Chapter 1. Definitions and Examples of Groups

1.1 Definition: For a set S we write $S \times S=\{(a, b) \mid a \in S, b \in S\}$. A binary operation on S is a map $*: S \times S \rightarrow S$, where for $a, b \in S$ we usually write $*(a, b)$ as $a * b$.
1.2 Definition: A ring (with identity) is a set R together with two binary operations + and \cdot (called addition and multiplication), where for $a, b \in R$ we often write $a \cdot b$ as $a b$, and two distinct elements $0,1 \in R$ (called the zero and the identity elements), such that
(1) + is associative: $(a+b)+c=a+(b+c)$ for all $a, b, c \in R$,
(2) + is commutative: $a+b=b+a$ for all $a, b \in R$,
(3) 0 is an additive identity: $0+a=a$ for all $a \in R$,
(4) every element has an additive inverse: for every $a \in R$ there exists $b \in R$ with $a+b=0$,
(5) - is associative: $(a b) c=a(b c)$ for all $a, b, c \in R$,
(6) 1 is a multiplicative identity: $1 \cdot a=a=a \cdot 1$ for all $a \in R$, and
(7) \cdot is distributive over $+: a(b+c)=a b+a c$ and $(a+b) c=a c+b c$ for all $a, b, c \in R$,

A ring R is called commutative when
(8) - is commutative: $a b=b a$ for all $a, b \in R$.

For $0 \neq a \in R$, we say that a is a unit (or that a is invertible) when there exists an element $b \in R$ such that $a b=1=b a$. A field is a commutative ring R such that
(9) every non-zero element is a unit: for every $0 \neq a \in R$ there exists $b \in R$ with $a b=1$.
1.3 Example: The set of integers \mathbb{Z} is a commutative ring, but it is not a field because it does not satisfy Property (9). The set of positive integers $\mathbb{Z}^{+}=\{1,2,3, \cdots\}$ is not a ring because $0 \notin \mathbb{Z}^{+}$and \mathbb{Z}^{+}does not satisfy Properties (3) and (4). The set of natural numbers $\mathbb{N}=\{0,1,2, \cdots\}$ is not a ring because it does not satisfy Property (4). The set of rational numbers \mathbb{Q}, the set of real numbers \mathbb{R} and the set of complex numbers \mathbb{C} are all fields. For $2 \leq n \in \mathbb{Z}$, the set $\mathbb{Z}_{n}=\{0,1, \cdots, n-1\}$ of integers modulo n is a commutative ring, and \mathbb{Z}_{n} is a field if and only if n is prime (in $\mathbb{Z}_{1}=\{0\}$ we have $0=1$, so \mathbb{Z}_{1} is not a ring with identity).
1.4 Example: Given a ring R, the set $R[x]$ of polynomials with coefficients in R is a ring (under the usual addition and multiplication of polynomials). If R is commutative then so is $R[x]$.
1.5 Example: Given a ring R and a positive integer n, the set $M_{n}(R)$ of $n \times n$ matrices with entries in R is a ring (under matrix addition and matrix multiplication). When $n \geq 2$, the ring $M_{n}(R)$ is not commutative.
1.6 Example: Given rings R and S, the product $R \times S=\{(a, b) \mid a \in R, b \in S\}$ is a ring (under componentwise addition and multiplication). If R and S are both commutative then so is $R \times S$. More generally, given a positive integer n and given rings $R_{1}, R_{2}, \cdots, R_{n}$, the product $\prod_{i=1}^{n} R_{i}=R_{1} \times R_{2} \times \cdots \times R_{n}=\left\{\left(a_{1}, a_{2}, \cdots, a_{n}\right) \mid a_{i} \in R_{i}\right\}$ is a ring (under componentwise addition and multiplication). Given a ring R and a positive integer n we write $R^{n}=\prod_{i=1}^{n} R=R \times R \times \cdots \cdots R$.
1.7 Theorem: (Uniqueness of the Inverse) Let R be a ring. Let $a \in R$. Then
(1) the additive inverse of a is unique: if $a+b=0=a+c$ then $b=c$,
(2) if a has an inverse then it is unique: if $a b=1=b a$ and $a c=1=c a$ then $b=c$.

