
Chapter 1. Definitions and Examples of Groups

1.1 Definition: For a set S we write S×S = {(a, b)|a ∈ S, b ∈ S}. A binary operation
on S is a map ∗ : S × S → S, where for a, b ∈ S we usually write ∗(a, b) as a ∗ b.

1.2 Definition: A ring (with identity) is a set R together with two binary operations +
and · (called addition and multiplication), where for a, b ∈ R we often write a · b as ab,
and two distinct elements 0, 1 ∈ R (called the zero and the identity elements), such that

(1) + is associative: (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R,
(2) + is commutative: a+ b = b+ a for all a, b ∈ R,
(3) 0 is an additive identity: 0 + a = a for all a ∈ R,
(4) every element has an additive inverse: for every a ∈ R there exists b ∈ R with a+b = 0,
(5) · is associative: (ab)c = a(bc) for all a, b, c ∈ R,
(6) 1 is a multiplicative identity: 1 · a = a = a · 1 for all a ∈ R, and
(7) · is distributive over +: a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R,

A ring R is called commutative when
(8) · is commutative: ab = ba for all a, b ∈ R.

For 0 6= a ∈ R, we say that a is a unit (or that a is invertible) when there exists an
element b ∈ R such that ab = 1 = ba. A field is a commutative ring R such that
(9) every non-zero element is a unit: for every 0 6= a ∈ R there exists b ∈ R with ab = 1.

1.3 Example: The set of integers Z is a commutative ring, but it is not a field because
it does not satisfy Property (9). The set of positive integers Z+ = {1, 2, 3, · · ·} is not a
ring because 0 /∈ Z+ and Z+ does not satisfy Properties (3) and (4). The set of natural
numbers N = {0, 1, 2, · · ·} is not a ring because it does not satisfy Property (4). The set
of rational numbers Q, the set of real numbers R and the set of complex numbers
C are all fields. For 2 ≤ n ∈ Z, the set Zn = {0, 1, · · · , n− 1} of integers modulo n is a
commutative ring, and Zn is a field if and only if n is prime (in Z1 = {0} we have 0 = 1,
so Z1 is not a ring with identity).

1.4 Example: Given a ring R, the set R[x] of polynomials with coefficients in R is a
ring (under the usual addition and multiplication of polynomials). If R is commutative
then so is R[x].

1.5 Example: Given a ring R and a positive integer n, the set Mn(R) of n×n matrices
with entries in R is a ring (under matrix addition and matrix multiplication). When n ≥ 2,
the ring Mn(R) is not commutative.

1.6 Example: Given rings R and S, the product R×S =
{

(a, b)
∣∣a ∈ R, b ∈ S} is a ring

(under componentwise addition and multiplication). If R and S are both commutative
then so is R×S. More generally, given a positive integer n and given rings R1, R2, · · · , Rn,

the product
n∏
i=1

Ri = R1 × R2 × · · · × Rn =
{

(a1, a2, · · · , an)
∣∣ai ∈ Ri} is a ring (under

componentwise addition and multiplication). Given a ring R and a positive integer n we

write Rn =
n∏
i=1

R = R×R× · · · · · ·R.
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1.7 Theorem: (Uniqueness of the Inverse) Let R be a ring. Let a ∈ R. Then

(1) the additive inverse of a is unique: if a+ b = 0 = a+ c then b = c,
(2) if a has an inverse then it is unique: if ab = 1 = ba and ac = 1 = ca then b = c.

Proof: To prove (1), suppose that a+ b = 0 = a+ c. Then

b = 0 + b = (a+ c) + b = b+ (a+ c) = (b+ a) + c = (a+ b) + c = 0 + c = c .

To prove (2), suppose that ab = 1 = ba and ac = 1 = ca. Then

b = 1 · b = (ca)b = c(ab) = c · 1 = c .

1.8 Definition: Let R be a ring and let a, b ∈ R. We write the (unique) additive inverse
of a as −a, and we write b− a = b+ (−a). If a 6= 0 has a multiplicative inverse, we write
the (unique) multiplicative inverse of a as a−1. When R is commutative we also write a−1

as 1
a , and we write b

a = b · 1a .

