PMATH 336 Intro to Group Theory, Solutions to Assignment 3

1: Let $\alpha, \beta \in S_{8}$ be given by the following table of values:

k	1	2	3	4	5	6	7	8
$\alpha(k)$	4	6	3	5	7	8	1	2
$\beta(k)$	2	6	7	4	8	3	1	5

For each of the following permutations, write the permutation as a product of disjoint cycles and determine its order and its parity.
(a) α
(b) β
(c) $\alpha \beta$
(d) $\left(\alpha \beta^{-1}\right)^{20}$

Solution: Writing $\gamma=\left(\alpha \beta^{-1}\right)^{20}$, we have

$$
\begin{aligned}
\alpha & =(1,4,5,7)(2,6,8),|\alpha|=12,(-1)^{\alpha}=-1 \\
\beta & =(1,2,6,3,7)(5,8),|\beta|=10,(-1)^{\beta}=-1 \\
\alpha \beta & =(1,6,3)(2,8,7,4,5),|\alpha \beta|=15,(-1)^{\alpha \beta}=1 \\
\beta^{-1} & =(1,7,3,6,2)(5,8), \alpha \beta^{-1}=(2,4,5)(3,8,7),\left|\alpha \beta^{-1}\right|=3 \\
\gamma & =\left(\alpha \beta^{-1}\right)^{20}=\left(\alpha \beta^{-1}\right)^{2}=(2,5,4)(3,7,8),|\gamma|=3 \text { and }(-1)^{\gamma}=1
\end{aligned}
$$

2: (a) Find the maximum of the orders of the elements in S_{8}.
Solution: An 8 -cycle has order 8. A 7 -cycle has order 7. A 6 -cycle, or the product of a 6 -cycle with a 2 -cycle has order 6 . A 5 -cycle has order 5 , the product of a 5 -cycle with a 2 -cycle has order 10 and the product of a 5 -cycle with a 3 -cycle has order 15 . All other permutations in S_{8} contain cycles of lengths $1,2,3$ and 4 and their order is at $\operatorname{most} \operatorname{lcm}(1,2,3,4)=12$. Thus the maximum of the orders of the elements in S_{8} is 15 .
(b) Find the number of elements of order 6 in S_{8}.

Solution: The following table shows the possible forms for the elements of order 6 :

form	no. of elements	parity
$(a b c)(d e)$	$\binom{8}{3} \cdot 2 \cdot\binom{5}{2}=1120$	-
$(a b c)(d e)(f g)$	$\binom{8}{3} \cdot 2 \cdot\binom{5}{4} \cdot 3=1680$	+
$(a b c)(d e f)(g h)$	$\binom{8}{6} \cdot 5 \cdot 4 \cdot 2=1120$	-
$(a b c d e f)$	$\binom{8}{6} \cdot 5!=3360$	-
$(a b c d e f)(g h)$	$\binom{8}{6} \cdot 5!=3360$	+

Altogether, there are 10640 elements of order 6 in S_{8}.
(c) Find the number of cyclic subgroups of order 6 in A_{8}.

Solution: From the above table, there are 5040 elements of order 6 in A_{8}. So (by Corollary 2.28) the number of cyclic subgroup of order 6 in A_{8} is $5040 / \varphi(6)=5040 / 2=2520$.

3: Let $\alpha=(1234)(5678)$ and $\beta=(123)(456)$ in S_{8}.
(a) Express α as a product of 2 -cycles and as a product of 3 -cycles.

Solution: There are many ways to do this. For example $\alpha=(1234)(5678)=(14)(13)(12)(58)(57)(56)=$ $(134)(12)(58)(567)=(134)(185)(125)(567)$.
(b) Find $|C l(\beta)|$, that is find the number of elements in the conjugacy class of β.

Solution: The elements in S_{8} which lie in the conjugacy class of β are the elements of the form (abc)(def) with a, b, c, d, e, f distinct. The number of such elements is $\binom{8}{6} \cdot 5 \cdot 4 \cdot 2=1120$.
(c) Find all the elements $\sigma \in S_{8}$ such that $\sigma^{2}=\beta$.

