PMATH 336 Intro to Group Theory, Solutions to Assignment 1

1: Determine which of the following are groups and which of the groups are abelian.
(a) $G=\{1,4,7,10,13\}$ under multiplication modulo 15 .

Solution: This is not a group because 10 does not have an inverse under multiplication modulo 15 .
(b) $G=\left\{p(x)=a x+b \mid a \in U_{4}, b \in \mathbb{Z}_{4}\right\}$ under composition of polynomials.

Solution: We claim that G is a group. If $f(x)=a x+b$ with $a \in U_{4}$ and $b \in \mathbb{Z}_{4}$, and $g(x)=c x+d$ with $c \in U_{4}$ and $d \in \mathbb{Z}_{4}$, then we have $f(g(x))=f(c x+d)=a(c x+d)+b=a c x+(a d+b)$, and we have $f(g(x)) \in G$ since $a c \in U_{4}$ and $a d+b \in \mathbb{Z}_{4}$. Thus the operation is closed. We know that composition is associative. The identity function I is given by $I(x)=1 x+0$, which is G. Given $f(x)=a x+b$, we can find its inverse $g(x)=c x+d$ by solving $f(g(x))=I(x)$, that is $a c x+(a d+b)=1 x+0$: we need $a c=1$, so $c=a^{-1}$, and we need $a d+b=0$, so $d=-a^{-1} b$, and so the inverse of $f(x)=a x+b$ is given by $g(x)=a^{-1} x-a^{-1} b$, which is in G. Thus G is a group, as claimed. The group G is not abelian since, for example, if $f(x)=3 x$ and $g(x)=x+1$ then $f(g(x))=3 x+3$ but $g(f(x))=3 x+1$.
(c) $G=\{x \in \mathbb{R} \mid x>1\}$ under the operation $*$ given by $x * y=x y-x-y+2$.

Solution: We claim that G is a group. Note first that for all $x, y \in \mathbb{R}$ we have

$$
x * y=x y-x-y+2=(x-1)(y-1)+1
$$

In particular, when $x, y>1$ we have $x * y=(x-1)(y-1)+1>(1-1)(1-1)+1=1$ and so $*$ does indeed give an operation on G. Also, the operation $*$ is associative since

$$
(x * y) * z=((x-1)(y-1)+1) * z=(x-1)(y-1)(z-1)+1=x *((y-1)(z-1)+1)=x *(y * z)
$$

The identity is $e=2$ since we have $x * 2=(x-1)(2-1)+1=x$ and $2 * x=(2-1)(x-1)+1=x$. Finally note that the inverse of the $x \in G$ is $y=\frac{1}{x-1}+1$ (which lies in G since $x>1$ implies $\frac{1}{x-1}>0$ and hence $\left.y=\frac{1}{x-1}+1>1\right)$ since then $x * y=(x-1)(y-1)+1=(x-1)\left(\frac{1}{x-1}\right)+1=2=e$ and $y * x=(y-1)(x-1)+1=\left(\frac{1}{x-1}\right)(x-1)+1=2=e$. Thus G is a group, as claimed. The group G is abelian since $x * y=(x-1)(y-1)+1=(y-1)(x-1)+1=y * x$.

2: Let G be a group with identity e.
(a) Let $a, b \in G$ with $a^{4}=e$ and $a b=b a^{2}$. Show that $a=e$.

Solution: We have $b=b e=b a^{4}=\left(b a^{2}\right) a^{2}=(a b) a^{2}=a\left(b a^{2}\right)=a(a b)=a^{2} b$. Since $a^{2} b=b$, we have $a^{2}=e$ (by cancellation). Thus $a b=b a^{2}=b e=b$ and hence $a=e$ (by cancellation).
(b) Let $a, b \in G$ with $a^{16}=b^{9}$ and $a^{25}=b^{14}$. Show that $a=b$.

