Chapter 1. Definitions and Examples of Groups

1.1 Definition: For a set S we write S x S = {(a,b)|a € S,b € S}. A binary operation
on S is amap *x: S5 xS — S, where for a,b € S we usually write *(a,b) as a * b.

1.2 Definition: A ring (with identity) is a set R together with two binary operations +
and - (called addition and multiplication), where for a,b € R we often write a - b as ab,
and two distinct elements 0,1 € R (called the zero and the identity elements), such that

(1) + is associative: (a+b)+c=a+ (b+c) for all a,b,c € R,

(2) + is commutative: a +b=0b+ a for all a,b € R,

(3) 0 is an additive identity: 0 +a = a for all a € R,

(4) every element has an additive inverse: for every a € R there exists b € R with a+b = 0,
(5) - is associative: (ab)c = a(bc) for all a,b,c € R,

(6) 1 is a multiplicative identity: 1-a =a =a-1 for all a € R, and

(7) - is distributive over +: a(b+ ¢) = ab+ ac and (a + b)c = ac + be for all a,b,c € R,

A ring R is called commutative when
(8) - is commutative: ab = ba for all a,b € R.

For 0 # a € R, we say that a is a unit (or that a is invertible) when there exists an
element b € R such that ab =1 = ba. A field is a commutative ring R such that
(9) every non-zero element is a unit: for every 0 # a € R there exists b € R with ab = 1.

1.3 Example: The set of integers Z is a commutative ring, but it is not a field because
it does not satisfy Property (9). The set of positive integers Z* = {1,2,3,---} is not a
ring because 0 ¢ Z" and Z* does not satisfy Properties (3) and (4). The set of natural
numbers N = {0,1,2,---} is not a ring because it does not satisfy Property (4). The set
of rational numbers Q, the set of real numbers R and the set of complex numbers
C are all fields. For 2 < n € Z, the set Z,, = {0,1,---,n — 1} of integers modulo n is a
commutative ring, and Z,, is a field if and only if n is prime (in Z; = {0} we have 0 = 1,
so Zq is not a ring with identity).

1.4 Example: Given a ring R, the set R[z| of polynomials with coefficients in R is a
ring (under the usual addition and multiplication of polynomials). If R is commutative
then so is Rlx].

1.5 Example: Given a ring R and a positive integer n, the set M,,(R) of n x n matrices
with entries in R is a ring (under matrix addition and matrix multiplication). When n > 2,
the ring M, (R) is not commutative.

1.6 Example: Given rings R and S, the product R x S = {(a, b)|a e Rbe S} is a ring
(under componentwise addition and multiplication). If R and S are both commutative

then so is R x .S. More generally, given a positive integer n and given rings Ry, Rs, -, Ry,
n

the product [[ R, = R x R x -+ X R, = {(al,ag,---,anﬂai € Ri} is a ring (under
i=1

componentwise addition and multiplication). Given a ring R and a positive integer n we
n

write R" = [[R=RXRx------ R.
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1.7 Theorem: (Uniqueness of the Inverse) Let R be a ring. Let a € R. Then
(1) the additive inverse of a is unique: ifa+b =0 = a + ¢ then b = c,
(2) if a has an inverse then it is unique: if ab= 1= ba and ac =1 = ca then b = c.
Proof: To prove (1), suppose that a +b=0=a+ ¢. Then
b=0+b=(a+c)+b=b+(a+c)=(b+a)+c=(a+b)+c=0+c=c.
To prove (2), suppose that ab =1 = ba and ac = 1 = ca. Then
b=1-b=(ca)b=c(ab) =c-1=c.

1.8 Definition: Let R be a ring and let a,b € R. We write the (unique) additive inverse
of a as —a, and we write b —a = b+ (—a). If a # 0 has a multiplicative inverse, we write

the (unique) multiplicative inverse of a as a~!. When R is commutative we also write a =

as 1, and we write & =b. L.
a a a

1.9 Theorem: (Cancellation) Let R be a ring. Then for all a,b,c € R,

(1)ifa+b=a+c thenb=c,
(2) ifa+b=a then b= 0, and
(3) ifa+b=0 then b = —a.

Let F be a field. Then for all a,b,c € F we have

(4) if ab = ac then either a =0 or b = c.
(5) if ab = a then either a =0 or b =1,
(6) if ab=1 then b = a~ !, and

(7) if ab = 0 then either a =0 or b = 0.

Proof: To prove (1), suppose that a +b = a + ¢. Then we have
=0+b=-a+a+b=—-a+a+c=0+c=c.

