Chapter 2. Subgroups

- **2.1 Definition:** A subgroup of a group G is a subset $H \subseteq G$ which is also a group using the same operation as in G. When H is a subgroup of G, we write $H \subseteq G$.
- **2.2 Example:** In any group G we have the subgroups $\{e\} \leq G$ and $G \leq G$. The group $\{e\}$ is called the **trivial** group. A subgroup $H \leq G$ with $H \neq G$ is called a **proper** subgroup of G.
- **2.3 Example:** We have $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$. and we have $\mathbb{Z}^* \leq \mathbb{Q}^* \leq \mathbb{R}^* \leq \mathbb{C}^*$.
- **2.4 Example:** Note that $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ is not a subgroup of \mathbb{Z} , indeed it is not even a subset. Also, U_n is not a subgroup of \mathbb{Z}_n since it uses a different operation.
- **2.5 Theorem:** (The Subgroup Test I) Let G be a group and let $H \subseteq G$. Then $H \leq G$ if and only if
- (1) H contains the identity, that is $e \in H$,
- (2) H is closed under the operation, that is $ab \in H$ for all $a, b \in H$, and
- (3) H is closed under inversion, that is $a^{-1} \in H$ for all $a \in H$.

Proof: Note first that the operation on the group G restricts to a well defined operation on H if and only if H is closed under the operation. In this case, the operation will be associative on H since it is associative on G. Next note that if $e = e_G \in H$ then e is an identity element for H, and conversely if e_H is an identity for H then since $e_H e_H = e_H$ (both in H and in G), cancellation in the group G gives $e_H = e_G$. Thus H has an identity if and only if $e_H = e_G \in H$. A similar argument shows that a given element $a \in H$ has an inverse in H if and only if $a^{-1} \in H$ where a^{-1} denotes the inverse of a in G.

- **2.6 Theorem:** (The Subgroup Test II) Let G be a group and let $H \subseteq G$. Then $H \leq G$ if and only if
- (1) $H \neq \emptyset$, and
- (2) for all $a, b \in H$ we have $ab^{-1} \in H$.

Proof: From the Subgroup Test I, it is clear that if $H \leq G$ then (1) and (2) hold. Suppose, conversely, that (1) and (2) hold. By (1) we can choose an element $a \in H$, and then by (2) we have $e = aa^{-1} \in H$, so H contains the identity. For $a \in H$, we have $a^{-1} = ea^{-1} \in H$ by (2), so H is closed under inversion. For $a, b \in H$, we have $ab = a(b^{-1})^{-1} \in H$, so H is closed under the operation.

- **2.7 Theorem:** (The Finite Subgroup Test) Let G be a group and let H be a finite subset of H. Then $H \leq G$ if and only if
- (1) $H \neq \emptyset$, and
- (2) H is closed under the operation, that is $ab \in H$ for all $a, b \in H$.

Proof: The proof is left as an exercise.

2.8 Example: The set $\{(x,y) \in \mathbb{R}^2 | xy \ge 0\}$ is not a subgroup of \mathbb{R}^2 since it is not closed under addition.

2.9 Example: For $n \in \mathbb{Z}^+$ we have $C_n \leq C_\infty \leq S^1 \leq \mathbb{C}^*$ where

$$C_n = \left\{ z \in \mathbb{C}^* \middle| z^n = 1 \right\}$$

$$C_{\infty} = \left\{ z \in \mathbb{C}^* \middle| z^n = 1 \text{ for some } n \in \mathbb{Z}^+ \right\}$$

$$S^1 = \left\{ z \in \mathbb{C}^* \middle| ||z|| = 1 \right\}$$

2.10 Example: Given a commutative ring R, in the general linear group $GL_n(R)$ we have the following subgroups, called the **special linear group**, the **orthogonal group** and the **special orthogonal group**.

$$SL_n(R) = \{ A \in M_n(R) | \det(A) = 1 \}$$

$$O_n(R) = \{ A \in M_n(R) | A^T A = I \}$$

$$SO_n(R) = \{ A \in M_n(R) | A^T A = I, \det(A) = 1 \}$$

2.11 Example: For $\theta \in \mathbb{R}$, the **rotation** in \mathbb{R}^2 about (0,0) by the angle θ is given by the matrix

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

and the **reflection** in \mathbb{R}^2 in the line through (0,0) and the point $\left(\cos\frac{\theta}{2},\sin\frac{\theta}{2}\right)$ is given by the matrix

$$F_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}.$$

We have

$$O_2(\mathbb{R}) = \left\{ R_{\theta}, F_{\theta} \middle| \theta \in \mathbb{R} \right\}$$
$$SO_2(\mathbb{R}) = \left\{ R_{\theta} \middle| \theta \in \mathbb{R} \right\}$$