1.9 Theorem: (Cancellation) Let R be a ring. Then for all a, b, c ∈ R,

(1) if a+ b = a+ c then b = c,
(2) if a+ b = a then b = 0, and
(3) if a+ b = 0 then b = −a.

Let F be a field. Then for all a, b, c ∈ F we have

(4) if ab = ac then either a = 0 or b = c.
(5) if ab = a then either a = 0 or b = 1,
(6) if ab = 1 then b = a−1, and
(7) if ab = 0 then either a = 0 or b = 0.

Proof: To prove (1), suppose that a+ b = a+ c. Then we have

b = 0 + b = −a+ a+ b = −a+ a+ c = 0 + c = c .

Part (2) follows from part (1) since if a + b = a then a + b = a + 0, and part (3) follows
from part (1) since if a + b = 0 then a + b = a + (−a). To prove part (4), suppose that
ab = ac and a 6= 0. Then we have

b = 1 · b = a−1ab = a−1ac = 1 · c = c .

Note that parts (5), (6) and (7) all follow from part (4).

1.10 Remark: In the above proof, we used associativity and commutativity implicitly.
If we wished to be explicit then the proof of part (1) would be as follows. Suppose that
a+ b = a+ c. Then we have

b = 0+b = (a−a)+b = (−a+a)+b = −a+(a+b) = −a+(a+c) = (−a+a)+c = 0+c = c.

In the future, we shall often use associativity and commutativity implicitly in our calcula-
tions.

1.11 Theorem: (Multiplication by 0 and −1) Let R be a ring and let a ∈ R. Then

(1) 0 · a = 0, and
(2) (−1)a = −a.

Proof: We have 0a = (0 + 0)a = 0a + 0a. Subtracting 0a from both sides (using part 1
of the Cancellation Theorem) gives 0 = 0a. Also, we have a + (−1)a = (1)a + (−1)a =
(1 + (−1))a = 0a = 0, and subtracting a from both sides gives (−1)a = −a.
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1.12 Definition: A group is a set G together with a binary operation ∗ : G × G → G
and an element e = e

G
∈ G such that

(1) ∗ is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G,
(2) e is an identity element: a ∗ e = e ∗ a = a for all a ∈ G, and
(3) every a ∈ G has an inverse: for all a ∈ G there exists b ∈ G such that a ∗ b = b ∗ a = e.

A group G is called abelian when

(4) ∗ is commutative: a ∗ b = b ∗ a for all a, b ∈ G.

1.13 Example: If R is a ring under the operations + and ·, then R is also an abelian
group under + with identity 0. For example, Z, Q, R, C and Zn are abelian groups under
+ with identity 0.

1.14 Example: If R is a ring under · with identity 1 then the set of units

R∗ =
{
a ∈ R

∣∣ a is invertible
}

is a group under · with identity 1. For example, Z∗ = {±1}, Q∗ = Q \ {0}, R∗ = R \ {0},
C∗ = C \ {0} and the group of units modulo n

Un = Zn∗ =
{
a ∈ Zn

∣∣ gcd(a, n) = 1
}

are all abelian groups under multiplication with identity 1.

1.15 Example: Given a ring R and a positive integer n ∈ Z+, from the ring Mn(R)
(under matrix addition and matrix multiplication) we obtain the abelian group Mn(R)
under matrix addition, and we obtain the general linear group

GLn(R) = Mn(R)∗ =
{
A ∈Mn(R)

∣∣det(A) ∈ R∗
}

under matrix multiplication. The general linear group is non-abelian for n ≥ 2.

1.16 Example: If G and H are groups with identities e and u, then the product

G×H =
{

(a, b)
∣∣a ∈ G, b ∈ H}

is a group under the operation given by (a, b)(c, d) = (ac, bd) with identity (e, u). More
generally, if G1, G2, · · · , Gn are groups then the product

n∏
i=1

Gi = G1 ×G2 × · · · ×Gn =
{

(a1, a2, · · · , an)
∣∣ai ∈ Gi}

is a group under the operation (a1, a2, · · · , an)(b1, b2, · · · , bn) = (a1b1, a2b2, · · · , anbn). For

a group G, we write Gn =
n∏
i=1

G = G×G× · · · ×G.