Solution: We have $a=a^{1}=a^{16 \cdot 11-25 \cdot 7}=\left(a^{16}\right)^{11}\left(a^{25}\right)^{-7}=\left(b^{9}\right)^{11}\left(b^{14}\right)^{-7}=b^{9 \cdot 11-14 \cdot 7}=b^{1}=b$.
(c) Let $a, b \in G$ with $|a|=2, b \neq e$ and $a b=b^{2} a$. Find $|b|$ and $|a b|$.

Solution: Multiply the equation $b^{2} a=a b$ on the right by a to get $b^{2}=a b a$ (since $a^{2}=e$), then square both sides to get $b^{4}=a b a a b a=a b b a=a\left(b^{2} a\right)=a(a b)=a^{2} b=b$. Multiply by b^{-1} to get $b^{3}=e$. Since $b \neq e$ we also have $b^{2} \neq e$ (since if $b^{2}=e$ then multiplying both sides by b gives $b^{3}=b$ and hence $e=b$), and so $|b|=3$. Note that $a b \neq e$ since if we had $a b=e$ we would have $b=e b=a^{a} b=a(a b)=a e=a$. On the other hand, we have $(a b)^{2}=(a b)(a b)=\left(b^{2} a\right)(a b)=b^{2} a^{2} b=b^{2} e b=b^{3}=e$, and so $|a b|=2$.

3: (a) Write out the multiplication table for U_{20}.
Solution: Here is the multiplication table.

	1	3	7	9	11	13	17	19
1	1	3	7	9	11	13	17	19
3	3	9	1	7	13	19	11	17
7	7	1	9	3	17	11	19	13
9	9	7	3	1	19	17	13	1
11	11	13	17	19	1	3	7	9
13	13	19	11	17	3	9	1	7
17	17	11	19	13	7	9	1	3
19	19	17	13	11	9	7	3	1

(b) Find the order of each element in U_{20}.

Solution: We make a table of powers modulo 20, and on the last row we indicate the order of each element.

x	1	3	7	9	11	13	17	19
x^{2}	1	9	9	1	1	9	9	1
x^{3}	1	7	3	9	11	17	13	19
x^{4}	1	1	1	1	1	1	1	1
$\|x\|$	1	4	4	2	2	4	4	2

(c) Solve $x^{3} y^{6}=3$ for $x, y \in U_{20}$.

Solution: Let $x, y \in U_{20-}$. From the above table of powers, we have $y^{6}=y^{2} \in\{1,9\}$. When $y \in\{1,9,11,19\}$ we have $y^{2}=y^{2}=1$ so that $x^{3} y^{6}=3 \Longleftrightarrow x^{3}=3 \Longleftrightarrow x=7$. When $y \in\{3,7,13,17\}$ we have $y^{6}=y^{2}=9$ so that $x^{3} y^{6}=3 \Longleftrightarrow 9 x^{3}=3 \Longleftrightarrow 9 \cdot 9 x^{3}=9 \cdot 3 \Longleftrightarrow x^{3}=7 \Longleftrightarrow x=3$. Thus the solutions are the pairs $(x, y)=(1,7),(9,7),(11,7),(19,7),(3,3),(7,3),(13,3)$ and $(17,3)$.

4: When R is a commutative ring (with identity), the set $M_{n}(R)$ of $n \times n$ matrices with entries in R is a ring (with identity) under matrix addition and matrix multiplication. The subsets $G L_{n}(R)=\left\{A \in M_{n}(R) \mid \operatorname{det} A \neq 0\right\}$, $S L_{n}(R)=\left\{A \in M_{n}(R) \mid \operatorname{det} A=1\right\}, O_{n}(R)=\left\{A \in M_{n}(R) \mid A^{T} A=I\right\}$ and $S O_{n}(R)=\left\{A \in O_{n}(R) \mid \operatorname{det} A=1\right\}$ are groups (with identity) under matrix multiplication.
(a) Find $\left|S L_{2}\left(\mathbb{Z}_{5}\right)\right|$.