In $O_2(\mathbb{R})$, for $\alpha, \beta \in \mathbb{R}$ we have

$$F_{\beta}F_{\alpha} = R_{\beta-\alpha} , F_{\beta}R_{\alpha} = F_{\beta-\alpha} , R_{\beta}F_{\alpha} = F_{\alpha+\beta} , R_{\beta}R_{\alpha} = R_{\alpha+\beta} .$$

2.12 Example: For $n \in \mathbb{Z}^+$, the **dihedral group** D_n is the group

$$D_n = \{R_k, F_k | k \in \mathbb{Z}_n\} = \{R_0, R_1, \dots, R_{n-1}, F_0, F_1, \dots F_{n-1}\}$$

where for $k \in \mathbb{Z}_n$ we write $R_k = R_{\theta_k}$ and $F_k = F_{\theta_k}$ with $\theta_k = \frac{2\pi k}{n}$. We have

$$D_n \le O_2(\mathbb{R}) \le GL_2(\mathbb{R}) \le Perm(\mathbb{R}^2)$$

and for $k, l \in \mathbb{Z}_n$, the operation in D_n is given by

$$F_l F_k = F_{l-k} , F_l R_k = F_{l-k} , R_l F_k = F_{k+l} , R_l R_k = R_{k+l} .$$

2.13 Definition: Let G be a group and let $a \in G$. The **centre** of G is the set

$$Z(G) = \left\{ a \in G \middle| ax = xa \text{ for all } x \in G \right\}$$

and the **centralizer** of a in G to be the set

$$C(a) = C_{\scriptscriptstyle G}(a) = \left\{ x \in G \middle| ax = xa \right\}.$$

As an exercise, show that Z(G) and $C_G(a)$ are both subgroups of G.

2.14 Example: Find the centre of D_4 and find the centralizers of R_k and F_k in D_4 .

- **2.15 Example:** If H and K are subgroups of G then so is $H \cap K$. More generally, if A is a set and $H_{\alpha} \leq G$ for each $\alpha \in A$, then $\bigcap_{\alpha \in A} H_{\alpha} \leq G$ by the Subgroup Test II. Indeed we have $e_G \in H_{\alpha}$ for all $\alpha \in A$ so that $e_G \in \bigcap_{\alpha \in A} H_{\alpha}$, and if $a, b \in \bigcap_{\alpha \in A} H_{\alpha}$ then for every $\alpha \in A$ we have $a, b \in H_{\alpha}$ hence $ab^{-1} \in H_{\alpha}$, and so $ab^{-1} \in \bigcap_{\alpha \in A} H_{\alpha}$.
- **2.16 Definition:** Let G be a group and let $S \subseteq G$. The **subgroup of** G **generated by** S, denoted by $\langle S \rangle$, is the smallest subgroup of G which contains S, that is the intersection of all subgroups of G which contain S. The elements of S are called **generators** of the group $\langle S \rangle$. When S is a finite set, we omit set brackets and write $\langle a_1, a_2, \dots, a_n \rangle = \langle \{a_1, a_2, \dots, a_n\} \rangle$. A **cyclic subgroup** of G is a subgroup of the form $\langle a \rangle$ for some $a \in G$. For $a \in G$, the subgroup $\langle a \rangle$ is called the **cyclic subgroup of** G **generated by** G. When $G = \langle a \rangle$ for some G we say that G is **cyclic**.
- **2.17 Theorem:** (Elements of a Cyclic Group) Let G be a group and let $a \in G$. Then (1) we have $\langle a \rangle = \{a^k | k \in \mathbb{Z}\}.$
- (2) If $|a| = \infty$ then the elements a^k with $k \in \mathbb{Z}$ are all distinct so we have $|\langle a \rangle| = \infty$.
- (3) If |a| = n then for $k, \ell \in \mathbb{Z}$ we have $a^k = a^{\ell} \iff k = \ell \mod n$ and so

$$\langle a \rangle = \{a^k | k \in \mathbb{Z}^n\} = \{e, a, a^2, \cdots, a^{n-1}\}$$

with the listed elements all distinct so that $|\langle a \rangle| = n$. In particular, $a^k = e \iff n|k$.

