## Chapter 2. Subgroups

2.1 Definition: A subgroup of a group $G$ is a subset $H \subseteq G$ which is also a group using the same operation as in $G$. When $H$ is a subgroup of $G$, we write $H \leq G$.
2.2 Example: In any group $G$ we have the subgroups $\{e\} \leq G$ and $G \leq G$. The group $\{e\}$ is called the trivial group. A subgroup $H \leq G$ with $H \neq G$ is called a proper subgroup of $G$.
2.3 Example: We have $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$. and we have $\mathbb{Z}^{*} \leq \mathbb{Q}^{*} \leq \mathbb{R}^{*} \leq \mathbb{C}^{*}$.
2.4 Example: Note that $\mathbb{Z}_{n}=\{0,1, \cdots, n-1\}$ is not a subgroup of $\mathbb{Z}$, indeed it is not even a subset. Also, $U_{n}$ is not a subgroup of $\mathbb{Z}_{n}$ since it uses a different operation.
2.5 Theorem: (The Subgroup Test I) Let $G$ be a group and let $H \subseteq G$. Then $H \leq G$ if and only if
(1) $H$ contains the identity, that is $e \in H$,
(2) $H$ is closed under the operation, that is $a b \in H$ for all $a, b \in H$, and
(3) $H$ is closed under inversion, that is $a^{-1} \in H$ for all $a \in H$.

Proof: Note first that the operation on the group $G$ restricts to a well defined operation on $H$ if and only if $H$ is closed under the operation. In this case, the operation will be associative on $H$ since it is associative on $G$. Next note that if $e=e_{G} \in H$ then $e$ is an identity element for $H$, and conversely if $e_{H}$ is an identity for $H$ then since $e_{H} e_{H}=e_{H}$ (both in $H$ and in $G$ ), cancellation in the group $G$ gives $e_{H}=e_{G}$. Thus $H$ has an identity if and only if $e_{H}=e_{G} \in H$. A similar argument shows that a given element $a \in H$ has an inverse in $H$ if and only if $a^{-1} \in H$ where $a^{-1}$ denotes the inverse of $a$ in $G$.
2.6 Theorem: (The Subgroup Test II) Let $G$ be a group and let $H \subseteq G$. Then $H \leq G$ if and only if
(1) $H \neq \emptyset$, and
(2) for all $a, b \in H$ we have $a b^{-1} \in H$.

Proof: From the Subgroup Test I, it is clear that if $H \leq G$ then (1) and (2) hold. Suppose, conversely, that (1) and (2) hold. By (1) we can choose an element $a \in H$, and then by (2) we have $e=a a^{-1} \in H$, so $H$ contains the identity. For $a \in H$, we have $a^{-1}=e a^{-1} \in H$ by (2), so $H$ is closed under inversion. For $a, b \in H$, we have $a b=a\left(b^{-1}\right)^{-1} \in H$, so $H$ is closed under the operation.
2.7 Theorem: (The Finite Subgroup Test) Let $G$ be a group and let $H$ be a finite subset of $H$. Then $H \leq G$ if and only if
(1) $H \neq \emptyset$, and
(2) $H$ is closed under the operation, that is $a b \in H$ for all $a, b \in H$.

Proof: The proof is left as an exercise.
2.8 Example: The set $\left\{(x, y) \in \mathbb{R}^{2} \mid x y \geq 0\right\}$ is not a subgroup of $\mathbb{R}^{2}$ since it is not closed under addition.
2.9 Example: For $n \in \mathbb{Z}^{+}$we have $C_{n} \leq C_{\infty} \leq \mathrm{S}^{1} \leq \mathbb{C}^{*}$ where

$$
\begin{aligned}
C_{n} & =\left\{z \in \mathbb{C}^{*} \mid z^{n}=1\right\} \\
C_{\infty} & =\left\{z \in \mathbb{C}^{*} \mid z^{n}=1 \text { for some } n \in \mathbb{Z}^{+}\right\} \\
\mathrm{S}^{1} & =\left\{z \in \mathbb{C}^{*} \mid\|z\|=1\right\}
\end{aligned}
$$

2.10 Example: Given a commutative ring $R$, in the general linear group $G L_{n}(R)$ we have the following subgroups, called the special linear group, the orthogonal group and the special orthogonal group.

