PMATH 336 Intro to Group Theory, Solutions to Assignment 3

1: Let $\alpha, \beta \in S_8$ be given by the following table of values:

k	1	2	3	4	5	6	7	8
$\alpha(k)$	4	6	3	5	7	8	1	2
$\beta(k)$	2	6	7	4	8	3	1	5

For each of the following permutations, write the permutation as a product of disjoint cycles and determine its order and its parity.

(a) α (b) β (c) $\alpha\beta$ (d) $(\alpha\beta^{-1})^{20}$

Solution: Writing $\gamma = (\alpha \beta^{-1})^{20}$, we have

$$\begin{split} &\alpha = (1,4,5,7)(2,6,8) \ , \ |\alpha| = 12 \ , \ (-1)^{\alpha} = -1 \ , \\ &\beta = (1,2,6,3,7)(5,8) \ , \ |\beta| = 10 \ , \ (-1)^{\beta} = -1 \ , \\ &\alpha\beta = (1,6,3)(2,8,7,4,5) \ , \ |\alpha\beta| = 15 \ , \ (-1)^{\alpha\beta} = 1 \ , \\ &\beta^{-1} = (1,7,3,6,2)(5,8) \ , \ \alpha\beta^{-1} = (2,4,5)(3,8,7) \ , \ |\alpha\beta^{-1}| = 3 \ , \\ &\gamma = (\alpha\beta^{-1})^{20} = (\alpha\beta^{-1})^2 = (2,5,4)(3,7,8) \ , \ |\gamma| = 3 \ \text{ and } \ (-1)^{\gamma} = 1 \ . \end{split}$$

2: (a) Find the maximum of the orders of the elements in S_8 .

Solution: An 8-cycle has order 8. A 7-cycle has order 7. A 6-cycle, or the product of a 6-cycle with a 2-cycle has order 6. A 5-cycle has order 5, the product of a 5-cycle with a 2-cycle has order 10 and the product of a 5-cycle with a 3-cycle has order 15. All other permutations in S_8 contain cycles of lengths 1, 2, 3 and 4 and their order is at most lcm(1, 2, 3, 4) = 12. Thus the maximum of the orders of the elements in S_8 is 15.

(b) Find the number of elements of order 6 in S_8 .

Solution: The following table shows the possible forms for the elements of order 6:

form	no. of elements	parity
(abc)(de)	$\binom{8}{3} \cdot 2 \cdot \binom{5}{2} = 1120$	_
(abc)(de)(fg)	$\binom{8}{3} \cdot 2 \cdot \binom{5}{4} \cdot 3 = 1680$	+
(abc)(def)(gh)	$\binom{8}{6} \cdot 5 \cdot 4 \cdot 2 = 1120$	_
(abcdef)	$\binom{8}{6} \cdot 5! = 3360$	—
(abcdef)(gh)	$\binom{8}{6} \cdot 5! = 3360$	+

Altogether, there are 10640 elements of order 6 in S_8 .

(c) Find the number of cyclic subgroups of order 6 in A_8 .

Solution: From the above table, there are 5040 elements of order 6 in A_8 . So (by Corollary 2.28) the number of cyclic subgroup of order 6 in A_8 is $5040/\varphi(6) = 5040/2 = 2520$.

3: Let $\alpha = (1234)(5678)$ and $\beta = (123)(456)$ in S_8 .

(a) Express α as a product of 2-cycles and as a product of 3-cycles.

Solution: There are many ways to do this. For example $\alpha = (1234)(5678) = (14)(13)(12)(58)(57)(56) = (134)(12)(58)(567) = (134)(185)(125)(567).$

(b) Find $|Cl(\beta)|$, that is find the number of elements in the conjugacy class of β .

Solution: The elements in S_8 which lie in the conjugacy class of β are the elements of the form (abc)(def) with a, b, c, d, e, f distinct. The number of such elements is $\binom{8}{6} \cdot 5 \cdot 4 \cdot 2 = 1120$.

(c) Find all the elements $\sigma \in S_8$ such that $\sigma^2 = \beta$.