Proof: First we show that $\langle a \rangle = \{a^k | k \in \mathbb{Z}\}$. By definition, $\langle a \rangle$ is the intersection of all subgroups $H \leq G$ with $a \in H$. By closure under the operation and under inversion, if $H \leq G$ with $a \in H$ then $a^k \in H$ for all $k \in \mathbb{Z}$, and so $\{a^k | k \in \mathbb{Z}\} \subseteq \langle a \rangle$. On the other hand, since $e = a^0$, $a^k(a^l)^{-1} = a^{k-l}$, we see that $\{a^k | k \in \mathbb{Z}\}$ is a subgroup of G (by the Subgroup Test) and we have $a = a^1 \in \{a^k | k \in \mathbb{Z}\}$, and so $\langle a \rangle \subseteq \{a^k | k \in \mathbb{Z}\}$.

Now suppose that $|a| = \infty$ and suppose, for a contradiction, that $a^k = a^\ell$ with $k < \ell$. Then $a^{\ell-k} = a^{\ell}(a^k)^{-1} = a^{\ell}(a^{\ell})^{-1} = e$ but this contradicts the fact that $|a| = \infty$.

Next suppose that |a|=n. Suppose that $a^k=a^\ell$. Then, as above, $a^{\ell-k}=e$. Write $\ell-k=qn+r$ with $0\leq r< n$. Then $e=a^{\ell-k}=a^{qn+r}=(a^n)^qa^r=a^r$. Since |a|=n we must have r=0. Thus $\ell-k=qn$, that is $k=\ell \mod n$. Conversely, suppose that $k=\ell \mod n$, say $k=\ell+qn$. Then $a^k=a^{\ell+qn}=a^\ell(a^n)^q=a^\ell$.

- **2.18 Notation:** When G is an abelian group under +, we have $\langle a \rangle = \{ka | k \in \mathbb{Z}\}.$
- **2.19 Example:** The groups \mathbb{Z} and \mathbb{Z}_n are cyclic with $\mathbb{Z} = \langle 1 \rangle$ and $\mathbb{Z}_n = \langle 1 \rangle$. The group $C_n = \{z \in \mathbb{C}^* | z^n = 1\}$ is cyclic with $C_n = \langle e^{i 2\pi/n} \rangle$.
- **2.20 Example:** In the group \mathbb{Z} we have $\langle 2 \rangle = \{\cdots, -2, 0, 2, 4, \cdots\}$, but in the group \mathbb{R}^* we have $\langle 2 \rangle = \{\cdots, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, \cdots\}$.
- **2.21 Example:** The group $U_{18} = \{1, 5, 7, 11, 13, 17\}$ is cyclic with $U_{18} = \langle 5 \rangle$ because in U_{18} we have

2.22 Example: If G and H are groups then $|G \times H| = |G| |H|$. For $a \in G$ and $b \in H$,

$$|(a,b)| = \operatorname{lcm}(|a|,|b|).$$

Indeed if |a| = n and |b| = m then for $k \in \mathbb{Z}$ we have

$$(a,b)^k = e_{\scriptscriptstyle G \times H} \iff (a^k,b^k) = (e_{\scriptscriptstyle G},e_{\scriptscriptstyle H})$$

$$\iff (a^k = e_{\scriptscriptstyle G} \text{ and } b^k = e_{\scriptscriptstyle H})$$

$$\iff n\big|k \text{ and } m\big|k\big)$$

$$\iff k \text{ is a common multiple of } n \text{ and } m.$$

- **2.23 Theorem:** (The Classification of Subgroups of a Cyclic Group) Let G be group and let $a \in G$.
- (1) Every subgroup of $\langle a \rangle$ is cyclic.
- (2) If $|a| = \infty$ then $\langle a^k \rangle = \langle a^\ell \rangle \iff \ell = \pm k$ so the distinct subgroups of $\langle a \rangle$ are the trivial group $\langle a^0 \rangle = \{e\}$ and the groups $\langle a^d \rangle = \{a^{kd} | k \in \mathbb{Z}\}$ with $d \in \mathbb{Z}^+$.
- (3) If |a| = n then we have $\langle a^k \rangle = \langle a^\ell \rangle \iff \gcd(k,n) = \gcd(\ell,n)$ and so the distinct subgroups of $\langle a \rangle$ are the groups $\langle a^d \rangle = \{a^{kd} | k \in \mathbb{Z}_{n/d}\} = \{a^0, a^d, a^{2d}, \dots, a^{n-d}\}$ where d is a positive divisor of n.