$$
\begin{aligned}
S L_{n}(R) & =\left\{A \in M_{n}(R) \mid \operatorname{det}(A)=1\right\} \\
O_{n}(R) & =\left\{A \in M_{n}(R) \mid A^{T} A=I\right\} \\
S O_{n}(R) & =\left\{A \in M_{n}(R) \mid A^{T} A=I, \operatorname{det}(A)=1\right\}
\end{aligned}
$$

2.11 Example: For $\theta \in \mathbb{R}$, the rotation in $\mathbb{R}^{2}$ about $(0,0)$ by the angle $\theta$ is given by the matrix

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

and the reflection in $\mathbb{R}^{2}$ in the line through $(0,0)$ and the point $\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2}\right)$ is given by the matrix

$$
F_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right) .
$$

We have

$$
\begin{aligned}
O_{2}(\mathbb{R}) & =\left\{R_{\theta}, F_{\theta} \mid \theta \in \mathbb{R}\right\} \\
S O_{2}(\mathbb{R}) & =\left\{R_{\theta} \mid \theta \in \mathbb{R}\right\}
\end{aligned}
$$

In $O_{2}(\mathbb{R})$, for $\alpha, \beta \in \mathbb{R}$ we have

$$
F_{\beta} F_{\alpha}=R_{\beta-\alpha}, F_{\beta} R_{\alpha}=F_{\beta-\alpha}, R_{\beta} F_{\alpha}=F_{\alpha+\beta}, R_{\beta} R_{\alpha}=R_{\alpha+\beta}
$$

2.12 Example: For $n \in \mathbb{Z}^{+}$, the dihedral group $D_{n}$ is the group

$$
D_{n}=\left\{R_{k}, F_{k} \mid k \in \mathbb{Z}_{n}\right\}=\left\{R_{0}, R_{1}, \cdots, R_{n-1}, F_{0}, F_{1}, \cdots F_{n-1}\right\}
$$

where for $k \in \mathbb{Z}_{n}$ we write $R_{k}=R_{\theta_{k}}$ and $F_{k}=F_{\theta_{k}}$ with $\theta_{k}=\frac{2 \pi k}{n}$. We have

$$
D_{n} \leq O_{2}(\mathbb{R}) \leq G L_{2}(\mathbb{R}) \leq \operatorname{Perm}\left(\mathbb{R}^{2}\right)
$$

and for $k, l \in \mathbb{Z}_{n}$, the operation in $D_{n}$ is given by

$$
F_{l} F_{k}=F_{l-k}, F_{l} R_{k}=F_{l-k}, R_{l} F_{k}=F_{k+l}, R_{l} R_{k}=R_{k+l}
$$

2.13 Definition: Let $G$ be a group and let $a \in G$. The centre of $G$ is the set

$$
Z(G)=\{a \in G \mid a x=x a \text { for all } x \in G\}
$$

and the centralizer of $a$ in $G$ to be the set

$$
C(a)=C_{G}(a)=\{x \in G \mid a x=x a\} .
$$

As an exercise, show that $Z(G)$ and $C_{G}(a)$ are both subgroups of $G$.
2.14 Example: Find the centre of $D_{4}$ and find the centralizers of $R_{k}$ and $F_{k}$ in $D_{4}$.
2.15 Example: If $H$ and $K$ are subgroups of $G$ then so is $H \cap K$. More generally, if $A$ is a set and $H_{\alpha} \leq G$ for each $\alpha \in A$, then $\bigcap_{\alpha \in A} H_{\alpha} \leq G$ by the Subgroup Test II. Indeed we have $e_{G} \in H_{\alpha}$ for all $\alpha \in A$ so that $e_{G} \in \bigcap_{\alpha \in A} H_{\alpha}$, and if $a, b \in \bigcap_{\alpha \in A} H_{\alpha}$ then for every $\alpha \in A$ we have $a, b \in H_{\alpha}$ hence $a b^{-1} \in H_{\alpha}$, and so $a b^{-1} \in \bigcap_{\alpha \in A} H_{\alpha}$.
2.16 Definition: Let $G$ be a group and let $S \subseteq G$. The subgroup of $G$ generated by $S$, denoted by $\langle S\rangle$, is the smallest subgroup of $G$ which contains $S$, that is the intersection of all subgroups of $G$ which contain $S$. The elements of $S$ are called generators of the group $\langle S\rangle$. When $S$ is a finite set, we omit set brackets and write $\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle=\left\langle\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}\right\rangle$. A cyclic subgroup of $G$ is a subgroup of the form $\langle a\rangle$ for some $a \in G$. For $a \in G$, the subgroup $\langle a\rangle$ is called the cyclic subgroup of $G$ generated by $a$. When $G=\langle a\rangle$ for some $a \in G$ we say that $G$ is cyclic.
2.17 Theorem: (Elements of a Cyclic Group) Let $G$ be a group and let $a \in G$. Then
(1) we have $\langle a\rangle=\left\{a^{k} \mid k \in \mathbb{Z}\right\}$.
(2) If $|a|=\infty$ then the elements $a^{k}$ with $k \in \mathbb{Z}$ are all distinct so we have $|\langle a\rangle|=\infty$.
(3) If $|a|=n$ then for $k, \ell \in \mathbb{Z}$ we have $a^{k}=a^{\ell} \Longleftrightarrow k=\ell \bmod n$ and so