Solution: We have $\alpha^{6}=\beta^{3}=(1)$, so $|\alpha|=1,2,3$ or 6 . We cannot have $|\alpha|=1$ since $\alpha \neq(1)$ (otherwise $\left.\alpha^{2}=(1) \neq \beta\right)$, and we cannot have $|\alpha|=2$ since $\alpha^{2}=\beta \neq(1)$. Thus $|\alpha|=3$ or 6 . Case 1 : if $|\alpha|=3$ then α is of the form $(a b c)$ or the form $(a b c)(d e f)$. If $\alpha=(a b c)$ then $\alpha^{2}=(a c b) \neq \beta$. If $\alpha=(a b c)(d e f)$ then $\alpha^{2}=(a c b)(d f e)$, and so $\alpha^{2}=\beta \Longleftrightarrow \alpha=(132)(465)$. Case 2: if $|\alpha|=6$ then α is of one of the forms listed in the above table. If $\alpha=(a b c)(d e)$ or $(a b c)(d e)(f g)$ then $\alpha^{2}=(a c b) \neq \beta$. If $\alpha=(a b c)(d e f)(g h)$ then $\alpha^{2}=(a c b)(d f e)$ and so $\alpha^{2}=\beta \Longleftrightarrow \alpha=(132)(465)(78)$. If $\alpha=(a b c d e f)$ or $(a b c d e f)(g h)$ then $\alpha^{2}=(a c e)(b d f)$, so we have $\alpha^{2}=\beta \Longleftrightarrow \alpha=(142536)$, (152634) or (162435), or $\alpha=(142536)(78)$, $(152634)(78)$ or $(162435)(78)$. Thus there are 8 elements $\alpha \in S_{8}$ with $\alpha^{2}=\beta$, namely

$$
\alpha \in\{(132)(465),(132)(465)(78),(142536),(152634),(162435),(142536)(78),(152634)(78),(162435)(78)\}
$$

4: (a) Find the number of elements of each order in $A_{4} \times D_{4}$.
Solution: The number of elements of each order in S_{4}, A_{4}, D_{4} and $A_{4} \times D_{4}$ are given in the following tables:

In S_{4}	In A_{4}					In D_{4}		
form of α	$\|\alpha\|$	$(-1)^{\alpha}$	$\#$ of α	$\|\alpha\|$	$\#$ of α	$\|X\|$	X	\# of X
$(a b c d)$	4	-1	6	1	1	1	I	1
$(a b c)$	3	1	8	2	3	2	$R_{2}, F_{0}, F_{1}, F_{2}, F_{3}$	5
$(a b)(c d)$	2	1	3	3	8	4	R_{1}, R_{3}	2
$(a b)$	2	-1	6					
(a)	1	1	1					

In $A_{4} \times D_{4}$							
$\|\alpha\|$	$\#$ of α	$\|X\|$	\# of X	$\|(\alpha, X)\|$	\# of (α, X)	In $A_{4} \times D_{4}$, Summary	
1	1	1	1	1	1	$\|(\alpha, X)\|$	3 of (α, X)
1	1	2	5	2	5	1	1
1	1	4	2	4	2	2	23
2	3	1	1	2	3	3	8
2	3	2	5	2	15	4	8
2	3	4	2	4	6	6	40
3	8	1	1	3	8	12	16
3	8	2	5	6	40		
3	8	4	2	12	16		

(b) Find the number of elements of each order in $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{6}$.

Solution: The number of elements of each order in $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{6}$ are given in the following tables:

In $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$					
$\|a\|$	\# of a	$\|b\|$	\# of b	$\|(a, b)\|$	\# of (a, b)
1	1	1	1	1	1
1	1	2	1	2	1
1	1	4	2	4	2
2	1	1	1	2	1
2	1	2	1	2	1
2	1	4	2	4	2

In $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$, Summary	
$\|(a, b)\|$	$\#$ of (a, b)
1	1
2	3
4	4

In $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{6} \quad$ In $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{6}$, Summary

$\|(a, b)\|$	\# of (a, b)	$\|c\|$	\# of c	$\|(a, b, c)\|$	\# of (a, b, c)
1	1	1	1	1	1
1	1	2	1	2	1
1	1	3	2	3	2
1	1	6	2	6	2
2	3	1	1	2	3
2	3	2	1	2	3
2	3	3	2	6	6
2	3	6	2	6	6
4	4	1	1	4	4
4	4	2	1	4	4
4	4	3	2	12	8
4	4	6	2	12	8

$$
|(a, b, c)| \quad \# \text { of }(a, b, c)
$$

$1 \quad 1$

