1: Sketch a picture of each of the following subsets of \mathbb{C}^{*} and, in parts (c) and (d), determine whether the given subset is a subgroup (under multiplication).
(a) $\left\langle\frac{i-1}{\sqrt{2}}\right\rangle$
(b) $\langle 1+i\rangle$
(c) $\left\{z \in \mathbb{C}^{*}\left|z^{8}=|z|^{8}\right\}\right.$ (where $|z|$ denotes the usual norm of z)
(d) $\left\{r e^{i \theta} \in \mathbb{C}^{*} \mid r>0, \theta=\frac{\pi}{2} \log _{2} r\right\}$.

2: Consider the group $D_{6}=\left\{I, R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, F_{0}, F_{1}, F_{2}, F_{3}, F_{4}, F_{5}\right\}$.
(a) Make the multiplication table for D_{6}.
(b) Find the order of each element in D_{6}.
(c) Solve the equation $X^{2} Y^{3}=R_{1}$ for X and Y in D_{6}.

3: (a) Show that U_{25} is cyclic.
(b) List all the elements and all the generators of every subgroup of U_{25}.
(c) Find a non-cyclic subgroup of order 4 in U_{20}.

4: Let G be a multiplicative group and let $a \in G$ with $|a|=1400$.
(a) Determine the number of subgroups of $\langle a\rangle$.
(b) Determine the number of elements $x \in\langle a\rangle$ with $|x| \leq 10$.
(c) List all the elements $x=a^{k} \in\langle a\rangle$ with $x^{52}=1$.
(d) Find the number of pairs (x, y) with $x, y \in\langle a\rangle$ such that $x^{10}=y^{35}$ in $\langle a\rangle$.

