- Sketch a picture of each of the following subsets of C^{*} and, in parts (c) and (d), determine whether the given subset is a subgroup (under multiplication).
 - (a) $\left\langle \frac{i-1}{\sqrt{2}} \right\rangle$
 - (b) $\langle 1+i \rangle$
 - (c) $\{z \in \mathbb{C}^* | z^8 = |z|^8\}$ (where |z| denotes the usual norm of z)
 - (d) $\left\{ re^{i\theta} \in \mathbb{C}^* \middle| r > 0, \theta = \frac{\pi}{2} \log_2 r \right\}.$

2: Consider the group $D_6 = \{I, R_1, R_2, R_3, R_4, R_5, F_0, F_1, F_2, F_3, F_4, F_5\}.$

- (a) Make the multiplication table for D_6 .
- (b) Find the order of each element in D_6 .
- (c) Solve the equation $X^2Y^3 = R_1$ for X and Y in D_6 .
- **3:** (a) Show that U_{25} is cyclic.
 - (b) List all the elements and all the generators of every subgroup of U_{25} .
 - (c) Find a non-cyclic subgroup of order 4 in U_{20} .
- **4:** Let G be a multiplicative group and let $a \in G$ with |a| = 1400.
 - (a) Determine the number of subgroups of $\langle a \rangle$.
 - (b) Determine the number of elements $x \in \langle a \rangle$ with $|x| \leq 10$.
 - (c) List all the elements $x = a^k \in \langle a \rangle$ with $x^{52} = 1$.
 - (d) Find the number of pairs (x, y) with $x, y \in \langle a \rangle$ such that $x^{10} = y^{35}$ in $\langle a \rangle$.