Proof: First we show that every subgroup of $\langle a \rangle$ is cyclic. Let $H \leq \langle a \rangle$. If $H = \{e\}$ then $H = \langle e \rangle$, which is cyclic. Suppose that $H \neq \{e\}$. Note that H contains some element of the form a^k with $k \in \mathbb{Z}^+$ since we can choose $a^\ell \in H$ for some $\ell \neq 0$, and if $\ell < 0$ then we also have $a^{-\ell} = (a^\ell)^{-1} \in H$. Let k be the smallest positive integer such that $a^k \in H$. We claim that $H = \langle a^k \rangle$. Since $a^k \in H$, by closure under the operation and under inversion we have $(a^k)^j \in H$ for all $j \in \mathbb{Z}$ and so $\langle a^k \rangle \subseteq H$. Let $a^\ell \in H$, where $\ell \in \mathbb{Z}$. Write $\ell = kq + r$ with $0 \leq r < k$. Then $a^\ell = a^{kq}a^r$ so we have $a^r = a^\ell(a^{kq})^{-1} \in H$. By our choice of k we must have r = 0, so $\ell = qk$ and so $a^\ell \in \langle a^k \rangle$. Thus $H \subseteq \langle a^k \rangle$.

Suppose that $|a| = \infty$. If $\ell = \pm k$ then clearly $\langle a^{\ell} \rangle = \langle a^{k} \rangle$. Suppose that $\langle a^{\ell} \rangle = \langle a^{k} \rangle$. Since $a^{k} \in \langle a^{\ell} \rangle$ we have $k = \ell t$ for some $t \in \mathbb{Z}$, so $\ell | k$. Similarly, since $a^{\ell} \in \langle a^{k} \rangle$ we have $k | \ell$. Since $k | \ell$ and $\ell | k$ we have $\ell = \pm k$.

Now suppose that |a| = n. Note first that for any divisor d|n we have

$$\langle a^d \rangle = \left\{ a^{dk} \middle| k \in \mathbb{Z}_{n/d} \right\} = \left\{ a^0, a^d, a^{2d}, \cdots, a^{n-d} \right\}$$

with the listed elements distinct so that $|a^d| = \frac{n}{d}$. We claim that $\langle a^k \rangle = \langle a^d \rangle$ where $d = \gcd(k,n)$. Since $d \mid k$ we have $a^k \in \langle a^d \rangle$ so $\langle a^k \rangle \subseteq \langle a^d \rangle$. Choose $s,t \in \mathbb{Z}$ so that ks + nt = d. Then $a^d = a^{ks+nt} = (a^k)^s(a^n)^t = (a^k)^s \in \langle a^k \rangle$ and so $\langle a^d \rangle \subseteq \langle a^k \rangle$. Thus $\langle a^k \rangle = \langle a^d \rangle$, as claimed. Now if $\langle a^k \rangle = \langle a^\ell \rangle$ and $d = \gcd(k,n)$ and $c = \gcd(\ell,n)$ then $\langle a^d \rangle = \langle a^\ell \rangle = \langle a^\ell \rangle = \langle a^c \rangle$ and so $|\langle a^d \rangle| = |\langle a^c \rangle|$, that is $\frac{n}{d} = \frac{n}{c}$, and so d = c. Conversely, if $d = \gcd(k,n) = \gcd(\ell,n) = c$ then we have $\langle a^k \rangle = \langle a^d \rangle = \langle a^\ell \rangle$.

- **2.24 Corollary:** (Orders of Elements in a Cyclic Group) Let G be a group and let $a \in G$.
- (1) If $|a| = \infty$ then $|a^0| = 1$ and $a^k = \infty$ for $k \neq 0$, and
- (2) if |a| = n then $|a^k| = \frac{n}{\gcd(k,n)}$.
- **2.25 Corollary:** (Generators of a Cyclic Group) Let G be a group and let $a \in G$. Then
- (1) if $|a| = \infty$ then $\langle a^k \rangle = \langle a \rangle \iff k = \pm 1$, and
- (2) if |a| = n then $\langle a^k \rangle = \langle a \rangle \iff \gcd(k, n) = 1 \iff k \in U_n$.