$$
\langle a\rangle=\left\{a^{k} \mid k \in \mathbb{Z}^{n}\right\}=\left\{e, a, a^{2}, \cdots, a^{n-1}\right\}
$$

with the listed elements all distinct so that $|\langle a\rangle|=n$. In particular, $a^{k}=e \Longleftrightarrow n \mid k$.
Proof: First we show that $\langle a\rangle=\left\{a^{k} \mid k \in \mathbb{Z}\right\}$. By definition, $\langle a\rangle$ is the intersection of all subgroups $H \leq G$ with $a \in H$. By closure under the operation and under inversion, if $H \leq G$ with $a \in H$ then $a^{k} \in H$ for all $k \in \mathbb{Z}$, and so $\left\{a^{k} \mid k \in \mathbb{Z}\right\} \subseteq\langle a\rangle$. On the other hand, since $e=a^{0}, a^{k}\left(a^{l}\right)^{-1}=a^{k-l}$, we see that $\left\{a^{k} \mid k \in \mathbb{Z}\right\}$ is a subgroup of $G$ (by the Subgroup Test) and we have $a=a^{1} \in\left\{a^{k} \mid k \in \mathbb{Z}\right\}$, and so $\langle a\rangle \subseteq\left\{a^{k} \mid k \in \mathbb{Z}\right\}$.

Now suppose that $|a|=\infty$ and suppose, for a contradiction, that $a^{k}=a^{\ell}$ with $k<\ell$. Then $a^{\ell-k}=a^{\ell}\left(a^{k}\right)^{-1}=a^{\ell}\left(a^{\ell}\right)^{-1}=e$ but this contradicts the fact that $|a|=\infty$.

Next suppose that $|a|=n$. Suppose that $a^{k}=a^{\ell}$. Then, as above, $a^{\ell-k}=e$. Write $\ell-k=q n+r$ with $0 \leq r<n$. Then $e=a^{\ell-k}=a^{q n+r}=\left(a^{n}\right)^{q} a^{r}=a^{r}$. Since $|a|=n$ we must have $r=0$. Thus $\ell-k=q n$, that is $k=\ell \bmod n$. Conversely, suppose that $k=\ell \bmod n$, say $k=\ell+q n$. Then $a^{k}=a^{\ell+q n}=a^{\ell}\left(a^{n}\right)^{q}=a^{\ell}$.
2.18 Notation: When $G$ is an abelian group under + , we have $\langle a\rangle=\{k a \mid k \in \mathbb{Z}\}$.
2.19 Example: The groups $\mathbb{Z}$ and $\mathbb{Z}_{n}$ are cyclic with $\mathbb{Z}=\langle 1\rangle$ and $\mathbb{Z}_{n}=\langle 1\rangle$. The group $C_{n}=\left\{z \in \mathbb{C}^{*} \mid z^{n}=1\right\}$ is cyclic with $C_{n}=\left\langle e^{i 2 \pi / n}\right\rangle$.
2.20 Example: In the group $\mathbb{Z}$ we have $\langle 2\rangle=\{\cdots,-2,0,2,4, \cdots\}$, but in the group $\mathbb{R}^{*}$ we have $\langle 2\rangle=\left\{\cdots \frac{1}{4}, \frac{1}{2}, 1,2,4,8, \cdots\right\}$.
2.21 Example: The group $U_{18}=\{1,5,7,11,13,17\}$ is cyclic with $U_{18}=\langle 5\rangle$ because in $U_{18}$ we have

$$
\begin{array}{ccccccc}
k & 0 & 1 & 2 & 3 & 4 & 5 \\
5^{k} & 1 & 5 & 7 & 17 & 13 & 11
\end{array}
$$