Proof: To prove (1), suppose that $a+b=0=a+c$. Then

$$
b=0+b=(a+c)+b=b+(a+c)=(b+a)+c=(a+b)+c=0+c=c .
$$

To prove (2), suppose that $a b=1=b a$ and $a c=1=c a$. Then

$$
b=1 \cdot b=(c a) b=c(a b)=c \cdot 1=c .
$$

1.8 Definition: Let R be a ring and let $a, b \in R$. We write the (unique) additive inverse of a as $-a$, and we write $b-a=b+(-a)$. If $a \neq 0$ has a multiplicative inverse, we write the (unique) multiplicative inverse of a as a^{-1}. When R is commutative we also write a^{-1} as $\frac{1}{a}$, and we write $\frac{b}{a}=b \cdot \frac{1}{a}$.
1.9 Theorem: (Cancellation) Let R be a ring. Then for all $a, b, c \in R$,
(1) if $a+b=a+c$ then $b=c$,
(2) if $a+b=a$ then $b=0$, and
(3) if $a+b=0$ then $b=-a$.

Let F be a field. Then for all $a, b, c \in F$ we have
(4) if $a b=a c$ then either $a=0$ or $b=c$.
(5) if $a b=a$ then either $a=0$ or $b=1$,
(6) if $a b=1$ then $b=a^{-1}$, and
(7) if $a b=0$ then either $a=0$ or $b=0$.

Proof: To prove (1), suppose that $a+b=a+c$. Then we have

$$
b=0+b=-a+a+b=-a+a+c=0+c=c .
$$

Part (2) follows from part (1) since if $a+b=a$ then $a+b=a+0$, and part (3) follows from part (1) since if $a+b=0$ then $a+b=a+(-a)$. To prove part (4), suppose that $a b=a c$ and $a \neq 0$. Then we have

$$
b=1 \cdot b=a^{-1} a b=a^{-1} a c=1 \cdot c=c .
$$

Note that parts (5), (6) and (7) all follow from part (4).
1.10 Remark: In the above proof, we used associativity and commutativity implicitly. If we wished to be explicit then the proof of part (1) would be as follows. Suppose that $a+b=a+c$. Then we have
$b=0+b=(a-a)+b=(-a+a)+b=-a+(a+b)=-a+(a+c)=(-a+a)+c=0+c=c$.
In the future, we shall often use associativity and commutativity implicitly in our calculations.
1.11 Theorem: (Multiplication by 0 and -1) Let R be a ring and let $a \in R$. Then
(1) $0 \cdot a=0$, and
(2) $(-1) a=-a$.

Proof: We have $0 a=(0+0) a=0 a+0 a$. Subtracting $0 a$ from both sides (using part 1 of the Cancellation Theorem) gives $0=0 a$. Also, we have $a+(-1) a=(1) a+(-1) a=$ $(1+(-1)) a=0 a=0$, and subtracting a from both sides gives $(-1) a=-a$.
1.12 Definition: A group is a set G together with a binary operation * : $G \times G \rightarrow G$ and an element $e=e_{G} \in G$ such that
(1) $*$ is associative: $(a * b) * c=a *(b * c)$ for all $a, b, c \in G$,
(2) e is an identity element: $a * e=e * a=a$ for all $a \in G$, and
(3) every $a \in G$ has an inverse: for all $a \in G$ there exists $b \in G$ such that $a * b=b * a=e$.

