PMATH 336 Intro to Group Theory, Assignment 3

1: Let $\alpha, \beta \in S_{8}$ be given by the following table of values:

| $k$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha(k)$ | 4 | 6 | 3 | 5 | 7 | 8 | 1 | 2 |
| $\beta(k)$ | 2 | 6 | 7 | 4 | 8 | 3 | 1 | 5 |

For each of the following permutations, write the permutation as a product of disjoint cycles and determine its order and its parity.
(a) $\alpha$
(b) $\beta$
(c) $\alpha \beta$
(d) $\left(\alpha \beta^{-1}\right)^{20}$

2: (a) Find the maximum of the orders of the elements in $S_{8}$.
(b) Find the number of elements of order 6 in $S_{8}$.
(c) Find the number of cyclic subgroups of order 6 in $A_{8}$.

3: Let $\alpha=(1234)(5678)$ and $\beta=(123)(456)$ in $S_{8}$.
(a) Express $\alpha$ as a product of 2-cycles and as a product of 3-cycles.
(b) Find $|C l(\beta)|$, that is find the number of elements in the conjugacy class of $\beta$.
(c) Find all the elements $\sigma \in S_{8}$ such that $\sigma^{2}=\beta$.

4: (a) Find the number of elements of each order in $A_{4} \times D_{4}$.
(b) Find the number of elements of each order in $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{6}$.