2.22 Example: If $G$ and $H$ are groups then $|G \times H|=|G||H|$. For $a \in G$ and $b \in H$,

$$
|(a, b)|=\operatorname{lcm}(|a|,|b|) .
$$

Indeed if $|a|=n$ and $|b|=m$ then for $k \in \mathbb{Z}$ we have

$$
\begin{aligned}
(a, b)^{k}=e_{G \times H} & \Longleftrightarrow\left(a^{k}, b^{k}\right)=\left(e_{G}, e_{H}\right) \\
& \Longleftrightarrow\left(a^{k}=e_{G} \text { and } b^{k}=e_{H}\right) \\
& \Longleftrightarrow n \mid k \text { and } m \mid k) \\
& \Longleftrightarrow k \text { is a common multiple of } n \text { and } m
\end{aligned}
$$

2.23 Theorem: (The Classification of Subgroups of a Cyclic Group) Let $G$ be group and let $a \in G$.
(1) Every subgroup of $\langle a\rangle$ is cyclic.
(2) If $|a|=\infty$ then $\left\langle a^{k}\right\rangle=\left\langle a^{\ell}\right\rangle \Longleftrightarrow \ell= \pm k$ so the distinct subgroups of $\langle a\rangle$ are the trivial group $\left\langle a^{0}\right\rangle=\{e\}$ and the groups $\left\langle a^{d}\right\rangle=\left\{a^{k d} \mid k \in \mathbb{Z}\right\}$ with $d \in \mathbb{Z}^{+}$.
(3) If $|a|=n$ then we have $\left\langle a^{k}\right\rangle=\left\langle a^{\ell}\right\rangle \Longleftrightarrow \operatorname{gcd}(k, n)=\operatorname{gcd}(\ell, n)$ and so the distinct subgroups of $\langle a\rangle$ are the groups $\left\langle a^{d}\right\rangle=\left\{a^{k d} \mid k \in \mathbb{Z}_{n / d}\right\}=\left\{a^{0}, a^{d}, a^{2 d}, \cdots, a^{n-d}\right\}$ where $d$ is a positive divisor of $n$.
Proof: First we show that every subgroup of $\langle a\rangle$ is cyclic. Let $H \leq\langle a\rangle$. If $H=\{e\}$ then $H=\langle e\rangle$, which is cyclic. Suppose that $H \neq\{e\}$. Note that $H$ contains some element of the form $a^{k}$ with $k \in \mathbb{Z}^{+}$since we can choose $a^{\ell} \in H$ for some $\ell \neq 0$, and if $\ell<0$ then we also have $a^{-\ell}=\left(a^{\ell}\right)^{-1} \in H$. Let $k$ be the smallest positive integer such that $a^{k} \in H$. We claim that $H=\left\langle a^{k}\right\rangle$. Since $a^{k} \in H$, by closure under the operation and under inversion we have $\left(a^{k}\right)^{j} \in H$ for all $j \in \mathbb{Z}$ and so $\left\langle a^{k}\right\rangle \subseteq H$. Let $a^{\ell} \in H$, where $\ell \in \mathbb{Z}$. Write $\ell=k q+r$ with $0 \leq r<k$. Then $a^{\ell}=a^{k q} a^{r}$ so we have $a^{r}=a^{\ell}\left(a^{k q}\right)^{-1} \in H$. By our choice of $k$ we must have $r=0$, so $\ell=q k$ and so $a^{\ell} \in\left\langle a^{k}\right\rangle$. Thus $H \subseteq\left\langle a^{k}\right\rangle$.

Suppose that $|a|=\infty$. If $\ell= \pm k$ then clearly $\left\langle a^{\ell}\right\rangle=\left\langle a^{k}\right\rangle$. Suppose that $\left\langle a^{\ell}\right\rangle=\left\langle a^{k}\right\rangle$. Since $a^{k} \in\left\langle a^{\ell}\right\rangle$ we have $k=\ell t$ for some $t \in \mathbb{Z}$, so $\ell \mid k$. Similarly, since $a^{\ell} \in\left\langle a^{k}\right\rangle$ we have $k \mid \ell$. Since $k \mid \ell$ and $\ell \mid k$ we have $\ell= \pm k$.

