Chapter 3. The Symmetric and Alternating Groups

3.1 Definition: An element $\alpha \in S_{n}$ can be specified by giving its table of values in the form

$$
\alpha=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
\alpha(1) & \alpha(2) & \cdots & \alpha(n)
\end{array}\right)
$$

This is called array notation for α.
3.2 Example: In array notation, we have
$S_{3}=\left\{\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)\right\}$.
Note that S_{3} is not abelian because for example

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)
$$

(since the operation is composition, in the product $\alpha \beta$ the permutation β is performed before the permutation α).
3.3 Example: For $n \geq 3$, we can think of D_{n} as a subgroup of S_{n} because an element of D_{n} permutes the elements of $C_{n}=\left\{e^{i 2 \pi k / n} \mid k=1,2, \cdots, n\right\}$ and this determines a permutation of $\{1,2, \cdots, n\}$. For example, in D_{6} we have

$$
\begin{aligned}
& R_{1}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 3 & 4 & 5 & 6 & 1
\end{array}\right), R_{2}=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 6 & 1 & 2
\end{array}\right) \\
& F_{0}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 3 & 2 & 1 & 6
\end{array}\right), F_{1}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 5 & 4 & 3 & 2 & 1
\end{array}\right) .
\end{aligned}
$$

3.4 Definition: When $a_{1}, a_{2}, \cdots, a_{\ell}$ are distinct elements in $\{1,2, \cdots, n\}$ we write

$$
\alpha=\left(a_{1}, a_{2}, \cdots, a_{\ell}\right)
$$

for the permutation $\alpha \in S_{n}$ given by

$$
\begin{aligned}
& \alpha\left(a_{1}\right)=a_{2}, \alpha\left(a_{2}\right)=a_{3}, \cdots, \alpha\left(a_{\ell-1}\right)=a_{\ell}, \alpha\left(a_{\ell}\right)=a_{1} \\
& \alpha(k)=k \text { for all } k \notin\left\{a_{1}, a_{2}, \cdots, a_{\ell}\right\} .
\end{aligned}
$$

Such a permutation is called a cycle of length ℓ or an ℓ-cycle.
3.5 Note: We make several remarks.
(1) We have $e=(1)=(2)=\cdots=(n)$.
(2) We have $\left(a_{1}, a_{2}, \cdots, a_{\ell}\right)=\left(a_{2}, a_{3}, \cdots, a_{\ell}, a_{1}\right)=\left(a_{3}, a_{4}, \cdots, a_{\ell}, a_{1}, a_{2}\right)=\cdots$.
(3) An ℓ-cycle with $\ell \geq 2$ can be expressed uniquely in the form $\alpha=\left(a_{1}, a_{2}, \cdots, a_{\ell}\right)$ with $a_{1}=\min \left\{a_{1}, a_{2}, \cdots, a_{\ell}\right\}$.
(4) For an ℓ-cycle $\alpha=\left(a_{1}, a_{2}, \cdots, a_{\ell}\right)$ we have $|\alpha|=\ell$.
(5) If $n \geq 3$ then we have $(12)(23)=(123)$ and $(23)(12)=(132)$ so S_{n} is not abelian.
3.6 Definition: Two cycles $\alpha=\left(a_{1}, a_{2}, \cdots, a_{\ell}\right)$ and $\beta=\left(b_{1}, b_{2}, \cdots, b_{m}\right)$ are said to be disjoint when $\left\{a_{1}, \cdots, a_{\ell}\right\} \cap\left\{b_{1}, \cdots, b_{m}\right\}=\emptyset$, that is when the a_{i} and b_{j} are all distinct. More generally the cycles $\alpha_{1}=\left(a_{1,1}, \cdots, a_{1, \ell_{1}}\right), \cdots, \alpha_{m}=\left(a_{m, 1}, \cdots, a_{m, \ell_{m}}\right)$ are disjoint when all of the $a_{i, j}$ are distinct.
3.7 Note: Disjoint cycles commute. Indeed if $\alpha=\left(a_{1}, \cdots, a_{\ell}\right)$ and $\beta=\left(b_{1}, \cdots, b_{m}\right)$ are disjoint, then

$$
\begin{aligned}
\alpha\left(\beta\left(a_{i}\right)\right) & =\alpha\left(a_{i}\right)=a_{i+1}=\beta\left(a_{i+1}\right)=\beta\left(\alpha\left(a_{i}\right)\right), \text { with subscripts in } \mathbb{Z}_{\ell} \\
\alpha\left(\beta\left(b_{j}\right)\right) & =\alpha\left(b_{j+1}\right)=b_{j+1}=\beta\left(b_{j}\right)=\beta\left(\alpha\left(b_{j}\right)\right), \text { with subscripts in } \mathbb{Z}_{m} \\
\alpha(\beta(k)) & =\alpha(k)=k=\beta(k)=\beta(\alpha(k)) \text { for } k \neq a_{i}, b_{j} .
\end{aligned}
$$

