[10] 1: (a) Let R be a ring. Using Rules R0-R7 (with only one rule used at each step), prove that for all $a \in R$, if $1 + a = 0$ then $a \cdot a = 1$.

Solution: Let $a \in R$. Suppose that $1 + a = 0$. Then

$$
a \cdot a = a \cdot a + 0, \text{ by R3}
$$

= 0 + a \cdot a, \text{ by R2}
= (1 + a) + a \cdot a, \text{ since } 1 + a = 0
= 1 + (a + a \cdot a), \text{ by R1}
= 1 + (a \cdot 1 + a \cdot a), \text{ since } a = a \cdot 1 \text{ by R6}
= 1 + a \cdot (1 + a), \text{ by R7}
= 1 + a \cdot 0, \text{ since } 1 + a = 0
= 1 + 0, \text{ since } a \cdot 0 = 0 \text{ by R0}
= 1, \text{ by R3.}

(b) Let F be an ordered field. Using the result of Part (a), together with Rules R0-R9 and O1-O5 (with only one rule used at each step), prove that $0 \leq 1$.

Solution: By O1, we know that either $0 \leq 1$ or $1 \leq 0$. Suppose that $1 \leq 0$. By R3, we can choose $a \in F$ such that $1 + a = 0$. By Part (a), we know that $a \cdot a = 1$. We have

$$
1 \le 0 , by assumption
$$

\n
$$
1 + a \le 0 + a , by O3
$$

\n
$$
0 \le 0 + a , since 1 + a = 0
$$

\n
$$
0 \le a + 0 , by R2
$$

\n
$$
0 \le a \cdot a , by O5 (taking b = a)
$$

\n
$$
0 \le 1 , since a \cdot a = 1 by Part (a).
$$

(c) Determine whether the following formula is true, when the variables represent sets:

$$
\exists w \; \forall v \; (v \in w \leftrightarrow \exists u \, \forall y \, (y \in v \leftrightarrow \forall x \, (x \in y \to x \in u))).
$$

Solution: Recall that for a set u, the power set of u is the set $P(u) = \{y \mid y \subseteq u\}$. Let us say that "v is a power set" when $v = P(u)$ for some set u. In the class of sets, we have

$$
\forall x (x \in y \to x \in u) \iff y \subseteq u
$$

$$
\forall y (y \in v \leftrightarrow \forall x (x \in y \to x \in u)) \iff v = P(u)
$$

$$
\exists u \forall y (y \in v \leftrightarrow \forall x (x \in y \to x \in u)) \iff v \text{ is a power set}
$$

$$
\forall v (v \in w \leftrightarrow \exists u \forall y (y \in v \leftrightarrow \forall x (x \in y \to x \in u))) \iff w = \{v \mid v \text{ is a power set}\}
$$

so the given formula states that the class $w = \{v \mid v \text{ is a power set}\} = \{v \mid \exists u \ v = P(u)\}$ is a set. We claim that this is FALSE. If w was a set, then $\bigcup w$ would also be a set (by the Union Axiom). But then for every set u we would have $u \in P(u) \subseteq \bigcup w$, so that $\bigcup w$ is the class of all sets (which, as we know, is not a set).

[10] **2:** (a) Let $x_n = \frac{(2n+1)^2}{n^2+1}$ for $n \in \mathbb{Z}^+$. Use the definition of the limit to prove that $\lim_{n \to \infty} x_n = 4$.

Solution: For all $n \in \mathbb{Z}^+$ we have

$$
\left|x_n - 4\right| = \left|\frac{(2n+1)^2}{n^2+1} - 4\right| = \left|\frac{(2n+1)^2 - 4(n^2+1)}{n^2+1}\right| = \left|\frac{4n-3}{n^2+1}\right| = \frac{4n-3}{n^2+1} < \frac{4n}{n^2} = \frac{4}{n}.
$$

Let $\epsilon > 0$. Choose $N \in \mathbb{Z}^+$ such that $\frac{4}{n} < \epsilon$. Then for all $n \in \mathbb{Z}^+$ with $n \geq N$ we have $|x_n - 4| < \frac{4}{n} \leq \frac{4}{N} < \epsilon$. (b) Prove that every Cauchy sequence in R converges in R.