Now suppose that $|a|=n$. Note first that for any divisor $d \mid n$ we have

$$
\left\langle a^{d}\right\rangle=\left\{a^{d k} \mid k \in \mathbb{Z}_{n / d}\right\}=\left\{a^{0}, a^{d}, a^{2 d}, \cdots, a^{n-d}\right\}
$$

with the listed elements distinct so that $\left|a^{d}\right|=\frac{n}{d}$. We claim that $\left\langle a^{k}\right\rangle=\left\langle a^{d}\right\rangle$ where $d=\operatorname{gcd}(k, n)$. Since $d \mid k$ we have $a^{k} \in\left\langle a^{d}\right\rangle$ so $\left\langle a^{k}\right\rangle \subseteq\left\langle a^{d}\right\rangle$. Choose $s, t \in \mathbb{Z}$ so that $k s+n t=d$. Then $a^{d}=a^{k s+n t}=\left(a^{k}\right)^{s}\left(a^{n}\right)^{t}=\left(a^{k}\right)^{s} \in\left\langle a^{k}\right\rangle$ and so $\left\langle a^{d}\right\rangle \subseteq\left\langle a^{k}\right\rangle$. Thus $\left\langle a^{k}\right\rangle=\left\langle a^{d}\right\rangle$, as claimed. Now if $\left\langle a^{k}\right\rangle=\left\langle a^{\ell}\right\rangle$ and $d=\operatorname{gcd}(k, n)$ and $c=\operatorname{gcd}(\ell, n)$ then $\left\langle a^{d}\right\rangle=\left\langle a^{k}\right\rangle=\left\langle a^{\ell}\right\rangle=\left\langle a^{c}\right\rangle$ and so $\left|\left\langle a^{d}\right\rangle\right|=\left|\left\langle a^{c}\right\rangle\right|$, that is $\frac{n}{d}=\frac{n}{c}$, and so $d=c$. Conversely, if $d=\operatorname{gcd}(k, n)=\operatorname{gcd}(\ell, n)=c$ then we have $\left\langle a^{k}\right\rangle=\left\langle a^{d}\right\rangle=\left\langle a^{\ell}\right\rangle$.
2.24 Corollary: (Orders of Elements in a Cyclic Group) Let $G$ be a group and let $a \in G$.
(1) If $|a|=\infty$ then $\left|a^{0}\right|=1$ and $a^{k}=\infty$ for $k \neq 0$, and
(2) if $|a|=n$ then $\left|a^{k}\right|=\frac{n}{\operatorname{gcd}(k, n)}$.
2.25 Corollary: (Generators of a Cyclic Group) Let $G$ be a group and let $a \in G$. Then
(1) if $|a|=\infty$ then $\left\langle a^{k}\right\rangle=\langle a\rangle \Longleftrightarrow k= \pm 1$, and
(2) if $|a|=n$ then $\left\langle a^{k}\right\rangle=\langle a\rangle \Longleftrightarrow \operatorname{gcd}(k, n)=1 \Longleftrightarrow k \in U_{n}$.
2.26 Corollary: (The Number of Elements of Each Order in a Cyclic Group) Let $G$ be a group and let $a \in G$ with $|a|=n$. Then for each $k \in \mathbb{Z}$, the order of $a^{k}$ is a positive divisor of $n$, and for each positive divisor $d \mid n$, the number of elements in $\langle a\rangle$ of order $d$ is equal to $\varphi(d)$.
2.27 Corollary: For $n \in \mathbb{Z}^{+}$we have $\sum_{d \mid n} \varphi(d)=n$.
2.28 Corollary: (The Number of Elements of Each Order in a Finite Group) Let $G$ be a finite group. For each $d \in \mathbb{Z}^{+}$, the number of elements in $G$ of order $d$ is equal to $\varphi(d)$ multiplied by the number of cyclic subgroups of $G$ of order $d$.
2.29 Theorem: (Elements of $\langle S\rangle$ ) Let $G$ be a group and let $\emptyset \neq S \subseteq G$. Then

$$
\begin{aligned}
\langle S\rangle & =\left\{a_{1}{ }^{k_{1}} a_{2}{ }^{k_{2}} \cdots a_{\ell}{ }^{k_{\ell}} \mid \ell \geq 0, a_{i} \in S, k_{i} \in \mathbb{Z}\right\} \\
& =\left\{a_{1}^{k_{1}} a_{2}^{k_{2}} \cdots a_{\ell}{ }^{k_{\ell}} \mid \ell \geq 0, a_{i} \in S \text { with } a_{i} \neq a_{i+1}, 0 \neq k_{i} \in \mathbb{Z}\right\}
\end{aligned}
$$

where the empty product (when $\ell=0$ ) is the identity element. If $G$ is abelian then

$$
\langle S\rangle=\left\{a_{1}^{k_{1}} a_{2}^{k_{2}} \cdots a_{\ell}{ }^{k_{\ell}} \mid \ell \geq 0, a_{i} \in S \text { with } a_{i} \neq a_{j} \text { for } i \neq j, 0 \neq k_{i} \in \mathbb{Z}\right\} .
$$