A group G is called abelian when
(4) $*$ is commutative: $a * b=b * a$ for all $a, b \in G$.
1.13 Example: If R is a ring under the operations + and \cdot, then R is also an abelian group under + with identity 0 . For example, $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ and \mathbb{Z}_{n} are abelian groups under + with identity 0 .
1.14 Example: If R is a ring under • with identity 1 then the set of units

$$
R^{*}=\{a \in R \mid a \text { is invertible }\}
$$

is a group under • with identity 1 . For example, $\mathbb{Z}^{*}=\{ \pm 1\}, \mathbb{Q}^{*}=\mathbb{Q} \backslash\{0\}, \mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$, $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ and the group of units modulo n

$$
U_{n}=\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}
$$

are all abelian groups under multiplication with identity 1.
1.15 Example: Given a ring R and a positive integer $n \in \mathbb{Z}^{+}$, from the ring $M_{n}(R)$ (under matrix addition and matrix multiplication) we obtain the abelian group $M_{n}(R)$ under matrix addition, and we obtain the general linear group

$$
G L_{n}(R)=M_{n}(R)^{*}=\left\{A \in M_{n}(R) \mid \operatorname{det}(A) \in R^{*}\right\}
$$

under matrix multiplication. The general linear group is non-abelian for $n \geq 2$.
1.16 Example: If G and H are groups with identities e and u, then the product

$$
G \times H=\{(a, b) \mid a \in G, b \in H\}
$$

is a group under the operation given by $(a, b)(c, d)=(a c, b d)$ with identity (e, u). More generally, if $G_{1}, G_{2}, \cdots, G_{n}$ are groups then the product

$$
\prod_{i=1}^{n} G_{i}=G_{1} \times G_{2} \times \cdots \times G_{n}=\left\{\left(a_{1}, a_{2}, \cdots, a_{n}\right) \mid a_{i} \in G_{i}\right\}
$$

is a group under the operation $\left(a_{1}, a_{2}, \cdots, a_{n}\right)\left(b_{1}, b_{2}, \cdots, b_{n}\right)=\left(a_{1} b_{1}, a_{2} b_{2}, \cdots, a_{n} b_{n}\right)$. For a group G, we write $G^{n}=\prod_{i=1}^{n} G=G \times G \times \cdots \times G$.
1.17 Example: For a set S, the set of permutations

$$
\operatorname{Perm}(S)=\{f: S \rightarrow S \mid f \text { is bijective }\}
$$

is a group under composition with identity $I: S \rightarrow S$ given by $I(x)=x$ for all $x \in S$. This group is non-abelian when $|S| \geq 3$. For $n \in \mathbb{Z}^{+}$, the $n^{\text {th }}$ symmetric group is the group

$$
S_{n}=\operatorname{Perm}(\{1,2, \cdots, n\})
$$

1.18 Theorem: (Uniqueness of the Identity) Let G be a group under *. For all $u, v \in G$, if $u * a=a$ for all $a \in G$ and $a * v=a$ for all $a \in G$ then $u=v$.

Proof: Let $u, v \in G$. Suppose that $u * a=a$ for all $a \in G$ and $a * v=a$ for all $a \in G$. Since $u * a=a$ for all $a \in G$ we have $u * v=v$. Since $a * v=a$ for all $a \in G$ we have $u * v=u$. Thus $u=u * v=v$.
1.19 Theorem: (Uniqueness of the Inverse) Let G be a group under $*$ with identity e, and let $a \in G$. Then for all $u, v \in G$, if $u * a=e$ and $a * v=e$ then $u=v$.

