A.

We claim that E is also closed in A. Let b ∈ A \E. Since b ∈ A and A is open in Rn, we can choose r > 0 so
that B(b, r) ⊆ A. Let c ∈ B(b, r). Since b /∈ E we have a 6∼ b. Since c ∈ B(b, r) ⊆ A we have b ∼ c, as above. It
follows from Part (a) that a 6∼ c since otherwise we would have a ∼ c and c ∼ b and hence a ∼ b. Since c 6∼ a we
have c ∈ A \ E. Thus B(b, r) ⊆ A \ E. This shows that A \ E is open (both in Rn and in A) so that E is closed
in A.

Since A is connected, the only subsets of A which are both open and closed are ∅ and A. Since E is both
open and closed we must have E = ∅ or E = A. Since a ∼ a we have a ∈ E so E 6= ∅ and so E = A. Since
A = E =

{
b ∈ A

∣∣a ∼ b} we have a ∼ b for every b ∈ A. Thus A is path connected.