Solution: For a matrix in $G L_{2}\left(\mathbb{Z}_{5}\right)$, the two rows are linearly independent, so the first row cannot be zero, and the second row cannot be a multiple of the first; there are $5^{2}-1=24$ choices for the first row and $5^{2}-5=20$ choices for the second row, and so we have $\left|G L_{2}\left(\mathbb{Z}_{5}\right)\right|=24 \cdot 20=480$.

For each matrix A in $S L_{2}\left(\mathbb{Z}_{5}\right)$, we obtain 4 matrices in $G L_{2}\left(\mathbb{Z}_{5}\right)$ by multiplying the first row of A by $1,2,3$ or 4 , and hence $\left|S L_{2}\left(\mathbb{Z}_{5}\right)\right|=\frac{1}{4}\left|G L_{2}\left(\mathbb{Z}_{5}\right)\right|=120$.

We mark that the above argument shows more generally that for p prime we have

$$
\left|S L_{n}\left(\mathbb{Z}_{p}\right)\right|=\frac{1}{p-1}\left(p^{n}-p\right)\left(p^{n}-p^{2}\right) \cdots\left(p^{n}-p^{n-1}\right)
$$

(b) Find every element of order 2 in $S L_{2}\left(\mathbb{Z}_{5}\right)$.

Solution: Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. We have $A \in S L_{2}\left(\mathbb{Z}_{5}\right)$ and $A^{2}=I \Longleftrightarrow \operatorname{det} A=1$ and $A=A^{-1} \Longleftrightarrow$ $\operatorname{det} A=1$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\frac{1}{\operatorname{det} A}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right) \Longleftrightarrow a d-b c=1, a=d, b=-b, c=-c \Longleftrightarrow$ $a^{2}=a d=1, a=d, b=c=0 \Longleftrightarrow A=\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right)$ with $a^{2}=1$. In \mathbb{Z}_{5} we have $a^{2}=1 \Longleftrightarrow a \in\{1,4\}$, so the only elements $A \in S L_{2}\left(\mathbb{Z}_{5}\right)$ with $A^{2}=1$ are $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right)$. Thus the only element $A \in S L_{2}\left(\mathbb{Z}_{5}\right)$ with $|A|=2$ is $A=\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right)$.
(c) Find $\left|O_{2}\left(\mathbb{Z}_{5}\right)\right|$ and $\left|S O_{2}\left(\mathbb{Z}_{5}\right)\right|$.

Solution: If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in O_{2}\left(\mathbb{Z}_{5}\right)$ then we have $A^{T} A=I$, that is $\left(\begin{array}{cc}a^{2}+c^{2} & a b+c d \\ a b+c d & b^{2}+d^{2}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Since $a^{2}+c^{2}=1$, where a and b are in \mathbb{Z}_{5} (so that $0^{2}=0,1^{2}=4^{2}=1$ and $2^{2}=3^{2}=4$) we must have $\binom{a}{c}=\binom{1}{0},\binom{4}{0},\binom{0}{1}$ or $\binom{0}{4}$. Similarly $\binom{b}{d}$ is one of these 4 vectors. Also, we must have $a b+c d=0$ so for example, when $\binom{a}{c}=\binom{1}{0},\binom{b}{d}$ must be equal to $\binom{0}{1}$ or $\binom{0}{4}$. We have $O_{2}\left(\mathbb{Z}_{5}\right)=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right),\left(\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 4 & 0\end{array}\right),\left(\begin{array}{ll}0 & 4 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 4 \\ 4 & 0\end{array}\right)\right\}$. The determinants of these matrices are all 1 or 4 , and $S O_{2}\left(\mathbb{Z}_{5}\right)=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 4 & 0\end{array}\right),\left(\begin{array}{ll}0 & 4 \\ 1 & 0\end{array}\right)\right\}$. Thus $\left|O_{2}\left(\mathbb{Z}_{5}\right)\right|=8$ and $\left|S O_{2}\left(\mathbb{Z}_{5}\right)\right|=4$.