Proof: Let $u, v \in G$. Suppose that $u * a=e$ and $a * v=e$. Then

$$
u=u * e=u *(a * v)=(u * a) * v=e * v=v
$$

1.20 Notation: Let G be a group. If the operation in G is called addition, then we denote the operation by + and we assume that it is commutative, we denote the (unique) identity in the group by 0 , and we denote the (unique) inverse of a given element $a \in G$ by $-a$. For $a, b \in G$, we write $a-b=a+(-b)$. For $a \in G$ and $k \in \mathbb{Z}^{+}$we write $k a=a+a+\cdots+a$ (with k terms in the sum), $0 a=0$, and $(-k) a=k(-a)=-a-a-\cdots-a$. With this notation, for all $a, b \in G$ and all $k, l \in \mathbb{Z}$ we have $(k+l) a=k a+l a,(-k) a=-(k a)=k(-a)$, $-(-a)=a$ and $-(a+b)=-a-b=-b-a$.
1.21 Notation: When the operation $*$ of a group G is any operation other than addition (or when the operation is unspecified), we usually write $a * b$ simply as $a b$, we usually denote the (unique) identity element by $e, 1$ or I, and we denote the (unique) inverse of $a \in G$ by a^{-1}. For $a \in G$ and $k \in \mathbb{Z}^{+}$we write $a^{k}=a a \cdots a$ (with k terms in the product), $a^{0}=e$, and $a^{-k}=\left(a^{-1}\right)^{k}=a^{-1} a^{-1} \cdots a^{-1}$. With this notation, for all $a, b \in G$ and all $k, l \in \mathbb{Z}$ we have $a^{k+l}=a^{k} a^{l}, a^{-k}=\left(a^{k}\right)^{-1}=\left(a^{-1}\right)^{k},\left(a^{-1}\right)^{-1}=a$ and $(a b)^{-1}=b^{-1} a^{-1}$.
1.22 Theorem: (Cancellation) Let G be a group with identity e. Let $a, b, c \in G$. Then
(1) if $a b=a c$ or if $b a=c a$ then $b=c$.
(2) if $a b=e$ then $a^{-1}=b$ and $b^{-1}=a$.
(3) if $a b=a$ then $b=e$ and if $a b=b$ then $a=e$.

Proof: To prove (1) note that if $a b=a c$ then multiplying both sides on the left by a^{-1} gives $b=c$; in greater detail, we have

$$
b=e b=\left(a^{-1} a\right) b=a^{-1}(a b)=a^{-1}(a c)=\left(a^{-1} a\right) c=e c=c .
$$

Similarly, if $b a=c a$ then multiplying on the right by a^{-1} gives $b=c$. To prove part (2) note that if $a b=e$ then multiplying both sides on the left by a^{-1} gives $b=a^{-1}$, and multiplying on the right by b^{-1} gives $a=b^{-1}$. To prove part (3), note that if $a b=a$ then multiplying on the left by a^{-1} gives $b=e$, and if $a b=b$ then multiplying on the right by b^{-1} gives $a=e$.
1.23 Definition: For a finite group G (that is a group which has finitely many elements), we can specify its operation $*$ by making a table showing the value of the product $a * b$ for each pair $(a, b) \in G^{2}$. Such a table is called an operation table (or an addition, multiplication or composition table) for G.
1.24 Example: The multiplication table for the group $U_{12}=\{1,5,7,11\}$ is shown below.

$a \backslash b$	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

1.25 Definition: Let G be a group and let $a \in G$. The order of G is its cardinality $|G|$ (when G is finite, the cardinality $|G|$ is the number of elements in G). The order of a in G, denoted by $|a|$ or by $\operatorname{ord}_{G}(a)$, is the smallest positive integer n such that $a^{n}=e$ (or in additive notation, the smallest positive integer n such that $n a=0$), provided that such an integer exists. If no such positive integer n exists, then the order of a is infinite.
1.26 Example: In any group G, the order of the identity element is $|e|=1$.
1.27 Example: The order of the group \mathbb{Z} is $|\mathbb{Z}|=\infty$ (or more accurately, $|\mathbb{Z}|=\aleph_{0}$). In \mathbb{Z} we have $|0|=1$ and for $0 \neq a \in \mathbb{Z}$ we have $|a|=\infty$ (because $n a \neq 0$ for all $n \in \mathbb{Z}^{+}$).
1.28 Example: The order of \mathbb{Z}_{n} is $\left|\mathbb{Z}_{n}\right|=n$. The order of $a \in \mathbb{Z}_{n}$ is $|a|=\frac{n}{\operatorname{gcd}(a, n)}$. Indeed if we let $d=\operatorname{gcd}(a, n)$ and write $a=s d$ and $n=t d$, then $\operatorname{gcd}(s, t)=1$ and we have $k a=0 \in \mathbb{Z}_{n} \Longleftrightarrow n|k a \Longleftrightarrow t d| k s d \Longleftrightarrow t|k s \Longleftrightarrow t| k$ and so $|a|=t=\frac{n}{d}$.
1.29 Example: The order of U_{n} is $\left|U_{n}\right|=\varphi(n)$ where $\varphi(n)$ is the Euler phi number of n. We shall see later (in Corollary 4.22) that if $n=\prod p_{i}{ }^{k_{i}}$ is the prime factorization of n then $\varphi(n)=\prod\left(p_{i}{ }^{k_{i}}-p_{i}{ }^{k_{i}-1}\right)$.
1.30 Example: The order of the group \mathbb{C}^{*} is $\left|\mathbb{C}^{*}\right|=\infty$ (or more accurately $\left|\mathbb{C}^{*}\right|=2^{\aleph_{0}}$). For $a=r e^{i \theta} \in \mathbb{C}^{*}$ where $r, \theta \in \mathbb{R}$ with $r>0$, when $r \neq 1$ or when θ is not a rational multiple of 2π we have $|a|=\infty$, and when $r=1$ and $\theta=\frac{2 \pi k}{n}$ with $k, n \in \mathbb{Z}$ and $n \neq 0$ we have $|a|=\frac{n}{\operatorname{gcd}(k, n)}$.
1.31 Example: If S is a finite set then $|\operatorname{Perm}(S)|=|S|$! and in particular $\left|S_{n}\right|=n$!.
1.32 Example: When p is prime (so that \mathbb{Z}_{p} is a field), we have