- **2.26 Corollary:** (The Number of Elements of Each Order in a Cyclic Group) Let G be a group and let $a \in G$ with |a| = n. Then for each $k \in \mathbb{Z}$, the order of a^k is a positive divisor of n, and for each positive divisor d|n, the number of elements in $\langle a \rangle$ of order d is equal to $\varphi(d)$.
- **2.27 Corollary:** For $n \in \mathbb{Z}^+$ we have $\sum_{d|n} \varphi(d) = n$.
- **2.28 Corollary:** (The Number of Elements of Each Order in a Finite Group) Let G be a finite group. For each $d \in \mathbb{Z}^+$, the number of elements in G of order d is equal to $\varphi(d)$ multiplied by the number of cyclic subgroups of G of order d.
- **2.29 Theorem:** (Elements of $\langle S \rangle$) Let G be a group and let $\emptyset \neq S \subseteq G$. Then

$$\langle S \rangle = \left\{ a_1^{k_1} a_2^{k_2} \cdots a_{\ell}^{k_{\ell}} \middle| \ell \ge 0, a_i \in S, k_i \in \mathbb{Z} \right\}$$

= $\left\{ a_1^{k_1} a_2^{k_2} \cdots a_{\ell}^{k_{\ell}} \middle| \ell \ge 0, a_i \in S \text{ with } a_i \ne a_{i+1}, 0 \ne k_i \in \mathbb{Z} \right\}$

where the empty product (when $\ell = 0$) is the identity element. If G is abelian then

$$\langle S \rangle = \left\{ a_1^{k_1} a_2^{k_2} \cdots a_\ell^{k_\ell} \middle| \ell \ge 0, a_i \in S \text{ with } a_i \ne a_j \text{ for } i \ne j, 0 \ne k_i \in \mathbb{Z} \right\}.$$

Proof: The proof is left as an exercise.

- **2.30 Notation:** If G is an abelian group under + then
 - $\langle S \rangle = \operatorname{Span}_{\mathbb{Z}} \{ S \} = \{ k_1 a_1 + k_2 a_2 + \dots + k_{\ell} a_{\ell} | \ell \ge 0, a_i \in S \text{ with } a_i \ne a_j, 0 \ne k_i \in \mathbb{Z} \}.$
- **2.31 Example:** As an exercise, show that in \mathbb{Z} we have $\langle k, \ell \rangle = \langle d \rangle$ where $d = \gcd(k, \ell)$.
- **2.32 Example:** In \mathbb{Z}^2 , the elements of $\langle (1,3), (2,1) \rangle$ are the vertices of parallelograms which cover \mathbb{R}^2 .
- **2.33 Example:** We have $D_n = \langle R_1, F_0 \rangle$ in $O_2(\mathbb{R})$ because $R_k = R_1^k$ and $F_k = R_k F_0$.
- **2.34 Definition:** Let S be a set. The **free group** on S is the set whose elements are

$$F(S) = \{a_1^{k_1} a_2^{k_2} \cdots a_\ell^{k_\ell} | \ell \ge 0, a_i \in S, 0 \ne k_i \in \mathbb{Z}\}$$

with the operation given by concatenation

$$(a_1^{j_1} \cdots a_\ell^{j_\ell})(b_1^{k_1} \cdots b_m^{k_m}) = a_1^{j_1} \cdots a_\ell^{j_\ell} b_1^{k_1} \cdots b_m^{k_m}$$

followed by grouping and cancellation in the sense that if $a_{\ell} = b_1$ then we replace $a_{\ell}^{j_{\ell}} b_1^{k_1}$ by $a_{\ell}^{j_{\ell}+k_1}$ and if, in addition, $j_{\ell}+k_1=0$ then we omit the term a_{ℓ}^{0} and perform further grouping if $a_{\ell-1}=b_2$. For example, in F(a,b) we have

$$(a b^2 a^{-3} b)(b^{-1} a^3 b a^{-2}) = a b^2 a^{-3} b b^{-1} a^3 b a^{-2} = a b^2 a^{-3} a^3 b a^{-2} = a b^2 b a^{-2} = a b^3 a^{-2}.$$

Note that in the free group F(S) we have $F(S) = \langle S \rangle$.

2.35 Definition: Let S be a set. The free abelian group on S is the set

$$A(S) = \left\{ k_1 a_1 + \dots + k_\ell a_\ell \middle| \ell \ge 0, a_i \in S \text{ with } a_i \ne a_j, 0 \ne k_i \in \mathbb{Z} \right\}.$$

If we identify the element $k_1a_1 + k_2a_2 + \cdots + k_\ell a_\ell$ with the function $f: S \to \mathbb{Z}$ given by $f(a_i) = k_i$ and f(a) = 0 for $a \neq a_i$ for any i, then we can identify A(S) with the set

$$A(S) = \sum_{a \in S} \mathbb{Z} = \{ f : S \to \mathbb{Z} | f(a) = 0 \text{ for all but finitely many } a \in S \}.$$

Under this identification, we use the operation given by (f+g)(a) = f(a) + g(a).