PMATH 336 Intro to Group Theory, Solutions to Assignment 2

1: Sketch a picture of each of the following subsets of \mathbb{C}^{*} and, in parts (c) and (d), determine whether the given subset is a subgroup (under multiplication).
(a) $\left\langle\frac{i-1}{\sqrt{2}}\right\rangle$

Solution: Let $\alpha=\frac{i-1}{\sqrt{2}}=e^{i 3 \pi / 4}$. Then $\alpha^{2}=e^{i 6 \pi / 4}=e^{-i \pi / 2}, \alpha^{3}=e^{i 9 \pi / 4}=e^{i \pi / 4}, \alpha^{4}=e^{i 12 \pi / 4}=e^{i \pi}$, $\alpha^{5}=e^{i 15 \pi / 4}=e^{-i \pi / 4}, \alpha^{6}=e^{i 18 \pi / 4}=e^{i \pi / 2}, \alpha^{7}=e^{i 21 \pi / 4}=e^{-i 3 \pi / 4}$ and $\alpha^{8}=e^{i 24 \pi / 4}=e^{i 0}$, and then $\alpha^{9}=\alpha$ again, and so $\langle\alpha\rangle$ is the set of $8^{t h}$ roots of $1 \mathrm{in} \mathbb{C}^{*}$. These are shown below in red.
(b) $\langle 1+i\rangle$

Solution: Let $\beta=1+i$. A few of the positive powers of β are $\beta^{2}=2 i, \beta^{3}=-2+2 i, \beta^{4}=-4$ and $\beta^{5}=-4-4 i$, and a few of the negative powers of β are $\beta^{-1}=\frac{1}{2}-\frac{1}{2} i, \beta^{-2}=-\frac{1}{2} i, \beta^{-3}=-\frac{1}{4}-\frac{1}{4} i$, $\beta^{-4}=-\frac{1}{4}$ and $\beta^{-5}=-\frac{1}{8}-\frac{1}{8} i$. These are shown below in blue.
(c) $\left\{z \in \mathbb{C}^{*}\left|z^{8}=|z|^{8}\right\}\right.$ (where $|z|$ denotes the usual norm of z)

Solution: Write $H=\left\{z \in \mathbb{C}^{*}\left|z^{8}=|z|^{8}\right\}\right.$. We show that H is a subgroup of \mathbb{C}^{*}.
Closure: $z, w \in H \Longrightarrow z^{8}=|z|^{8}$ and $w^{8}=|w|^{8} \Longrightarrow(z w)^{8}=z^{8} w^{8}=\left.\left.|z|\right|^{8}|w|\right|^{8}=|z w|^{8} \Longrightarrow z w \in H$.
Identity: $1 \in H$ since $1^{8}=|1|^{8}$.
Inverse: $z \in H \Longrightarrow z^{8}=|z|^{8} \Longrightarrow\left(\frac{1}{z}\right)^{8}=\frac{1}{z^{8}}=\frac{1}{|z|^{8}}=\left|\frac{1}{z}\right|^{8} \Longrightarrow \frac{1}{z} \in H$.
To sketch a picture of this group H, note that for $z=r e^{i \theta}$ we have $z^{8}=|z|^{8} \Longleftrightarrow r^{8} e^{i 8 \theta}=r^{8} \Longleftrightarrow$ $e^{i 8 \theta}=1 \Longleftrightarrow 8 \theta=2 \pi k$ for some integer $k \Longleftrightarrow \theta=\frac{\pi}{4} k$ for some k. Thus H is the union of the lines $y=0, y=x, x=0$ and $y=-x$, shown below in peach.
(d) $\left\{r e^{i \theta} \in \mathbb{C}^{*} \mid r>0, \theta=\frac{\pi}{2} \log _{2} r\right\}$.