Proof: The proof is left as an exercise.
2.30 Notation: If $G$ is an abelian group under + then
$\langle S\rangle=\operatorname{Span}_{\mathbb{Z}}\{S\}=\left\{k_{1} a_{1}+k_{2} a_{2}+\cdots+k_{\ell} a_{\ell} \mid \ell \geq 0, a_{i} \in S\right.$ with $\left.a_{i} \neq a_{j}, 0 \neq k_{i} \in \mathbb{Z}\right\}$.
2.31 Example: As an exercise, show that in $\mathbb{Z}$ we have $\langle k, \ell\rangle=\langle d\rangle$ where $d=\operatorname{gcd}(k, \ell)$.
2.32 Example: In $\mathbb{Z}^{2}$, the elements of $\langle(1,3),(2,1)\rangle$ are the vertices of parallelograms which cover $\mathbb{R}^{2}$.
2.33 Example: We have $D_{n}=\left\langle R_{1}, F_{0}\right\rangle$ in $O_{2}(\mathbb{R})$ because $R_{k}=R_{1}{ }^{k}$ and $F_{k}=R_{k} F_{0}$.
2.34 Definition: Let $S$ be a set. The free group on $S$ is the set whose elements are

$$
F(S)=\left\{a_{1}^{k_{1}} a_{2}^{k_{2}} \cdots a_{\ell}^{k_{\ell}} \mid \ell \geq 0, a_{i} \in S, 0 \neq k_{i} \in \mathbb{Z}\right\}
$$

with the operation given by concatenation

$$
\left(a_{1}^{j_{1}} \cdots a_{\ell}{ }^{j_{\ell}}\right)\left(b_{1}^{k_{1}} \cdots b_{m}^{k_{m}}\right)=a_{1}^{j_{1}} \cdots a_{\ell}{ }^{j_{\ell}} b_{1}^{k_{1}} \cdots b_{m}^{k_{m}}
$$

followed by grouping and cancellation in the sense that if $a_{\ell}=b_{1}$ then we replace $a_{\ell}{ }^{j} b_{1}{ }^{k_{1}}$ by $a_{\ell}{ }^{j_{\ell}+k_{1}}$ and if, in addition, $j_{\ell}+k_{1}=0$ then we omit the term $a_{\ell}{ }^{0}$ and perform further grouping if $a_{\ell-1}=b_{2}$. For example, in $F(a, b)$ we have

$$
\left(a b^{2} a^{-3} b\right)\left(b^{-1} a^{3} b a^{-2}\right)=a b^{2} a^{-3} b b^{-1} a^{3} b a^{-2}=a b^{2} a^{-3} a^{3} b a^{-2}=a b^{2} b a^{-2}=a b^{3} a^{-2} .
$$

Note that in the free group $F(S)$ we have $F(S)=\langle S\rangle$.
2.35 Definition: Let $S$ be a set. The free abelian group on $S$ is the set

$$
A(S)=\left\{k_{1} a_{1}+\cdots+k_{\ell} a_{\ell} \mid \ell \geq 0, a_{i} \in S \text { with } a_{i} \neq a_{j}, 0 \neq k_{i} \in \mathbb{Z}\right\} .
$$

If we identify the element $k_{1} a_{1}+k_{2} a_{2}+\cdots+k_{\ell} a_{\ell}$ with the function $f: S \rightarrow \mathbb{Z}$ given by $f\left(a_{i}\right)=k_{i}$ and $f(a)=0$ for $a \neq a_{i}$ for any $i$, then we can identify $A(S)$ with the set

$$
A(S)=\sum_{a \in S} \mathbb{Z}=\{f: S \rightarrow \mathbb{Z} \mid f(a)=0 \text { for all but finitely many } a \in S\}
$$

Under this identification, we use the operation given by $(f+g)(a)=f(a)+g(a)$.

