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PMATH 333 Intro to Real Analysis, Solutions to the Midterm Test, Fall 2024

(a) Let R be a ring. Using Rules RO-R7 (with only one rule used at each step), prove that for all a € R, if
1+a=0thena-a=1.

Solution: Let a € R. Suppose that 1 + a = 0. Then

a-a=a-a+0 ,byR3
=0+4+a-a , by R2
=(14+a)+a-a ,sincel+a=0
=1+(a+a-a) ,byRI1
=1+ (a-14+a-a) ,since a=a-1by R6
=1+4+a-(1+a) ,byR7
=14+a-0 ,sincel+a=0
=140 ,sincea-0=0 by RO
=1 , by R3.

(b) Let F' be an ordered field. Using the result of Part (a), together with Rules R0-R9 and O1-O5 (with
only one rule used at each step), prove that 0 < 1.

Solution: By O1, we know that either 0 < 1 or 1 < 0. Suppose that 1 < 0. By R3, we can choose a € F
such that 14+ a = 0. By Part (a), we know that a-a = 1. We have

1 <0 , by assumption

1+4a<0+4+a , by O3

0<0+4+a ,sincel4+a=0

0<a+0 ,byR2

0<a ,byR3

0<a-a ,by O5 (taking b = a)

0<1 ,since a-a=1 by Part (a).

(c) Determine whether the following formula is true, when the variables represent sets:

Jw Yo (UEU} ~ HuVy(yEU HVx(xEy—)xEu))).

Solution: Recall that for a set u, the power set of u is the set P(u) = {y | y C u} Let us say that “v is a
power set” when v = P(u) for some set u. In the class of sets, we have

Ve(rey »r€u) <=y Cu
Vy(yev ¢ Vo (z€y — z€u)) <= v = P(u)
JuVy(y€v > Vo (z€y — v€u)) < v is a power set
Yov (va > EIuVy(va Ve (zey — xeu))) = w= {v|v is a power set}
so the given formula states that the class w = {v ‘ v is a power set} = {v ’ Ju v:P(u)} is a set. We claim

that this is FALSE. If w was a set, then | Jw would also be a set (by the Union Axiom). But then for every
set 4 we would have u € P(u) C [Jw, so that | Jw is the class of all sets (which, as we know, is not a set).
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2: (a) Let z, = @ntD” for n € Z+. Use the definition of the limit to prove that lim =z, = 4.
n—oo

n2+1

Solution: For all n € ZT we have

(2n+1)2 _4l = 2n+1)%2—4(n’+1)|
n2+1 - n2+1 -

4n73‘ _4n-3 _4n _ 4

|x” - 4’ = n241 n2+1 n

n?2 — n’
Let € > 0. Choose N € Z™ such that % < €. Then for all n € ZT with n > N we have ’xn —4| < % < % < e
(b) Prove that every Cauchy sequence in R converges in R.

Solution: Let (x,)n>1 be a Cauchy sequence in R. We claim that (z,),>1 is bounded. Since (zp)n>1 is
Cauchy, we can choose N € Z* such that n,m > N = |€n — ©m| < 1. Let m = N. Then for all n > N
we have |z, — z,| < 1 so that x, — 1 < z,, < Xy, + 1. It follows that (z,),>1 is bounded above by
max {331,.132, C L1, T+ 1} and bounded below by min {xl, Loy L1, LT — 1}.

Because (z,,)n>1 is bounded, it has a convergent subsequence, by the Bolzano-Weierstrass Theorem.

Let (2, )x>1 be a convergent subsequence of (z,,),>1 and let a = lim z,,. We claim that lim x, = a. Let
= = k— 00 n—00

€ > 0. Since () is Cauchy, we can choose N € Z* so that n,m > N = |z, — =] < §. Since z,, — a
we can choose K € Z so that k > K = |2y, —a| < §. Since nj — 00, we can choose an index k > K so
that ny > N. Then for all n > N we have |z,, — a| < |2, — Tp, | + |20, —a| < § + § = €. Thus 2, — a, as
claimed.