$$
\left|G L_{n}\left(\mathbb{Z}_{p}\right)\right|=\left(p^{n}-1\right)\left(p^{n}-p\right)\left(p^{n}-p^{2}\right) \cdots\left(p^{n}-p^{n-1}\right) .
$$

Indeed, for a matrix $A \in M_{n}\left(\mathbb{Z}_{p}\right)$, in order for A to be invertible its columns must be linearly independent. The first column u_{1} of A can be any non-zero vector in $\mathbb{Z}_{p}{ }^{n}$ so there are $p^{n}-1$ choices for u_{1}. Having chosen u_{1}, the second column u_{2} can be any vector in $\mathbb{Z}_{p}{ }^{n}$ which is not a multiple $t_{1} u_{1}, t_{1} \in \mathbb{Z}_{p}$. Since there are p such multiples, there are $p^{n}-p$ choices for the u_{2}. Having chosen u_{1} and u_{2}, the third column u_{3} can be any vector in $\mathbb{Z}_{p}{ }^{n}$ which is not a linear combination $t_{1} u_{1}+t_{2} u_{2}, t_{1}, t_{2} \in \mathbb{Z}_{p}$. There are p^{2} such linear combinations, so there are $p^{n}-p^{2}$ choices for u_{3}. And so on.
1.33 Definition: Let G be a group. For $a, b \in G$, we say that a and b are conjugate in G, and we write $a \sim b$, when $b=x a x^{-1}$ for some $x \in G$. For $a \in G$, we define the conjugacy class of a in G to be the set

$$
C l(a)=C l_{G}(a)=\{b \in G \mid b \sim a\}=\left\{x a x^{-1} \mid x \in G\right\} .
$$

1.34 Note: The relation \sim is an equivalence relation on G. This means that for all $a, b, c \in G$ we have
(1) $a \sim a$,
(2) if $a \sim b$ then $b \sim a$, and
(3) if $a \sim b$ and $b \sim c$ then $a \sim c$.

Indeed, given $a, b, c \in G$ we have $a \sim a$ since $a=e a e^{-1}$, and if $a \sim b$, say $b=x a x^{-1}$, then $a=x^{-1} b\left(x^{-1}\right)^{-1}$ so $b \sim a$, and finally if $a \sim b$ and $b \sim c$ with say $b=x a x^{-1}$ and $c=y b y^{-1}$, then we have $c=y x a y^{-1} x^{-1}=(y x) a(y x)^{-1}$ so $a \sim c$. It follows that G is the disjoint union of the distinct conjugacy classes.
1.35 Example: As an exercise, show that if $a \sim b$ in G, then $|a|=|b|$.