1.17 Example: For a set S, the set of permutations

Perm(S) =
{
f : S → S

∣∣f is bijective
}

is a group under composition with identity I : S → S given by I(x) = x for all x ∈ S. This
group is non-abelian when |S| ≥ 3. For n ∈ Z+, the nth symmetric group is the group

Sn = Perm
(
{1, 2, · · · , n}

)
.
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1.18 Theorem: (Uniqueness of the Identity) Let G be a group under ∗. For all u, v ∈ G,
if u ∗ a = a for all a ∈ G and a ∗ v = a for all a ∈ G then u = v.

Proof: Let u, v ∈ G. Suppose that u∗a = a for all a ∈ G and a∗ v = a for all a ∈ G. Since
u ∗ a = a for all a ∈ G we have u ∗ v = v. Since a ∗ v = a for all a ∈ G we have u ∗ v = u.
Thus u = u ∗ v = v.

1.19 Theorem: (Uniqueness of the Inverse) Let G be a group under ∗ with identity e,
and let a ∈ G. Then for all u, v ∈ G, if u ∗ a = e and a ∗ v = e then u = v.

Proof: Let u, v ∈ G. Suppose that u ∗ a = e and a ∗ v = e. Then

u = u ∗ e = u ∗ (a ∗ v) = (u ∗ a) ∗ v = e ∗ v = v .

1.20 Notation: Let G be a group. If the operation in G is called addition, then we denote
the operation by + and we assume that it is commutative, we denote the (unique) identity
in the group by 0, and we denote the (unique) inverse of a given element a ∈ G by −a. For
a, b ∈ G, we write a−b = a+(−b). For a ∈ G and k ∈ Z+ we write ka = a+a+· · ·+a (with
k terms in the sum), 0a = 0, and (−k)a = k(−a) = −a− a− · · · − a. With this notation,
for all a, b ∈ G and all k, l ∈ Z we have (k + l)a = ka + la, (−k)a = −(ka) = k(−a),
−(−a) = a and −(a+ b) = −a− b = −b− a.

1.21 Notation: When the operation ∗ of a group G is any operation other than addition
(or when the operation is unspecified), we usually write a ∗ b simply as ab, we usually
denote the (unique) identity element by e, 1 or I, and we denote the (unique) inverse of
a ∈ G by a−1. For a ∈ G and k ∈ Z+ we write ak = aa · · · a (with k terms in the product),
a0 = e, and a−k = (a−1)k = a−1a−1 · · · a−1. With this notation, for all a, b ∈ G and all
k, l ∈ Z we have ak+l = akal, a−k = (ak)−1 = (a−1)k, (a−1)−1 = a and (ab)−1 = b−1a−1.

1.22 Theorem: (Cancellation) Let G be a group with identity e. Let a, b, c ∈ G. Then

(1) if ab = ac or if ba = ca then b = c.
(2) if ab = e then a−1 = b and b−1 = a.
(3) if ab = a then b = e and if ab = b then a = e.

Proof: To prove (1) note that if ab = ac then multiplying both sides on the left by a−1

gives b = c ; in greater detail, we have

b = eb = (a−1a)b = a−1(ab) = a−1(ac) = (a−1a)c = ec = c .

Similarly, if ba = ca then multiplying on the right by a−1 gives b = c. To prove part (2)
note that if ab = e then multiplying both sides on the left by a−1 gives b = a−1, and
multiplying on the right by b−1 gives a = b−1. To prove part (3), note that if ab = a then
multiplying on the left by a−1 gives b = e, and if ab = b then multiplying on the right by
b−1 gives a = e.
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1.23 Definition: For a finite group G (that is a group which has finitely many elements),
we can specify its operation ∗ by making a table showing the value of the product a ∗ b
for each pair (a, b) ∈ G2. Such a table is called an operation table (or an addition,
multiplication or composition table) for G.