Solution: Let $K=\left\{r e^{i \theta} \in \mathbb{C}^{*} \left\lvert\, \theta=\frac{\pi}{2} \log _{2}(r)\right.\right\}=\left\{r e^{i \theta} \in \mathbb{C}^{*} \mid r=2^{2 \theta / \pi}\right\}$. Then K is a subgroup of \mathbb{C}^{*} : Closure: if $r e^{i \alpha}$ and $s e^{i \beta}$ are both in K, then $r=2^{2 \alpha / \pi}$ and $s=2^{2 \beta / \pi}$ and so

$$
\left(r e^{i \alpha}\right)\left(s e^{i \beta}\right)=r s e^{i(\alpha+\beta)}=2^{2 \alpha / \pi} 2^{2 \beta / \pi} e^{i(\alpha+\beta)}=2^{2(\alpha+\beta) / \pi} e^{i(\alpha+\beta)} \in K
$$

Identity: We have $1=r e^{i \theta}$ when $r=1$ and $\theta=0$, and then $r=1=2^{0}=2^{2 \theta / \pi}$, and so $1 \in K$.
Inverse: $z=r e^{i \theta} \in K \Longrightarrow r=2^{2 \theta / 2} \Longrightarrow r^{-1}=2^{-2 \theta / \pi} \Longrightarrow r^{-1} e^{-i \theta} \in K \Longrightarrow z^{-1} \in K$.
This group may be sketched by plotting points (r, θ) with $r=2^{2 \theta / \pi}$ on a polar grid. It is shown below in green.

2: Consider the group $D_{6}=\left\{I, R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, F_{0}, F_{1}, F_{2}, F_{3}, F_{4}, F_{5}\right\}$.
(a) Make the multiplication table for D_{6}.

Solution: Here is the multiplication table.

$A \backslash B$	I	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	F_{0}	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}
I	I	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	F_{0}	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}
R_{1}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	I	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{0}
R_{2}	R_{2}	R_{3}	R_{4}	R_{5}	I	R_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{0}	F_{1}
R_{3}	R_{3}	R_{4}	R_{5}	I	R_{1}	R_{2}	F_{3}	F_{4}	F_{5}	F_{0}	F_{1}	F_{2}
R_{4}	R_{4}	R_{5}	I	R_{1}	R_{2}	R_{3}	F_{4}	F_{5}	F_{0}	F_{1}	F_{2}	F_{3}
R_{5}	R_{5}	I	R_{1}	R_{2}	R_{3}	R_{4}	F_{5}	F_{0}	F_{1}	F_{2}	F_{3}	F_{4}
F_{0}	F_{0}	F_{5}	F_{4}	F_{3}	F_{2}	F_{1}	I	R_{5}	R_{4}	R_{3}	R_{2}	R_{1}
F_{1}	F_{1}	F_{0}	F_{5}	F_{4}	F_{3}	F_{2}	R_{1}	I	R_{5}	R_{4}	R_{3}	R_{2}
F_{2}	F_{2}	F_{1}	F_{0}	F_{5}	F_{4}	F_{3}	R_{2}	R_{1}	I	R_{5}	R_{4}	R_{3}
F_{3}	F_{3}	F_{2}	F_{1}	F_{0}	F_{5}	F_{4}	R_{3}	R_{2}	R_{1}	I	R_{5}	R_{4}
F_{4}	F_{4}	F_{3}	F_{2}	F_{1}	F_{0}	F_{5}	R_{4}	R_{3}	R_{2}	$R 1$	I	R_{5}
F_{5}	F_{5}	F_{4}	F_{3}	F_{2}	F_{1}	F_{0}	R_{5}	R_{4}	R_{3}	R_{2}	R_{1}	I

(b) Find the order of each element in D_{6}.

Solution: For each index $k \in \mathbb{Z}_{6}$, we have $F_{k} \neq I$ and $f_{k}^{2}=I$ and so $\left|F_{k}\right|=2$. Since $\left|R_{1}\right|=6$ and $R_{k}=\left(R_{1}\right)^{6}$ we have $\left|R_{k}\right|=\frac{6}{\operatorname{gcd}(k, 6)}$ for all indices k. To be explicit, we have

$$
\begin{array}{ccccccccccccc}
A & I & R_{1} & R_{2} & R_{3} & R_{4} & R_{5} & F_{0} & F_{1} & F_{2} & F_{3} & F_{4} & F_{5} \\
|A| & 1 & 6 & 3 & 2 & 3 & 6 & 2 & 2 & 2 & 2 & 2 & 2
\end{array}
$$

(c) Solve the equation $X^{2} Y^{3}=R_{1}$ for X and Y in D_{6}.

