
PMATH 333 Intro to Real Analysis, Solutions to the Midterm Test, Fall 2024

[10] 1: (a) Let R be a ring. Using Rules R0-R7 (with only one rule used at each step), prove that for all a ∈ R, if
1 + a = 0 then a · a = 1.

Solution: Let a ∈ R. Suppose that 1 + a = 0. Then

a · a = a · a+ 0 , by R3

= 0 + a · a , by R2

= (1 + a) + a · a , since 1 + a = 0

= 1 + (a+ a · a) , by R1

= 1 + (a · 1 + a · a) , since a = a · 1 by R6

= 1 + a · (1 + a) , by R7

= 1 + a · 0 , since 1 + a = 0

= 1 + 0 , since a · 0 = 0 by R0

= 1 , by R3.

(b) Let F be an ordered field. Using the result of Part (a), together with Rules R0-R9 and O1-O5 (with
only one rule used at each step), prove that 0 ≤ 1.

Solution: By O1, we know that either 0 ≤ 1 or 1 ≤ 0. Suppose that 1 ≤ 0. By R3, we can choose a ∈ F
such that 1 + a = 0. By Part (a), we know that a · a = 1. We have

1 ≤ 0 , by assumption

1 + a ≤ 0 + a , by O3

0 ≤ 0 + a , since 1 + a = 0

0 ≤ a+ 0 , by R2

0 ≤ a , by R3

0 ≤ a · a , by O5 (taking b = a)

0 ≤ 1 , since a · a = 1 by Part (a).

(c) Determine whether the following formula is true, when the variables represent sets:

∃w ∀v
(
v∈w ↔ ∃u∀y

(
y∈v ↔ ∀x (x∈y → x∈u)

))
.

Solution: Recall that for a set u, the power set of u is the set P (u) =
{
y
∣∣ y ⊆ u

}
. Let us say that “v is a

power set” when v = P (u) for some set u. In the class of sets, we have

∀x (x∈y → x∈u)⇐⇒ y ⊆ u
∀y
(
y∈v ↔ ∀x (x∈y → x∈u)

)
⇐⇒ v = P (u)

∃u∀y
(
y∈v ↔ ∀x (x∈y → x∈u)

)
⇐⇒ v is a power set

∀v
(
v∈w ↔ ∃u∀y

(
y∈v ↔ ∀x (x∈y → x∈u)

))
⇐⇒ w =

{
v
∣∣ v is a power set

}
so the given formula states that the class w =

{
v
∣∣ v is a power set

}
=
{
v
∣∣∃u v=P (u)

}
is a set. We claim

that this is FALSE. If w was a set, then
⋃
w would also be a set (by the Union Axiom). But then for every

set u we would have u ∈ P (u) ⊆
⋃
w, so that

⋃
w is the class of all sets (which, as we know, is not a set).
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[10] 2: (a) Let xn = (2n+1)2

n2+1 for n ∈ Z+. Use the definition of the limit to prove that lim
n→∞

xn = 4.

Solution: For all n ∈ Z+ we have∣∣xn − 4
∣∣ =

∣∣∣ (2n+1)2

n2+1 − 4
∣∣∣ =

∣∣∣ (2n+1)2−4(n2+1)
n2+1

∣∣∣ =
∣∣∣ 4n−3n2+1

∣∣∣ = 4n−3
n2+1 <

4n
n2 = 4

n .

Let ε > 0. Choose N ∈ Z+ such that 4
n < ε. Then for all n ∈ Z+ with n ≥ N we have

∣∣xn−4
∣∣ < 4

n ≤
4
N < ε.

(b) Prove that every Cauchy sequence in R converges in R.

Solution: Let (xn)n≥1 be a Cauchy sequence in R. We claim that (xn)n≥1 is bounded. Since (xn)n≥1 is
Cauchy, we can choose N ∈ Z+ such that n,m ≥ N =⇒ |xn − xm| < 1. Let m = N . Then for all n ≥ N
we have |xn − xm| < 1 so that xm − 1 < xn < xm + 1. It follows that (xn)n≥1 is bounded above by
max

{
x1, x2, · · · , xm−1, xm + 1

}
and bounded below by min

{
x1, x2, · · · , xm−1, xm − 1

}
.

Because (xn)n≥1 is bounded, it has a convergent subsequence, by the Bolzano-Weierstrass Theorem.
Let (xnk

)k≥1 be a convergent subsequence of (xn)n≥1 and let a = lim
k→∞

xnk
. We claim that lim

n→∞
xn = a. Let

ε > 0. Since (xn) is Cauchy, we can choose N ∈ Z+ so that n,m ≥ N =⇒ |xn − xm| < ε
2 . Since xnk

→ a
we can choose K ∈ Z+ so that k ≥ K =⇒ |xnk

− a| < ε
2 . Since nk →∞, we can choose an index k ≥ K so

that nk ≥ N . Then for all n ≥ N we have |xn − a| ≤ |xn − xnk
|+ |xnk

− a| < ε
2 + ε

2 = ε. Thus xn → a, as
claimed.

[10] 3: (a) Let f : [0,∞)→ R be continuous on [0,∞) with lim
n→∞

f(x) = a ∈ R. Prove that f is uniformly continuous.