: (a) Let f : [0,00) — R be continuous on [0, 00) with lim f(x) = a € R. Prove that f is uniformly continuous.

n—oo
Solution: Let € > 0. Since lim f(z) = a, we can choose r > 0 such that 2 > r = |f(x) —a| < §. Since
n—oo

f is continuous on [0, r + 1], it is also uniformly continuous on [0,r + 1], so we can choose dy > 0 such that
for all z,y € [0,7 4+ 1], we have |z —y| < do = |f(x) — f(y)| < e. Let § = min(dp,1). Let z,y € [0, 00)
with |z — y| < ¢ so that |x — y| < dp and |z —y| < 1. Since |z — y| < 1, either we have z,y € [0,r + 1]
or we have z,y € [r,00). In the case that x,y € [0,r + 1], since |x — y| < d9 we have |f(z) — f(y)| < €
(by the choice of dp). In the case that z,y € [r,00) we have |f(z) —a| < § and |f(y) —a|] < § so that
() — F)| < 1£(x) —al +1a— f()] < § + £ = e

(b) Prove that every continuous function f : [a,b] — R attains its maximum value.

Solution: First we claim that f is bounded above. Suppose, for a contradiction, that f is not bounded

above. For each n € Z*, choose z,, € [a,b] such that f(z,) > n. By the Bolzano-Weierstrass Theorem,

we can choose a convergent subsequence (z,, )r>1. Let r = klim Tn,. Since a < x,, < b for all k, it
= —

o]
follows that a < r < b by Comparison, so we have r € [a,b]. Since f(z,,) > ni and ny — oo we have
f(zy,) = o0 as k — oo, by Comparison. But by the Sequential Characterization of Continuity, we also have
f(zn,) — f(r) € R, which gives the desired contradiction. Thus f is bounded above, as claimed.
Since the range f([a,b]) is nonempty and bounded above, it has a supremum. Let m = sup f([a, b]).
By the Approximation Property of the supremum, for each n € Z* we can choose y, € [a,b] such that
1

m — =~ < f(yn) < m. By the Bolzano-Weierstrass Theorem, we can choose a convergent subsequence

(Yny )e>1- Let ¢ = klim Yn,, - Since we have m — % < f(Yn,,) < m and ﬁ — 0, it follows that f(y,,) — m as
> o : .

k — oo by the Squeeze Theorem. Since f is continuous at ¢, by the Sequential Characterization of Continuity

we have f(yn,) — f(c), and so by the Uniqueness of Limits, we have f(¢) = m. Thus f attains its maximum

value at c.
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4: (a) Prove, from the definition of the integral, that the function f : [1,3] — R given by f(z) = 2z — 1 is

3
integrable on [1, 3] with fl f(z)dx = 6.

Solution: Let ¢ > 0. Choose 0 = §. Let X be any partition with |X| < 6. Let ¢, € [zr_1,7x] and let

S = E f(tr)Arx. Choose si, = % Since s, tx € [xg—1,Tx] we have |t — sg| < Agx < |X| < . Note

that

> flor) A = 30 (25 = DA = 3 (on + 21— 1)on — 21)
k=1 k=1 k=1
= 231 ((l‘k +xp_1)(xg — xp—1) — (T — l‘k71>) = kznjl(g;kQ _ xi_l) — kz:(ggk — Tp_1)

T2 —20%) = (xn —w0) = (32 —1%) = (3-1) :ES.

—_~

and so

n

s —6l=| > 1 m)Aka:—if<sk>Akx|:|i(f(tk>—f<sk>)Akz|:|i(@tk—l)—(zsk—l))mﬂ

S

’ Z 2(ty — sk Akl" < Z 2|tk — Sk|Akl’ < E 20A,x = 26 Z Apr=20-2=c¢.
k=1 k=1

(b) Fix £ € Z*. Define f: [0,1] — R by f(%) =r for each r € {0,1,2,--,¢}, and f(x) = 0 when z # § for
any such r. Prove, from the definition, that f is integrable on [0, 1].

Solution: Let I = 0. Let ¢ > 0. Choose § = min {%, ﬁ} Let X = {xo,x1,---,2,} be a partition of [0, 1]
with |X| < d. Let Iy = [zr_1, k], let ty € Ij, and let S = E f(te)Agz. Since |X| < § < ¢, each interval

I;; contains at most one of the points 7. Also note that 0 and 1 each lie in exactly 1 of the intervals I}

(namely O € Iy and 1 € I,,) while for 0 < </, 7 lies in at most 2 of the intervals I3, and so the number of
indices k for which I contains one of the points % is at most 2¢. Let K be the set of indices k for which I,
contains one of the points 7, and let #K be the number of elements in K, so #K < 2¢. When k ¢ K we
have f(z) = 0 for all z € I} so that, in particular, f(tx) = 0. When k € K with € I3, we have f(z) =0
for  # % and f(%) =r < ¢, so that 0 < f(tx) < r < (. Thus

<Y ft)Aw = X fE)Aw € X (A < Y 0= (0 #K < 0020 < ¢
k=1

keK keK keK

so that |S — I] < e, as required.