Solution: We have the following table of powers.

$$
\begin{array}{ccccccccccccc}
X & I & R_{1} & R_{2} & R_{3} & R_{4} & R_{5} & F_{0} & F_{1} & F_{2} & F_{3} & F_{4} & F_{5} \\
X^{2} & I & R_{2} & R_{4} & I & R_{2} & R_{4} & I & I & I & I & I & I \\
X^{3} & I & R_{3} & I & R_{3} & I & R_{3} & F_{0} & F_{1} & F_{2} & F_{3} & F_{4} & F_{5}
\end{array}
$$

From the table of powers, we see that X^{2} is equal to I, R_{2} or R_{4}. When $X^{2}=I$ we have $X^{2} Y^{3}=R_{1} \Longleftrightarrow$ $Y^{3}=R_{1}$, but there is no element $Y \in D_{6}$ with $Y^{3}=R_{1}$, so there is no solution with $X^{2}=I$. When $X^{2}=R_{2}$ we have $X^{2} Y^{3}=R_{1} \Longleftrightarrow R_{2} Y^{3}=R_{1} \Longleftrightarrow R_{4} R_{2} Y^{3}=R_{4} R_{1} \Longleftrightarrow Y^{3}=R_{5}$, but there is no element $Y \in D_{6}$ with $Y^{3}=R_{5}$. Finally, when $X^{2}=R_{4}$ (that is when $X \in\left\{R_{2}, R_{5}\right\}$) we have $X^{2} Y^{3}=R_{1} \Longleftrightarrow R_{4} Y^{3}=R_{1} \Longleftrightarrow R_{2} R_{4} Y^{3}=R_{2} R_{1} \Longleftrightarrow Y^{3}=R_{3} \Longleftrightarrow Y \in\left\{R_{1}, R_{3}, R_{5}\right\}$. Thus the solutions are $(X, Y)=\left(R_{2}, R_{1}\right),\left(R_{2}, R_{3}\right),\left(R_{2}, R_{5}\right),\left(R_{5}, R_{1}\right),\left(R_{5}, R_{3}\right)$ and $\left(R_{5}, R_{5}\right)$.

3: (a) Show that U_{25} is cyclic.
Solution: We have $U_{25}=\{1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19,21,22,23,24\}$. We make a table of powers of 2 modulo 25 .

$$
\begin{array}{cccccccccccccccccccccc}
k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
2^{k} & 1 & 2 & 4 & 8 & 16 & 7 & 14 & 3 & 6 & 12 & 24 & 23 & 21 & 17 & 9 & 18 & 11 & 22 & 19 & 13 & 1
\end{array}
$$

We see that $U_{25}=\langle 2\rangle$, so it is cyclic.
(b) List all the elements and all the generators of every subgroup of U_{25}.

Solution: The divisors of 20 are $1,2,4,5,10,20$ so the subgroups of U_{25} are

$$
\begin{aligned}
\left\langle 2^{1}\right\rangle & =U_{25} \\
\left\langle 2^{2}\right\rangle & =\left\{2^{0}, 2^{2}, 2^{4}, 2^{6}, 2^{8}, 2^{10}, 2^{12}, 2^{14}, 2^{16}, 2^{18}\right\}=\{1,4,16,14,6,24,21,9,11,19\} \\
\left\langle 2^{4}\right\rangle & =\left\{2^{0}, 2^{4}, 2^{8}, 2^{12}, 2^{16}\right\}=\{1,16,6,21,11\} \\
\left\langle 2^{5}\right\rangle & =\left\{2^{0}, 2^{5}, 2^{10}, 2^{15}\right\}=\{1,7,24,18\} \\
\left\langle 2^{10}\right\rangle & =\left\{2^{0}, 2^{10}\right\}=\{1,24\} \\
\left\langle 2^{20}\right\rangle & =\left\{2^{0}\right\}=\{1\}
\end{aligned}
$$