Solution: Let $(x_n)_{n\geq 1}$ be a Cauchy sequence in R. We claim that $(x_n)_{n\geq 1}$ is bounded. Since $(x_n)_{n\geq 1}$ is Cauchy, we can choose $N \in \mathbb{Z}^+$ such that $n, m \ge N \Longrightarrow |x_n - x_m| < 1$. Let $m = N$. Then for all $n \ge N$ we have $|x_n - x_m| < 1$ so that $x_m - 1 < x_n < x_m + 1$. It follows that $(x_n)_{n \geq 1}$ is bounded above by $\max\{x_1, x_2, \dots, x_{m-1}, x_m + 1\}$ and bounded below by $\min\{x_1, x_2, \dots, x_{m-1}, x_m - 1\}.$

Because $(x_n)_{n\geq 1}$ is bounded, it has a convergent subsequence, by the Bolzano-Weierstrass Theorem. Let $(x_{n_k})_{k\geq 1}$ be a convergent subsequence of $(x_n)_{n\geq 1}$ and let $a = \lim_{k\to\infty} x_{n_k}$. We claim that $\lim_{n\to\infty} x_n = a$. Let $\epsilon > 0$. Since (x_n) is Cauchy, we can choose $N \in \mathbb{Z}^+$ so that $n, m \ge N \Longrightarrow |x_n - x_m| < \frac{\epsilon}{2}$. Since $x_{n_k} \to a$ we can choose $K \in \mathbb{Z}^+$ so that $k \geq K \Longrightarrow |x_{n_k} - a| < \frac{\epsilon}{2}$. Since $n_k \to \infty$, we can choose an index $k \geq K$ so that $n_k \geq N$. Then for all $n \geq N$ we have $|x_n - a| \leq |\tilde{x}_n - x_{n_k}| + |x_{n_k} - a| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. Thus $x_n \to a$, as claimed.

[10] **3:** (a) Let $f : [0, \infty) \to \mathbb{R}$ be continuous on $[0, \infty)$ with $\lim_{n \to \infty} f(x) = a \in \mathbb{R}$. Prove that f is uniformly continuous.

Solution: Let $\epsilon > 0$. Since $\lim_{n \to \infty} f(x) = a$, we can choose $r > 0$ such that $x \ge r \implies |f(x) - a| < \frac{\epsilon}{2}$. Since f is continuous on $[0, r+1]$, it is also uniformly continuous on $[0, r+1]$, so we can choose $\delta_0 > 0$ such that for all $x, y \in [0, r + 1]$, we have $|x - y| < \delta_0 \Longrightarrow |f(x) - f(y)| < \epsilon$. Let $\delta = \min(\delta_0, 1)$. Let $x, y \in [0, \infty)$ with $|x-y| < \delta$ so that $|x-y| < \delta_0$ and $|x-y| < 1$. Since $|x-y| < 1$, either we have $x, y \in [0, r+1]$ or we have $x, y \in [r, \infty)$. In the case that $x, y \in [0, r + 1]$, since $|x - y| < \delta_0$ we have $|f(x) - f(y)| < \epsilon$ (by the choice of δ_0). In the case that $x, y \in [r, \infty)$ we have $|f(x) - a| < \frac{\epsilon}{2}$ and $|f(y) - a| < \frac{\epsilon}{2}$ so that $|f(x) - f(y)| \le |f(x) - a| + |a - f(y)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$

(b) Prove that every continuous function $f : [a, b] \to \mathbb{R}$ attains its maximum value.

Solution: First we claim that f is bounded above. Suppose, for a contradiction, that f is not bounded above. For each $n \in \mathbb{Z}^+$, choose $x_n \in [a, b]$ such that $f(x_n) \geq n$. By the Bolzano-Weierstrass Theorem, we can choose a convergent subsequence $(x_{n_k})_{k\geq 1}$. Let $r = \lim_{k\to\infty} x_{n_k}$. Since $a \leq x_{n_k} \leq b$ for all k, it follows that $a \leq r \leq b$ by Comparison, so we have $r \in [a, b]$. Since $f(x_{n_k}) \geq n_k$ and $n_k \to \infty$ we have $f(x_{n_k}) \to \infty$ as $k \to \infty$, by Comparison. But by the Sequential Characterization of Continuity, we also have $f(x_{n_k}) \to f(r) \in \mathbb{R}$, which gives the desired contradiction. Thus f is bounded above, as claimed.

Since the range $f([a, b])$ is nonempty and bounded above, it has a supremum. Let $m = \sup f([a, b])$. By the Approximation Property of the supremum, for each $n \in \mathbb{Z}^+$ we can choose $y_n \in [a, b]$ such that $m - \frac{1}{n} \leq f(y_n) \leq m$. By the Bolzano-Weierstrass Theorem, we can choose a convergent subsequence $(y_{n_k})_{k=1}^n$. Let $c = \lim_{k \to \infty} y_{n_k}$. Since we have $m - \frac{1}{n_k} \le f(y_{n_k}) \le m$ and $\frac{1}{n_k} \to 0$, it follows that $f(y_{n_k}) \to m$ as $k \to \infty$ by the Squeeze Theorem. Since f is continuous at c, by the Sequential Characterization of Continuity we have $f(y_{n_k}) \to f(c)$, and so by the Uniqueness of Limits, we have $f(c) = m$. Thus f attains its maximum value at c.

