- 1: Determine which of the following are groups and which of the groups are abelian.
 - (a) $G = \{1, 4, 7, 10, 13\}$ under multiplication modulo 15.
 - (b) $G = \{p(x) = ax + b | a \in U_4, b \in \mathbb{Z}_4\}$ under composition of polynomials.
 - (c) $G = \{x \in \mathbb{R} | x > 1\}$ under the operation * given by x * y = xy x y + 2.
- **2:** Let G be a group with identity e.
 - (a) Let $a, b \in G$ with $a^4 = e$ and $ab = ba^2$. Show that a = e.
 - (b) Let $a, b \in G$ with $a^{16} = b^9$ and $a^{25} = b^{14}$. Show that a = b.
 - (c) Let $a, b \in G$ with $|a| = 2, b \neq e$ and $ab = b^2 a$. Find |b| and |ab|.
- **3:** (a) Write out the multiplication table for U_{20} .
 - (b) Find the order of each element in U_{20} .
 - (c) Solve $x^3y^6 = 3$ for $x, y \in U_{20}$.
- 4: When R is a commutative ring (with identity), the set $M_n(R)$ of $n \times n$ matrices with entries in R is a ring (with identity) under matrix addition and matrix multiplication. The subsets $GL_n(R) = \{A \in M_n(R) \mid \det A \in R^*\}$, $SL_n(R) = \{A \in M_n(R) \mid \det A = 1\}$, $O_n(R) = \{A \in M_n(R) \mid A^T A = I\}$ and $SO_n(R) = \{A \in O_n(R) \mid \det A = 1\}$ are groups (with identity) under matrix multiplication.
 - (a) Find $|SL_2(\mathbb{Z}_5)|$.
 - (b) Find every element of order 2 in $SL_2(\mathbb{Z}_5)$.
 - (c) Find $|O_2(\mathbb{Z}_5)|$ and $|SO_2(\mathbb{Z}_5)|$.