Since $\left|2^{1}\right|=20$ and we have $U_{20}=\{1,3,7,9,11,13,17,19\}$, the set of generators of the subgroup $\left\langle 2^{1}\right\rangle$ is $\left\{2^{1}, 2^{3}, 2^{7}, 2^{9}, 2^{11}, 2^{13}, 2^{17}, 2^{19}\right\}=\{1,8,3,12,23,17,22,13\}$. Since $\left|2^{2}\right|=10$ and $U_{10}=\{1,3,7,9\}$, the set of generators of $\left\langle 2^{2}\right\rangle$ is $\left\{2^{2}, 2^{6}, 2^{14}, 2^{18}\right\}=\{4,14,9,19\}$. Since $\left|2^{4}\right|=5$ and $U_{5}=\{1,2,3,4\}$, the set of generators of $\left\langle 2^{4}\right\rangle$ is $\left\{2^{4}, 2^{8}, 2^{12}, 2^{16}\right\}=\{16,6,21,11\}$. Since $\left|2^{5}\right|=4$ and $U_{4}=\{1,3\}$, the set of generators of $\left\langle 2^{5}\right\rangle$ is $\left\{2^{5}, 2^{15}\right\}=\{7,18\}$. The only generator of $\left\langle 2^{10}\right\rangle$ is $2^{10}=24$. The only generator of $\left\langle 2^{20}\right\rangle$ is $2^{0}=1$.
(c) Find a non-cyclic subgroup of order 4 in U_{20}.

Solution: We have $U_{20}=\{1,3,7,9,11,13,17,19\}$. We make a table of powers modulo 20 and determine the order of each element.

x	1	3	7	9	11	13	17	19
x^{2}	1	9	9	1	1	9	9	1
x^{3}	1	7	3	9	11	17	13	19
x^{4}	1	1	1	1	1	1	1	1
$\|x\|$	1	4	4	2	2	4	4	2

A non-cyclic subgroup of order 4 cannot have any elements of order 4, so the only possible non-cyclic subgroup is $H=\{1,9,11,19\}$. To verify that this subset H is a subgroup, it is enough to show that H is closed under multiplication, and indeed we have $9 \cdot 11=19,9 \cdot 19=11$ and $11 \cdot 19=9$.

4: Let G be a multiplicative group and let $a \in G$ with $|a|=1400$.
(a) Determine the number of subgroups of $\langle a\rangle$.

Solution: We have $a=2^{3} 5^{2} 7^{1}$. The divisors of a are of the form $2^{i} 5^{j} 7^{k}$ with $0 \leq i \leq 3,0 \leq j \leq 2$ and $0 \leq k \leq 1$. Since there are 4 choices for $i, 3$ for j and 2 for k, we see that a has $4 \cdot 3 \cdot 2=24$ divisors. Thus the cyclic group $\langle a\rangle$ has 24 subgroups.
(b) Determine the number of elements $x \in\langle a\rangle$ with $|x| \leq 10$.

Solution: The divisors of 1400 which are at most 10 are $1,2,4,5,7,8,10$, so the number of elements $x \in\langle a\rangle$ with $|x| \leq 10$ is equal to $\phi(1)+\phi(2)+\phi(4)+\phi(5)+\phi(7)+\phi(8)+\phi(10)=1+1+2+4+6+4+4=22$.
(c) List all the elements $x=a^{k} \in\langle a\rangle$ with $x^{52}=1$.

Solution: For $x=a^{k}$ we have

$$
\begin{aligned}
x^{52}=e & \Longleftrightarrow a^{52 k}=a^{0} \Longleftrightarrow 52 k=0(\bmod 1400) \Longleftrightarrow 13 k=0(\bmod 350) \Longleftrightarrow k=0(\bmod 350) \\
& \Longleftrightarrow k \in\{0,350,700,1050\} \Longleftrightarrow x \in\left\{e, a^{350}, a^{700}, a^{1050}\right\}
\end{aligned}
$$

(d) Find the number of pairs (x, y) with $x, y \in\langle a\rangle$ such that $x^{10}=y^{35}$ in $\langle a\rangle$.

Solution: Let $x, y \in\langle a\rangle$, say $x=a^{k}$ and $y=a^{\ell}$ where $0 \leq k, \ell<1400$. We have

$$
\begin{aligned}
x^{10}=y^{35} & \Longleftrightarrow a^{10 k}=a^{35 \ell} \Longleftrightarrow 10 k=35 \ell \bmod 1400 \Longleftrightarrow 2 k=7 \ell \bmod 280 \\
& \Longleftrightarrow \ell \text { is even and } k=\frac{7 \ell}{2} \bmod 140
\end{aligned}
$$

For each of the 700 even choices for ℓ, there is a unique value of k modulo 140 , so there are 10 choices for k modulo 1400 . Thus there are $700 \cdot 10=7000$ such pairs (x, y).