[10] 4: (a) Prove, from the definition of the integral, that the function $f : [1,3] \to \mathbb{R}$ given by $f(x) = 2x - 1$ is integrable on [1, 3] with $\int_1^3 f(x) dx = 6$.

Solution: Let $\epsilon > 0$. Choose $\delta = \frac{\epsilon}{4}$. Let X be any partition with $|X| < \delta$. Let $t_k \in [x_{k-1}, x_k]$ and let $S = \sum_{n=1}^{\infty}$ $\sum_{k=1}^{\infty} f(t_k) \Delta_k x$. Choose $s_k = \frac{x_k+x_{k-1}}{2}$. Since $s_k, t_k \in [x_{k-1}, x_k]$ we have $|t_k - s_k| \leq \Delta_k x \leq |X| < \delta$. Note that

$$
\sum_{k=1}^{n} f(s_k) \Delta_k x = \sum_{k=1}^{n} (2s_k - 1) \Delta_k x = \sum_{k=1}^{n} (x_k + x_{k-1} - 1)(x_k - x_{k-1})
$$

=
$$
\sum_{k=1}^{n} ((x_k + x_{k-1})(x_k - x_{k-1}) - (x_k - x_{k-1})) = \sum_{k=1}^{n} (x_k^2 - x_{k-1}^2) - \sum_{k=1}^{n} (x_k - x_{k-1})
$$

=
$$
(x_n^2 - x_0^2) - (x_n - x_0) = (3^2 - 1^2) - (3 - 1) = 6.
$$

and so

$$
|S-6| = \left| \sum_{k=1}^{n} f(t_k) \Delta_k x - \sum_{k=1}^{n} f(s_k) \Delta_k x \right| = \left| \sum_{k=1}^{n} \left(f(t_k) - f(s_k) \right) \Delta_k x \right| = \left| \sum_{k=1}^{n} \left((2t_k - 1) - (2s_k - 1) \right) \Delta_k x \right|
$$

$$
= \left| \sum_{k=1}^{n} 2(t_k - s_k) \Delta_k x \right| \le \sum_{k=1}^{n} 2|t_k - s_k| \Delta_k x < \sum_{k=1}^{n} 2\delta \Delta_k x = 2\delta \sum_{k=1}^{n} \Delta_k x = 2\delta \cdot 2 = \epsilon.
$$

(b) Fix $\ell \in \mathbb{Z}^+$. Define $f : [0,1] \to \mathbb{R}$ by $f(\frac{r}{\ell}) = r$ for each $r \in \{0,1,2,\cdots,\ell\}$, and $f(x) = 0$ when $x \neq \frac{r}{\ell}$ for any such r. Prove, from the definition, that f is integrable on [0, 1].

Solution: Let $I = 0$. Let $\epsilon > 0$. Choose $\delta = \min\left\{\frac{1}{\ell}, \frac{\epsilon}{2\ell^2}\right\}$. Let $X = \{x_0, x_1, \dots, x_n\}$ be a partition of $[0, 1]$ with $|X| < \delta$. Let $I_k = [x_{k-1}, x_k]$, let $t_k \in I_k$, and let $S = \sum_{k=1}^{n}$ $\sum_{k=1} f(t_k) \Delta_k x$. Since $|X| < \delta \leq \frac{1}{\ell}$, each interval I_k contains at most one of the points $\frac{r}{\ell}$. Also note that 0 and 1 each lie in exactly 1 of the intervals I_k (namely $0 \in I_0$ and $1 \in I_n$) while for $0 \lt r \lt \ell$, $\frac{r}{\ell}$ lies in at most 2 of the intervals I_k , and so the number of indices k for which I_k contains one of the points $\frac{r}{\ell}$ is at most 2 ℓ . Let K be the set of indices k for which I_k contains one of the points $\frac{r}{\ell}$, and let $\#K$ be the number of elements in K, so $\#K \leq 2\ell$. When $k \notin K$ we have $f(x) = 0$ for all $x \in I_k$ so that, in particular, $f(t_k) = 0$. When $k \in K$ with $\frac{r}{\ell} \in I_k$, we have $f(x) = 0$ for $x \neq \frac{r}{\ell}$ and $f(\frac{r}{\ell}) = r \leq \ell$, so that $0 \leq f(t_k) \leq r \leq \ell$. Thus

$$
0 \leq \sum_{k=1}^{n} f(t_k) \Delta_k x = \sum_{k \in K} f(t_k) \Delta_k x \leq \sum_{k \in K} \ell \Delta_k x < \sum_{k \in K} \ell \delta = \ell \delta \# K \leq \ell \delta \cdot 2\ell \leq \epsilon
$$

so that $|S - I| < \epsilon$, as required.