
PMATH 336 Intro to Group Theory, Solutions to Assignment 2

1: Sketch a picture of each of the following subsets of C∗ and, in parts (c) and (d), determine whether the given
subset is a subgroup (under multiplication).

(a)
〈
i−1√

2

〉
Solution: Let α = i−1√

2
= ei 3π/4. Then α2 = ei 6π/4 = e−i π/2, α3 = ei 9π/4 = ei π/4, α4 = ei 12π/4 = ei π,

α5 = ei 15π/4 = e−i π/4, α6 = ei 18π/4 = eiπ/2, α7 = ei 21π/4 = e−i 3π/4 and α8 = ei 24π/4 = ei 0, and then
α9 = α again, and so 〈α〉 is the set of 8th roots of 1 in C∗. These are shown below in red.

(b) 〈1 + i〉
Solution: Let β = 1 + i. A few of the positive powers of β are β2 = 2i, β3 = −2 + 2i, β4 = −4 and
β5 = −4 − 4i, and a few of the negative powers of β are β−1 = 1

2 −
1
2 i, β

−2 = − 1
2 i, β

−3 = − 1
4 −

1
4 i,

β−4 = − 1
4 and β−5 = − 1

8 −
1
8 i. These are shown below in blue.

(c)
{
z∈C∗

∣∣ z8 = |z|8
}
(where |z| denotes the usual norm of z)

Solution: Write H = {z∈C∗| z8 = |z|8}. We show that H is a subgroup of C∗.
Closure: z, w ∈ H =⇒ z8 = |z|8 and w8 = |w|8 =⇒ (zw)8 = z8w8 = |z||8|w||8 = |zw|8 =⇒ zw ∈ H.
Identity: 1 ∈ H since 18 = |1|8.
Inverse: z ∈ H =⇒ z8 = |z|8 =⇒

(
1
z

)8
= 1

z8 = 1
|z|8 =

∣∣ 1
z

∣∣8 =⇒ 1
z ∈ H.

To sketch a picture of this group H, note that for z = r eiθ we have z8 = |z|8 ⇐⇒ r8ei 8θ = r8 ⇐⇒
ei 8θ = 1 ⇐⇒ 8θ = 2π k for some integer k ⇐⇒ θ = π

4 k for some k. Thus H is the union of the lines
y = 0, y = x, x = 0 and y = −x, shown below in peach.

(d)
{
rei θ∈C∗

∣∣ r>0 , θ= π
2 log2 r

}
.

Solution: Let K = {reiθ ∈ C∗| θ = π
2 log2(r)} = {reiθ ∈ C∗| r = 22θ/π}. Then K is a subgroup of C∗:

Closure: if r eiα and s eiβ are both in K, then r = 22α/π and s = 22β/π and so

(r eiα)(s eiβ) = rs ei(α+β) = 22α/π 22β/π ei(α+β) = 22(α+β)/πei(α+β) ∈ K .

Identity: We have 1 = r eiθ when r = 1 and θ = 0, and then r = 1 = 20 = 22θ/π, and so 1 ∈ K.
Inverse: z = r eiθ ∈ K =⇒ r = 22θ/2 =⇒ r−1 = 2−2θ/π =⇒ r−1e−iθ ∈ K =⇒ z−1 ∈ K.

This group may be sketched by plotting points (r, θ) with r = 22θ/π on a polar grid. It is shown below
in green.



2: Consider the group D6 =
{
I,R1, R2, R3, R4, R5, F0, F1, F2, F3, F4, F5

}
.

(a) Make the multiplication table for D6.

Solution: Here is the multiplication table.

A\B I R1 R2 R3 R4 R5 F0 F1 F2 F3 F4 F5

I I R1 R2 R3 R4 R5 F0 F1 F2 F3 F4 F5

R1 R1 R2 R3 R4 R5 I F1 F2 F3 F4 F5 F0

R2 R2 R3 R4 R5 I R1 F2 F3 F4 F5 F0 F1

R3 R3 R4 R5 I R1 R2 F3 F4 F5 F0 F1 F2

R4 R4 R5 I R1 R2 R3 F4 F5 F0 F1 F2 F3

R5 R5 I R1 R2 R3 R4 F5 F0 F1 F2 F3 F4

F0 F0 F5 F4 F3 F2 F1 I R5 R4 R3 R2 R1

F1 F1 F0 F5 F4 F3 F2 R1 I R5 R4 R3 R2

F2 F2 F1 F0 F5 F4 F3 R2 R1 I R5 R4 R3

F3 F3 F2 F1 F0 F5 F4 R3 R2 R1 I R5 R4

F4 F4 F3 F2 F1 F0 F5 R4 R3 R2 R1 I R5

F5 F5 F4 F3 F2 F1 F0 R5 R4 R3 R2 R1 I

(b) Find the order of each element in D6.

Solution: For each index k ∈ Z6, we have Fk 6= I and fk
2 = I and so |Fk| = 2. Since |R1| = 6 and

Rk = (R1)
6 we have |Rk| = 6

gcd(k,6) for all indices k. To be explicit, we have

A I R1 R2 R3 R4 R5 F0 F1 F2 F3 F4 F5

|A| 1 6 3 2 3 6 2 2 2 2 2 2

(c) Solve the equation X2Y 3 = R1 for X and Y in D6.

Solution: We have the following table of powers.

