1: Determine which of the following are groups and which of the groups are abelian.
(a) $G=\{1,4,7,10,13\}$ under multiplication modulo 15 .
(b) $G=\left\{p(x)=a x+b \mid a \in U_{4}, b \in \mathbb{Z}_{4}\right\}$ under composition of polynomials.
(c) $G=\{x \in \mathbb{R} \mid x>1\}$ under the operation $*$ given by $x * y=x y-x-y+2$.

2: Let G be a group with identity e.
(a) Let $a, b \in G$ with $a^{4}=e$ and $a b=b a^{2}$. Show that $a=e$.
(b) Let $a, b \in G$ with $a^{16}=b^{9}$ and $a^{25}=b^{14}$. Show that $a=b$.
(c) Let $a, b \in G$ with $|a|=2, b \neq e$ and $a b=b^{2} a$. Find $|b|$ and $|a b|$.

3: (a) Write out the multiplication table for U_{20}.
(b) Find the order of each element in U_{20}.
(c) Solve $x^{3} y^{6}=3$ for $x, y \in U_{20}$.

4: When R is a commutative ring (with identity), the set $M_{n}(R)$ of $n \times n$ matrices with entries in R is a ring (with identity) under matrix addition and matrix multiplication. The subsets $G L_{n}(R)=\left\{A \in M_{n}(R) \mid \operatorname{det} A \in R^{*}\right\}$, $S L_{n}(R)=\left\{A \in M_{n}(R) \mid \operatorname{det} A=1\right\}, O_{n}(R)=\left\{A \in M_{n}(R) \mid A^{T} A=I\right\}$ and $S O_{n}(R)=\left\{A \in O_{n}(R) \mid \operatorname{det} A=1\right\}$ are groups (with identity) under matrix multiplication.
(a) Find $\left|S L_{2}\left(\mathbb{Z}_{5}\right)\right|$.
(b) Find every element of order 2 in $S L_{2}\left(\mathbb{Z}_{5}\right)$.
(c) Find $\left|O_{2}\left(\mathbb{Z}_{5}\right)\right|$ and $\left|S O_{2}\left(\mathbb{Z}_{5}\right)\right|$.