Solution: Let ε > 0. Since lim
n→∞

f(x) = a, we can choose r > 0 such that x ≥ r =⇒ |f(x) − a| < ε
2 . Since

f is continuous on [0, r + 1], it is also uniformly continuous on [0, r + 1], so we can choose δ0 > 0 such that
for all x, y ∈ [0, r + 1], we have |x − y| < δ0 =⇒ |f(x) − f(y)| < ε. Let δ = min(δ0, 1). Let x, y ∈ [0,∞)
with |x − y| < δ so that |x − y| < δ0 and |x − y| < 1. Since |x − y| < 1, either we have x, y ∈ [0, r + 1]
or we have x, y ∈ [r,∞). In the case that x, y ∈ [0, r + 1], since |x − y| < δ0 we have |f(x) − f(y)| < ε
(by the choice of δ0). In the case that x, y ∈ [r,∞) we have |f(x) − a| < ε

2 and |f(y) − a| < ε
2 so that

|f(x)− f(y)| ≤ |f(x)− a|+ |a− f(y)| < ε
2 + ε

2 = ε.

(b) Prove that every continuous function f : [a, b]→ R attains its maximum value.

Solution: First we claim that f is bounded above. Suppose, for a contradiction, that f is not bounded
above. For each n ∈ Z+, choose xn ∈ [a, b] such that f(xn) ≥ n. By the Bolzano-Weierstrass Theorem,
we can choose a convergent subsequence (xnk

)k≥1. Let r = lim
k→∞

xnk
. Since a ≤ xnk

≤ b for all k, it

follows that a ≤ r ≤ b by Comparison, so we have r ∈ [a, b]. Since f(xnk
) ≥ nk and nk → ∞ we have

f(xnk
)→∞ as k →∞, by Comparison. But by the Sequential Characterization of Continuity, we also have

f(xnk
)→ f(r) ∈ R, which gives the desired contradiction. Thus f is bounded above, as claimed.

Since the range f([a, b]) is nonempty and bounded above, it has a supremum. Let m = sup f([a, b]).
By the Approximation Property of the supremum, for each n ∈ Z+ we can choose yn ∈ [a, b] such that
m − 1

n ≤ f(yn) ≤ m. By the Bolzano-Weierstrass Theorem, we can choose a convergent subsequence
(ynk

)k≥1. Let c = lim
k→∞

ynk
. Since we have m− 1

nk
≤ f(ynk

) ≤ m and 1
nk
→ 0, it follows that f(ynk

)→ m as

k →∞ by the Squeeze Theorem. Since f is continuous at c, by the Sequential Characterization of Continuity
we have f(ynk

)→ f(c), and so by the Uniqueness of Limits, we have f(c) = m. Thus f attains its maximum
value at c.
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[10] 4: (a) Prove, from the definition of the integral, that the function f : [1, 3] → R given by f(x) = 2x − 1 is

integrable on [1, 3] with
∫ 3

1
f(x) dx = 6.

Solution: Let ε > 0. Choose δ = ε
4 . Let X be any partition with |X| < δ. Let tk ∈ [xk−1, xk] and let

S =
n∑
k=1

f(tk)∆kx. Choose sk = xk+xk−1

2 . Since sk, tk ∈ [xk−1, xk] we have |tk − sk| ≤ ∆kx ≤ |X| < δ. Note

that
n∑
k=1

f(sk)∆kx =
n∑
k=1

(2sk − 1)∆kx =
n∑
k=1

(xk + xk−1 − 1)(xk − xk−1)

=
n∑
k=1

(
(xk + xk−1)(xk − xk−1)− (xk − xk−1)

)
=

n∑
k=1

(xk
2 − x2k−1)−

n∑
k=1

(xk − xk−1)

= (xn
2 − x02)− (xn − x0) = (32 − 12)− (3− 1) = 6.

and so∣∣S − 6| =
∣∣ n∑
k=1

f(tk)∆kx−
n∑
k=1

f(sk)∆kx
∣∣ =

∣∣ n∑
k=1

(
f(tk)− f(sk)

)
∆kx

∣∣ =
∣∣ n∑
k=1

(
(2tk − 1)− (2sk − 1)

)
∆kx

∣∣
=
∣∣ n∑
k=1

2(tk − sk)∆kx
∣∣ ≤ n∑

k=1

2|tk − sk|∆kx <
n∑
k=1

2δ∆kx = 2δ
n∑
k=1

∆kx = 2δ · 2 = ε.

(b) Fix ` ∈ Z+. Define f : [0, 1]→ R by f
(
r
`

)
= r for each r ∈ {0, 1, 2, · · · , `}, and f(x) = 0 when x 6= r

` for
any such r. Prove, from the definition, that f is integrable on [0, 1].

Solution: Let I = 0. Let ε > 0. Choose δ = min
{

1
` ,

ε
2`2

}
. Let X = {x0, x1, · · · , xn} be a partition of [0, 1]

with |X| < δ. Let Ik = [xk−1, xk], let tk ∈ Ik, and let S =
n∑
k=1

f(tk)∆kx. Since |X| < δ ≤ 1
` , each interval

Ik contains at most one of the points r
` . Also note that 0 and 1 each lie in exactly 1 of the intervals Ik

(namely 0 ∈ I0 and 1 ∈ In) while for 0 < r < `, r` lies in at most 2 of the intervals Ik, and so the number of
indices k for which Ik contains one of the points r

` is at most 2`. Let K be the set of indices k for which Ik
contains one of the points r

` , and let #K be the number of elements in K, so #K ≤ 2`. When k /∈ K we
have f(x) = 0 for all x ∈ Ik so that, in particular, f(tk) = 0. When k ∈ K with r

` ∈ Ik, we have f(x) = 0
for x 6= r

` and f
(
r
`

)
= r ≤ `, so that 0 ≤ f(tk) ≤ r ≤ `. Thus

0 ≤
n∑
k=1

f(tk)∆kx =
∑
k∈K

f(tk)∆kx ≤
∑
k∈K

`∆kx <
∑
k∈K

`δ = `δ#K ≤ `δ · 2` ≤ ε

so that |S − I| < ε, as required.
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