PMATH 336 Intro to Group Theory, Solutions to Assignment 1

: Determine which of the following are groups and which of the groups are abelian.

(a) G ={1,4,7,10,13} under multiplication modulo 15.

Solution: This is not a group because 10 does not have an inverse under multiplication modulo 15.
(b) G = {p(m) =ax + b’a € Uy be Z4} under composition of polynomials.

Solution: We claim that G is a group. If f(z) = ax+b with a € Uy and b € Z4, and g(z) = cx+d with ¢ € Uy
and d € Zg, then we have f(g(x)) = f(cz +d) = a(cx +d) + b= acz + (ad + 1), and we have f(g(x)) € G
since ac € Uy and ad + b € Z4. Thus the operation is closed. We know that composition is associative.
The identity function I is given by I(x) = 1z 4 0, which is G. Given f(z) = ax + b, we can find its inverse
g(z) = cx + d by solving f(g(z)) = I(z), that is acx + (ad + b) = 1z + 0: we need ac = 1, so ¢ = a~!, and
we need ad +b = 0, so d = —a~'b, and so the inverse of f(z) = ax + b is given by g(z) = a~tx —a~1b,
which is in G. Thus G is a group, as claimed. The group G is not abelian since, for example, if f(z) = 3z
and g(xz) = x + 1 then f(g(z)) = 3z + 3 but g(f(z)) = 3z + 1.
(c) G={z € R|x > 1} under the operation x given by z %y = zy —x — y + 2.
Solution: We claim that G is a group. Note first that for all z,y € R we have
xxy=asy—z—y+2=(x—-1)(y—1)+1.

In particular, when z,y > 1 we have zxy = (z —1)(y —1)+1 > (1 —1)(1 — 1)+ 1 =1 and so * does indeed
give an operation on G. Also, the operation * is associative since

(xxy)xz= ((:r—l)(y—l)—i—l)*z:(x—l)(y—l)(z—l)—&—lzm*((y—l)(z—1)+1) =xx(y*z).
The identity is e = 2 since we have z %2 = (z —1)2—-1)+1l=zand 2*x2z = (2—-1)(z—1)+1 = z.
Finally note that the inverse of the x € G is y = ﬁ + 1 (which lies in G since x > 1 implies ﬁ >0
and hence y = —5 +1 > 1) since then zxy = (z —1)(y — 1)+ 1 = (z —1)(:35) +1 = 2 = € and
yrz=(y—1)(z—1)+1=(3)(@—1)+1=2=e Thus G is a group, as claimed. The group G is
abelian since zxy = (z—1)(y—1)+1=(y—-Dx—-1)+1=yx*z.

: Let G be a group with identity e.

(a) Let a,b € G with a* = e and ab = ba®. Show that a = e.

Solution: We have b = be = ba* = (ba?)a? = (ab)a? = a(ba?®) = a(ab) = a®b. Since a®b = b, we have a? = ¢
(by cancellation). Thus ab = ba? = be = b and hence a = e (by cancellation).

(b) Let a,b € G with a'6 =% and a?> = b'*. Show that a = b.

Solution: We have a = a® = a!6117257 = (q16)11(¢25)=7 = (p9)11(p14)~7 = pO11-147 — pl —p,

(c) Let a,b € G with |a| = 2, b # e and ab = b%a. Find |b| and |ab].

Solution: Multiply the equation b?*a = ab on the right by a to get b*> = aba (since a? = ¢), then square both
sides to get b* = abaaba = abba = a(b*a) = a(ab) = a?b = b. Multiply by b~! to get b> = e. Since b # e
we also have b® # e (since if b2 = e then multiplying both sides by b gives b*> = b and hence e = b), and so
|b| = 3. Note that ab # e since if we had ab = e we would have b = eb = a®b = a(ab) = ae = a. On the other
hand, we have (ab)? = (ab)(ab) = (b*a)(ab) = b%a®b = b%eb = b® = e, and so |ab| = 2.