1.24 Example: The multiplication table for the group U12 = {1, 5, 7, 11} is shown below.

a\b 1 5 7 11

1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

1.25 Definition: Let G be a group and let a ∈ G. The order of G is its cardinality |G|
(when G is finite, the cardinality |G| is the number of elements in G). The order of a in
G, denoted by |a| or by ord

G
(a), is the smallest positive integer n such that an = e (or in

additive notation, the smallest positive integer n such that na = 0), provided that such an
integer exists. If no such positive integer n exists, then the order of a is infinite.

1.26 Example: In any group G, the order of the identity element is |e| = 1.

1.27 Example: The order of the group Z is |Z| = ∞ (or more accurately, |Z| = ℵ0). In
Z we have |0| = 1 and for 0 6= a ∈ Z we have |a| =∞ (because na 6= 0 for all n ∈ Z+).

1.28 Example: The order of Zn is
∣∣Zn∣∣ = n. The order of a ∈ Zn is |a| = n

gcd(a,n) .

Indeed if we let d = gcd(a, n) and write a = sd and n = td, then gcd(s, t) = 1 and we have
ka = 0 ∈ Zn ⇐⇒ n|ka ⇐⇒ td|ksd ⇐⇒ t|ks ⇐⇒ t|k and so |a| = t = n

d .

1.29 Example: The order of Un is |Un| = ϕ(n) where ϕ(n) is the Euler phi number of
n. We shall see later (in Corollary 4.22) that if n =

∏
pi
ki is the prime factorization of n

then ϕ(n) =
∏

(pi
ki − piki−1).

1.30 Example: The order of the group C∗ is |C∗| =∞ (or more accurately |C∗| = 2ℵ0).
For a = rei θ ∈ C∗ where r, θ ∈ R with r > 0, when r 6= 1 or when θ is not a rational
multiple of 2π we have |a| =∞, and when r = 1 and θ = 2π k

n with k, n ∈ Z and n 6= 0 we
have |a| = n

gcd(k,n) .

1.31 Example: If S is a finite set then
∣∣Perm(S)

∣∣ = |S|! and in particular |Sn| = n!.

1.32 Example: When p is prime (so that Zp is a field), we have∣∣GLn(Zp)
∣∣ = (pn − 1)(pn − p)(pn − p2) · · · (pn − pn−1) .

Indeed, for a matrix A ∈ Mn(Zp), in order for A to be invertible its columns must be
linearly independent. The first column u1 of A can be any non-zero vector in Zpn so there
are pn − 1 choices for u1. Having chosen u1, the second column u2 can be any vector in
Zpn which is not a multiple t1u1, t1 ∈ Zp. Since there are p such multiples, there are pn−p
choices for the u2. Having chosen u1 and u2, the third column u3 can be any vector in
Zpn which is not a linear combination t1u1 + t2u2, t1, t2 ∈ Zp. There are p2 such linear
combinations, so there are pn − p2 choices for u3. And so on.
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1.33 Definition: Let G be a group. For a, b ∈ G, we say that a and b are conjugate
in G, and we write a ∼ b, when b = xax−1 for some x ∈ G. For a ∈ G, we define the
conjugacy class of a in G to be the set

Cl(a) = Cl
G

(a) =
{
b ∈ G

∣∣b ∼ a} =
{
xax−1

∣∣x ∈ G} .
1.34 Note: The relation ∼ is an equivalence relation on G. This means that for all
a, b, c ∈ G we have

(1) a ∼ a,
(2) if a ∼ b then b ∼ a, and
(3) if a ∼ b and b ∼ c then a ∼ c.
Indeed, given a, b, c ∈ G we have a ∼ a since a = eae−1, and if a ∼ b, say b = xax−1,
then a = x−1b (x−1)−1 so b ∼ a, and finally if a ∼ b and b ∼ c with say b = xax−1 and
c = yby−1, then we have c = yxay−1x−1 = (yx)a(yx)−1 so a ∼ c. It follows that G is the
disjoint union of the distinct conjugacy classes.

1.35 Example: As an exercise, show that if a ∼ b in G, then |a| = |b|.
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