1: Let $\alpha, \beta \in S_8$ be given by the following table of values:

k	1	2	3	4	5	6	7	8
lpha(k)	4	6	3	5	7	8	1	2
$\beta(k)$	2	6	7	4	8	3	1	5

For each of the following permutations, write the permutation as a product of disjoint cycles and determine its order and its parity.

(a) α (b) β (c) $\alpha\beta$ (d) $(\alpha\beta^{-1})^{20}$

2: (a) Find the maximum of the orders of the elements in S_8 .

- (b) Find the number of elements of order 6 in S_8 .
- (c) Find the number of cyclic subgroups of order 6 in A_8 .
- **3:** Let $\alpha = (1234)(5678)$ and $\beta = (123)(456)$ in S_8 .
 - (a) Express α as a product of 2-cycles and as a product of 3-cycles.
 - (b) Find $|Cl(\beta)|$, that is find the number of elements in the conjugacy class of β .
 - (c) Find all the elements $\sigma \in S_8$ such that $\sigma^2 = \beta$.
- 4: (a) Find the number of elements of each order in $A_4 \times D_4$.
 - (b) Find the number of elements of each order in $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_6$.