X I R1 R2 R3 R4 R5 F0 F1 F2 F3 F4 F5

X2 I R2 R4 I R2 R4 I I I I I I
X3 I R3 I R3 I R3 F0 F1 F2 F3 F4 F5

From the table of powers, we see that X2 is equal to I, R2 or R4. When X2 = I we have X2Y 3 = R1 ⇐⇒
Y 3 = R1, but there is no element Y ∈ D6 with Y 3 = R1, so there is no solution with X2 = I. When
X2 = R2 we have X2Y 3 = R1 ⇐⇒ R2Y

3 = R1 ⇐⇒ R4R2Y
3 = R4R1 ⇐⇒ Y 3 = R5, but there

is no element Y ∈ D6 with Y 3 = R5. Finally, when X2 = R4 (that is when X ∈ {R2, R5}) we have
X2Y 3 = R1 ⇐⇒ R4Y

3 = R1 ⇐⇒ R2R4Y
3 = R2R1 ⇐⇒ Y 3 = R3 ⇐⇒ Y ∈ {R1, R3, R5}. Thus the

solutions are (X,Y ) = (R2, R1), (R2, R3), (R2, R5), (R5, R1), (R5, R3) and (R5, R5).



3: (a) Show that U25 is cyclic.

Solution: We have U25 = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24}. We make a table of
powers of 2 modulo 25.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2k 1 2 4 8 16 7 14 3 6 12 24 23 21 17 9 18 11 22 19 13 1

We see that U25 = 〈2〉, so it is cyclic.

(b) List all the elements and all the generators of every subgroup of U25.

Solution: The divisors of 20 are 1, 2, 4, 5, 10, 20 so the subgroups of U25 are

〈21〉 = U25

〈22〉 =
{
20, 22, 24, 26, 28, 210, 212, 214, 216, 218

}
=

{
1, 4, 16, 14, 6, 24, 21, 9, 11, 19

}
〈24〉 =

{
20, 24, 28, 212, 216

}
=

{
1, 16, 6, 21, 11

}
〈25〉 =

{
20, 25, 210, 215

}
=

{
1, 7, 24, 18

}
〈210〉 =

{
20, 210

}
=

{
1, 24

}
〈220〉 = {20} =

{
1
}

Since |21| = 20 and we have U20 = {1, 3, 7, 9, 11, 13, 17, 19}, the set of generators of the subgroup 〈21〉 is{
21, 23, 27, 29, 211, 213, 217, 219

}
=

{
1, 8, 3, 12, 23, 17, 22, 13

}
. Since |22| = 10 and U10 = {1, 3, 7, 9}, the set

of generators of 〈22〉 is
{
22, 26, 214, 218

}
= {4, 14, 9, 19}. Since |24| = 5 and U5 = {1, 2, 3, 4}, the set of

generators of 〈24〉 is
{
24, 28, 212, 216

}
= {16, 6, 21, 11}. Since |25| = 4 and U4 = {1, 3}, the set of generators

of 〈25〉 is
{
25, 215

}
= {7, 18}. The only generator of 〈210〉 is 210 = 24. The only generator of 〈220〉 is 20 = 1.

(c) Find a non-cyclic subgroup of order 4 in U20.

Solution: We have U20 =
{
1, 3, 7, 9, 11, 13, 17, 19

}
. We make a table of powers modulo 20 and determine the

order of each element.
x 1 3 7 9 11 13 17 19
x2 1 9 9 1 1 9 9 1
x3 1 7 3 9 11 17 13 19
x4 1 1 1 1 1 1 1 1

|x| 1 4 4 2 2 4 4 2

A non-cyclic subgroup of order 4 cannot have any elements of order 4, so the only possible non-cyclic subgroup
is H = {1, 9, 11, 19}. To verify that this subset H is a subgroup, it is enough to show that H is closed under
multiplication, and indeed we have 9 · 11 = 19, 9 · 19 = 11 and 11 · 19 = 9.



4: Let G be a multiplicative group and let a ∈ G with |a| = 1400.

(a) Determine the number of subgroups of 〈a〉.
Solution: We have a = 235271. The divisors of a are of the form 2i5j7k with 0 ≤ i ≤ 3, 0 ≤ j ≤ 2 and
0 ≤ k ≤ 1. Since there are 4 choices for i, 3 for j and 2 for k, we see that a has 4 · 3 · 2 = 24 divisors. Thus
the cyclic group 〈a〉 has 24 subgroups.

(b) Determine the number of elements x ∈ 〈a〉 with |x| ≤ 10.

Solution: The divisors of 1400 which are at most 10 are 1, 2, 4, 5, 7, 8, 10, so the number of elements x ∈ 〈a〉
with |x| ≤ 10 is equal to φ(1) + φ(2) + φ(4) + φ(5) + φ(7) + φ(8) + φ(10) = 1 + 1 + 2 + 4 + 6 + 4 + 4 = 22.

(c) List all the elements x = ak ∈ 〈a〉 with x52 = 1.

Solution: For x = ak we have

x52 = e ⇐⇒ a52 k = a0 ⇐⇒ 52 k = 0 ( mod 1400) ⇐⇒ 13 k = 0 ( mod 350) ⇐⇒ k = 0 ( mod 350)

⇐⇒ k ∈ {0, 350, 700, 1050} ⇐⇒ x ∈
{
e, a350, a700, a1050

}
(d) Find the number of pairs (x, y) with x, y ∈ 〈a〉 such that x10 = y35 in 〈a〉.
Solution: Let x, y ∈ 〈a〉, say x = ak and y = a` where 0 ≤ k, ` < 1400. We have

x10 = y35 ⇐⇒ a10k = a35` ⇐⇒ 10k = 35` mod 1400 ⇐⇒ 2k = 7` mod 280

⇐⇒ ` is even and k = 7`
2 mod 140.

For each of the 700 even choices for `, there is a unique value of k modulo 140, so there are 10 choices for k
modulo 1400. Thus there are 700 · 10 = 7000 such pairs (x, y).