Solution: We have $\alpha^6 = \beta^3 = (1)$, so $|\alpha| = 1, 2, 3$ or 6. We cannot have $|\alpha| = 1$ since $\alpha \neq (1)$ (otherwise $\alpha^2 = (1) \neq \beta$), and we cannot have $|\alpha| = 2$ since $\alpha^2 = \beta \neq (1)$. Thus $|\alpha| = 3$ or 6. Case 1: if $|\alpha| = 3$ then α is of the form (abc) or the form (abc)(def). If $\alpha = (abc)$ then $\alpha^2 = (acb) \neq \beta$. If $\alpha = (abc)(def)$ then $\alpha^2 = (acb)(dfe)$, and so $\alpha^2 = \beta \iff \alpha = (132)(465)$. Case 2: if $|\alpha| = 6$ then α is of one of the forms listed in the above table. If $\alpha = (abc)(de)$ or (abc)(de)(fg) then $\alpha^2 = (acb) \neq \beta$. If $\alpha = (abc)(def)(gh)$ then $\alpha^2 = (acb)(dfe)$ and so $\alpha^2 = \beta \iff \alpha = (132)(465)(78)$. If $\alpha = (abcdef)$ or (abcdef)(gh) then $\alpha^2 = (ace)(bdf)$, so we have $\alpha^2 = \beta \iff \alpha = (142536), (152634)$ or (162435), or $\alpha = (142536)(78)$, (152634)(78) or (162435)(78). Thus there are 8 elements $\alpha \in S_8$ with $\alpha^2 = \beta$, namely

 $\alpha \in \{(132)(465), (132)(465)(78), (142536), (152634), (162435), (142536)(78), (152634)(78), (162435)(78)\}.$

4: (#	a) Find	the	number	of	elements	of	each	order	in A	$_4 \times$	D_4 .
--------------	---------	-----	--------	----	----------	----	------	-------	--------	-------------	---------

Solution: The number of elements of each order in S_4 , A_4 , D_4 and $A_4 \times D_4$ are given in the following tables:

In S	4				In A	1_4	In I	\mathcal{D}_4		
(a) (a) (ab) (a)	$ \begin{array}{c} \text{of } \alpha \\ bcd \\ bc \\ bc \\ cd \\ ab \\ a \end{array} $	4 3	$(-1)^{lpha} \ -1 \ 1 \ 1 \ -1 \ 1 \ 1 \ 1$	$\begin{array}{c} \# \text{ of } \alpha \\ 6 \\ 8 \\ 3 \\ 6 \\ 1 \end{array}$	$ \alpha \\ 1 \\ 2 \\ 3$	$\begin{array}{c} \# \text{ of } \alpha \\ 1 \\ 3 \\ 8 \end{array}$	X 1 2 4	$X \\ I \\ R_2, \\ R_1,$	F_0, F_1, F_2, F_2 R_3	
In A	$_4 \times D_4$	4					In A	$4_4 \times 1$	D_4 , Summar	У
$ \alpha $	# of a	$\alpha \mid X$	# of	$X \mid (\alpha, X) \mid$	# of	(α, X)	$ (\alpha,$	X)	3 of (α, X)	
1	1	1	1	1		1	. 1	L	1	
1	1	2	5	2		5	2	2	23	
1	1	4	2	4		2	3	3	8	
2	3	1	1	2		3	4	1	8	
2	3	2	5	2	1	15	6	3	40	
2	3	4	2	4		6	11	2	16	
3	8	1	1	3		8				
3	8	2	5	6	4	10				
3	8	4	2	12]	16				

(b) Find the number of elements of each order in $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_6$.

Solution: The number of elements of each order in $\mathbb{Z}_2 \times \mathbb{Z}_4$ and $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_6$ are given in the following tables:

In \mathbb{Z}	$\mathbb{Z}_2 \times \mathbb{Z}_4$						In \mathbb{Z}_2 ×	\mathbb{Z}_4 , Summary
a	# of a	b	# of b	(a,b)	# of $(a,$	b)	(a,b)	# of (a, b)
1	1	1	1	1	1		1	1
1	1	2	1	2	1		2	3
1	1	4	2	4	2		4	4
2	1	1	1	2	1			
2	1	2	1	2	1			
2	1	4	2	4	2			
In Z	$\mathbb{Z}_2 \times \mathbb{Z}_4$	$< \mathbb{Z}_6$					In \mathbb{Z}_2	$\times \mathbb{Z}_4 \times \mathbb{Z}_6$, Summary
(a,	b) # c	of $(a,$	b) c	# of c	(a, b, c)	# of (a, b, c)	(a, b, c)	# of (a,b,c)
1		1	1	1	1	1	1	1
1		1	2	1	2	1	2	7
1		1	3	2	3	2	3	2
1		1	6	2	6	2	4	8
2		3	1	1	2	3	6	14
2		3	2	1	2	3	12	16
2		3	3	2	6	6		
2		3	6	2	6	6		
4		4	1	1	4	4		
4		4	2	1	4	4		
4		4	3	2	12	8		
4		4	6	2	12	8		