Part (2) follows from part (1) since if @ + b = a then a + b = a + 0, and part (3) follows
from part (1) since if a + b = 0 then a + b = a + (—a). To prove part (4), suppose that
ab = ac and a # 0. Then we have

b=1-b=altab=a"tac=1-c=c.
Note that parts (5), (6) and (7) all follow from part (4).
1.10 Remark: In the above proof, we used associativity and commutativity implicitly.
If we wished to be explicit then the proof of part (1) would be as follows. Suppose that
a+b=a+ c. Then we have
b=0+b=(a—a)+b=(—a+a)+b=—a+(a+db) = —a+(a+c) = (—a+a)+c=0+c=c.
In the future, we shall often use associativity and commutativity implicitly in our calcula-
tions.
1.11 Theorem: (Multiplication by 0 and —1) Let R be a ring and let a € R. Then
(1) 0-a =0, and
(2) (=1)a = —a.
Proof: We have 0a = (0 4+ 0)a = Oa + Oa. Subtracting Oa from both sides (using part 1

of the Cancellation Theorem) gives 0 = 0a. Also, we have a + (—1)a = (1)a + (—1)a =
(1+ (—=1))a = 0a = 0, and subtracting a from both sides gives (—1)a = —a.



1.12 Definition: A group is a set GG together with a binary operation * : G X G — G
and an element e = e, € G such that

(1) * is associative: (axb)xc=ax* (bx*c) for all a,b,c € G,
(2) e is an identity element: a*xe = e*xa = a for all a € G, and
(3) every a € G has an inverse: for all a € G there exists b € G such that axb=bxa =e.

A group G is called abelian when

(4) % is commutative: axb=bx*a for all a,b € G.

1.13 Example: If R is a ring under the operations + and -, then R is also an abelian
group under 4+ with identity 0. For example, Z, Q, R, C and Z,, are abelian groups under
+ with identity 0.

1.14 Example: If R is a ring under - with identity 1 then the set of units
R*={a€R ‘ a is invertible }

is a group under - with identity 1. For example, Z* = {+1}, Q* = Q\ {0}, R* =R\ {0},
C* = C\ {0} and the group of units modulo n

U,=172," = {a € Zn| ged(a,n) = 1}
are all abelian groups under multiplication with identity 1.

1.15 Example: Given a ring R and a positive integer n € Z*, from the ring M, (R)
(under matrix addition and matrix multiplication) we obtain the abelian group M, (R)
under matrix addition, and we obtain the general linear group

GL,(R) = M,(R)* = {A € M,(R)|det(A) € R*}
under matrix multiplication. The general linear group is non-abelian for n > 2.
1.16 Example: If G and H are groups with identities e and u, then the product
Gx H={(a,b)acGbeH}

is a group under the operation given by (a,b)(c,d) = (ac,bd) with identity (e,u). More
generally, if G1,Gs, -+, G, are groups then the product

ﬁGi =G xGyx--xG, = {(al,ag,---,an)‘ai €G;}

i=1

is a group under the operation (ay,as, -, a,)(b1,ba, -+, b,) = (a1b1,azbs, -+, ayb,). For

agroupG,WewriteG”:HG:GxGx---><G.
i=1

1.17 Example: For a set S, the set of permutations
Perm(S) = {f: S — S‘f is bijective}

is a group under composition with identity I : S — S given by I(x) = « for all z € S. This
group is non-abelian when |S| > 3. For n € Z*, the n'" symmetric group is the group

Sp = Perm({l,?, e ,n}) )



1.18 Theorem: (Uniqueness of the Identity) Let G be a group under *. For all u,v € G,
ifuxa=a foralla € Gandaxv=a for all a € G then u = v.

Proof: Let u,v € G. Suppose that uxa = a for all a € G and a*xv = a for all a € G. Since
u*a=aqa for all a € G we have u*x v = v. Since a x v = a for all a € G we have u * v = u.
Thus u =u*xv = 0.

1.19 Theorem: (Uniqueness of the Inverse) Let G be a group under x with identity e,
and let a € G. Then for all u,v € G, if uxa =¢e and a *v = e then u = v.

Proof: Let u,v € GG. Suppose that u *xa = e and a xv = e. Then
u=uxe=ux(axv)=(u*xa)xv=exv=0.

1.20 Notation: Let GG be a group. If the operation in G is called addition, then we denote
the operation by 4+ and we assume that it is commutative, we denote the (unique) identity
in the group by 0, and we denote the (unique) inverse of a given element a € G by —a. For
a,b € G, we write a—b = a+(—b). Fora € G and k € Z* we write ka = a+a+- - -+a (with
k terms in the sum), 0Oa = 0, and (—k)a = k(—a) = —a — a — - -- — a. With this notation,
for all a,b € G and all k,l € Z we have (k + l)a = ka + la, (—k)a = —(ka) = k(—a),
—(—a)=aand —(a+b)=—a—b=—b—a.

1.21 Notation: When the operation * of a group G is any operation other than addition
(or when the operation is unspecified), we usually write a * b simply as ab, we usually
denote the (unique) identity element by e, 1 or I, and we denote the (unique) inverse of
a € Gbya ' Forac G andk € Z" we write a* = aa - - - a (with k terms in the product),
a’ =e,and a* = (a71)* = a"ta"!---a~!. With this notation, for all a,b € G and all
k,l € Z we have a**! = a*al, a=% = (a*)"! = (a7 V)*, (a71) ' =a and (ab)"! =b"1la" 1.