3: (a) Write out the multiplication table for Usp.

Solution: Here is the multiplication table.

1 3 7 9 11 13 17 19
1 1 3 7 9 11 13 17 19
3 3 9 1 7 13 19 11 17
7 T 1 9 3 17 11 19 13

13 13 19 11 17
17 17 11 19 13
19 19 17 13 11
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(b) Find the order of each element in Usy.

Solution: We make a table of powers modulo 20, and on the last row we indicate the order of each element.

x 1 3 7 9 11 13 17 19
22 1.9 91 1 9 9 1
22 1 7 3 9 11 17 13 19
221111 1 1 1 1
lz| 1 4 4 2 2 4 4 2

(c) Solve 23y5 = 3 for x,y € Uso.

Solution: Let z,y € Usg_. From the above table of powers, we have y% = y? € {1,9}. When y € {1,9,11,19}
we have y? = y? = 1sothat 23y® =3 <= 23 =3 = =17 Wheny € {3,7,13,17} we have y® = y?> =9
sothat 2395 =3 <= 922 =3 <= 9.923=9.3 = 23 =7 <= 2 = 3. Thus the solutions are the
pairs (z,y) = (1,7), (9,7), (11,7), (19,7), (3,3), (7,3), (13,3) and (17, 3).



4: When R is a commutative ring (with identity), the set M, (R) of nxn matrices With entries in R is a ring (with
identity) under matrix addition and matrix multiplication The subsets G Ly ( {AE M, (R) | det A0},
SLn(R)={A€M,(R)| det A=1}, Op(R)={A€M,(R) | ATA=1I} and SO,(R)={A€O,(R)| det A=1}
are groups (with identity) under matrix multiplication.

(a) Find ‘SLQ (Z5) | .

Solution: For a matrix in GLy(Zs), the two rows are linearly independent, so the first row cannot be zero,
and the second row cannot be a multiple of the first; there are 52 — 1 = 24 choices for the first row and
52 — 5 = 20 choices for the second row, and so we have |GLa(Zs)| = 24 - 20 = 480.

For each matrix A in SLs(Zs), we obtain 4 matrices in GL2(Z5) by multiplying the first row of A by
1,2,3 or 4, and hence [SLy(Zs)| = $|GLa(Zs)| =

We mark that the above argument shows more generally that for p prime we have

|SLu(Zy)| = S5 (0" =) (@™ = p?)--- (" —p" 7).
(b) Find every element of order 2 in SLy(Zs5).

a b
c

detA=1and ¢ b = b = d —b < ad—bc=1,a=d,b=—-bc=—c <<
c d dCtA —c a —c a

Solution: Let A = . We have A € SLy(Zs) and A2 = ] <= detA=1land A = A7l «—

2=ad=1,a=db=c=0 < A= g 0 with a? = 1. In Zs we have a®> = 1 <= a € {1,4},
o 10 4 0
so the only elements A € SLy(Z5) with A2 = 1 are A = 0 1 and 0 4 Thus the only element

A € SLy(Zs) with [A] = 2is A — (3 2)

(c) Find |O2(Zs)| and |SO4(Zs)|.

. _(a b Th . (a®+c* ab+cd\ (1 0
Solution: If A = (c d) € O3(Zs) then we have A"A = I, that is ( ab + cd b2+d2) = (0 1).

Since a? + ¢* = 1, where a and b are in Zs (so that 0> = 0, 12 = 42 = 1 and 22 = 3% = 4) we must

have | ) = 1 , 4 , 0 or 0 . Similarly b
c 0 0 1 4 d

1 b
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have ab + c¢d = 0 so for example, when i ,

is one of these 4 vectors. Also, we must

1 4
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must be equal to (O) or (0) We have

oz = {(3 2)-(5 - )G )

1

0
minants of these matrices are all 1 or 4, and SOz (Zs) {
|02(Zs5)| = 8 and |SO4(Zs)| = 4.