1.22 Theorem: (Cancellation) Let G be a group with identity e. Let a,b,c € G. Then

(1) if ab = ac or if ba = ca then b = c.
(2) ifab=e then a! = b and b= = a.
(3) if ab=a then b = e and if ab = b then a = e.

Proof: To prove (1) note that if ab = ac then multiplying both sides on the left by a=*

gives b = c; in greater detail, we have
b=ceb=(a"'a)b=a""(ab) =a *(ac) = (¢ ta)c=ec=c.

Similarly, if ba = ca then multiplying on the right by a=! gives b = c¢. To prove part (2)
note that if ab = e then multiplying both sides on the left by a=! gives b = a~!, and
multiplying on the right by b1 gives a = b=1. To prove part (3), note that if ab = a then
multiplying on the left by a~! gives b = e, and if ab = b then multiplying on the right by
b=! gives a = e.



1.23 Definition: For a finite group G (that is a group which has finitely many elements),
we can specify its operation * by making a table showing the value of the product a x b
for each pair (a,b) € G2. Such a table is called an operation table (or an addition,
multiplication or composition table) for G.

1.24 Example: The multiplication table for the group Ujs = {1,5,7,11} is shown below.

a\b 1 5 7 11

1 1 5 7 11
S 5 1 11 7
7 7 11 1 5
1 11 7 5 1

1.25 Definition: Let G be a group and let a € G. The order of G is its cardinality |G|
(when G is finite, the cardinality |G| is the number of elements in G). The order of a in
G, denoted by |a| or by ord, (a), is the smallest positive integer n such that a™ = e (or in
additive notation, the smallest positive integer n such that na = 0), provided that such an
integer exists. If no such positive integer n exists, then the order of a is infinite.

1.26 Example: In any group G, the order of the identity element is |e| = 1.

1.27 Example: The order of the group Z is |Z| = oo (or more accurately, |Z| = Xy). In
Z we have |0] =1 and for 0 # a € Z we have |a| = oo (because na # 0 for all n € Z*).

1.28 Example: The order of Z, is |Z,| = n. The order of a € Zy, is |a|] = sed(am) -
Indeed if we let d = ged(a,n) and write a = sd and n = td, then ged(s,t) = 1 and we have
ka=0¢€ Z, <= nlka <= tdlksd <= tlks <= t|k andso |a|=1=5%.

1.29 Example: The order of U, is |U,| = ¢(n) where ¢(n) is the Euler phi number of
n. We shall see later (in Corollary 4.22) that if n = [ p;** is the prime factorization of n

then ¢(n) = [T(p:" — pi¥~1).

1.30 Example: The order of the group C* is |C*| = co (or more accurately |C*| = 2%0).
For a = re'? € C* where r,0 € R with r > 0, when  # 1 or when 6 is not a rational
multiple of 27 we have |a| = oo, and when r = 1 and 6 = 2Z% with k,n € Z and n # 0 we

have |a| = m

1.31 Example: If S is a finite set then |Perm(S)| = |S|! and in particular |S,| = n!.

1.32 Example: When p is prime (so that Z, is a field), we have
|GLn(Zp)] = (0" = )" —p)(P" —p*) - (p" —p" ")

Indeed, for a matrix A € M, (Z,), in order for A to be invertible its columns must be
linearly independent. The first column u; of A can be any non-zero vector in Z," so there
are p"” — 1 choices for u;. Having chosen w;, the second column us can be any vector in
Z," which is not a multiple ¢;uq, t; € Z,. Since there are p such multiples, there are p" —p
choices for the us. Having chosen uq and us, the third column ug can be any vector in
Z," which is not a linear combination tyuq + tausg, t1,t2 € Z,. There are p? such linear
combinations, so there are p” — p? choices for us. And so on.



1.33 Definition: Let G be a group. For a,b € G, we say that a and b are conjugate
in G, and we write @ ~ b, when b = xaz~! for some z € G. For a € G, we define the
conjugacy class of a in G to be the set

Cl(a) =Cl,(a) ={beGlb~a} = {xax_l‘aj €G}.

1.34 Note: The relation ~ is an equivalence relation on G. This means that for all
a,b,c € G we have

(1) a ~a,

(2) if a ~ b then b ~ a, and

(3)if a ~band b~ cthen a ~ c.

Indeed, given a,b,c € G we have a ~ a since a = eae™!, and if a ~ b, say b = zaz™!,
then a = 2710 (27 1)~! so b ~ a, and finally if @ ~ b and b ~ ¢ with say b = zaz~! and
c = yby~!, then we have ¢ = yray 'z7! = (yz)a(yz)~! so a ~ c. It follows that G is the
disjoint union of the distinct conjugacy classes.

1.35 Example: As an exercise, show that if a ~ b in G, then |a| = |b].