3.8 Theorem: (Cycle Notation) Every $\alpha \in S_{n}$ can be written as a product of disjoint cycles. Indeed every $\alpha \neq e$ can be written uniquely in the form

$$
\alpha=\left(a_{1,1}, \cdots, a_{1, \ell_{1}}\right)\left(a_{2,1}, \cdots, a_{2, \ell_{2}}\right) \cdots\left(a_{m, 1}, \cdots, a_{m, \ell_{m}}\right)
$$

with $m \geq 1$, each $\ell_{i} \geq 2$, each $a_{i, 1}=\min \left\{a_{i, 1}, a_{i, 2}, \cdots, a_{i, \ell_{i}}\right\}$ and $a_{1,1}<a_{2,1}<\cdots<a_{m, 1}$.
Proof: Let $e \neq \alpha \in S_{n}$ where $n \geq 2$. To write α in the given form, we must take $a_{1,1}$ to be the smallest element $k \in\{1,2, \cdots, n\}$ with $\alpha(k) \neq k$. Then we must have $a_{1,2}=\alpha\left(a_{1,1}\right), a_{1,3}=\alpha\left(a_{1,2}\right)=\alpha^{2}\left(a_{1,1}\right)$, and so on. Eventually we must reach ℓ_{1} such that $a_{1,1}=\alpha^{\ell_{1}}\left(a_{1,1}\right)$: indeed since $\{1,2, \cdots, n\}$ is finite, eventually we find $\alpha^{i}\left(a_{1,1}\right)=\alpha^{j}\left(a_{1,1}\right)$ for some $1 \leq i<j$ and then $a_{1,1}=\alpha^{-i} \alpha^{i}\left(a_{1,1}\right)=\alpha^{-i} \alpha^{j}\left(a_{1,1}\right)=\alpha^{j-i}\left(a_{1,1}\right)$. For the smallest such ℓ_{1} the elements $a_{1,1}, \cdots, a_{1, \ell_{1}}$ will be disjoint since if we had $a_{1, i}=a_{1, j}$ for some $1 \leq i<j \leq l_{1}$ then, as above, we would have $\alpha^{j-i}\left(a_{11}\right)=a_{11}$ with $1 \leq j-i<l_{1}$. This gives us the first cycle $\alpha_{1}=\left(a_{1,1}, a_{1,2}, \cdots, a_{1, \ell_{1}}\right)$.

If we have $\alpha=\alpha_{1}$ we are done. Otherwise there must be some $k \in\{1,2, \cdots, n\}$ with $k \notin\left\{a_{1,1}, a_{1,2}, \cdots, a_{1, \ell_{1}}\right\}$ such that $\alpha(k) \neq k$, and we must choose $a_{2,1}$ to be the smallest such k. As above we obtain the second cycle $\alpha_{2}=\left(a_{2,1}, a_{2,2}, \cdots, a_{2, \ell_{2}}\right)$. Note that α_{2} must be disjoint from α_{1} because if we had $\alpha^{i}\left(a_{2,1}\right)=\alpha^{j}\left(a_{1,1}\right)$ for some i, j then we would have $a_{2,1}=\alpha^{-i} \alpha^{i}\left(a_{2,1}\right)=\alpha^{-i} \alpha^{j}\left(a_{1,1}\right)=\alpha^{j-i}\left(a_{1,1}\right) \in\left\{a_{1,1}, \cdots, a_{1, \ell_{1}}\right\}$.

At this stage, if $\alpha=\alpha_{1} \alpha_{2}$ we are done, and otherwise we continue the procedure.
3.9 Definition: When a permutation $e \neq \alpha \in S_{n}$ is written in the unique form of the above theorem, we say that α is written in cycle notation. We usually write e as $e=(1)$.
3.10 Example: In cycle notation, considering D_{n} as a subgroup of S_{n}, we have

$$
\begin{aligned}
S_{3}= & D_{3}=\{(1),(12),(13),(23),(123),(132)\} \\
S_{4}= & \{(1),(12),(13),(14),(23),(24),(34),(12)(34),(13)(24),(14)(23), \\
& (123),(132),(213),(231),(312),(321)\} \\
D_{4}= & \left\{I, R_{1}, R_{2}, R_{3} \cdot R_{4}, R_{5}, F_{0}, F_{1}, F_{2}, F_{3}, F_{4}, F_{5}\right\} \\
= & \{(1),(1234),(13)(24),(1432),(13),(14)(23),(24),(12)(34)\}
\end{aligned}
$$

3.11 Example: For $\alpha=(1352)(46), \beta=(145)(263) \in S_{6}$, express $\alpha \beta$ in cycle notation.
3.12 Example: Find the number of elements in S_{15} which can be written as a product of 3 disjoint 4 -cycles.

Solution: When we write $\alpha=\left(a_{1} a_{2} a_{3} a_{4}\right)\left(a_{5} a_{6} a_{7} a_{8}\right)\left(a_{9} a_{10} a_{11} a_{12}\right)$, there are $\binom{15}{12}$ ways to choose the set $\left\{a_{1}, \cdots, a_{12}\right\}$ from $\{1,2, \cdots, 15\}$, then there is one choice for a_{1} (it must be the smallest of the a_{i}), then there are 11 choices for a_{2}, then 10 choices for a_{3}, then 9 choices for a_{4}, and then there is only one choice for a_{5} (it must be the smallest of the remaining a_{i}, and so on. Thus there are $\binom{15}{12} \cdot \frac{12!}{12 \cdot 8 \cdot 4}$ such elements in S_{15}.
3.13 Example: Find the number of elements in S_{20} which can be written as a product of 7 disjoint cycles, with 4 of length 2,2 of length 3 , and 1 of length 4 .
Solution: When we write $\alpha=\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right)\left(a_{5} a_{6}\right)\left(a_{7} a_{8}\right)\left(b_{1} b_{2} b_{3}\right)\left(b_{4} b_{5} b_{6}\right)\left(c_{1} c_{2} c_{3} c_{4}\right)$, there are $\binom{20}{8}$ ways to choose $\left\{a_{1}, a_{2}, \cdots, a_{8}\right\}$ from $\{1,2, \cdots, 20\}$, then $\binom{12}{6}$ ways to choose $\left\{b_{1}, \cdots, b_{6}\right\}$ from $\{1, \cdots, 20\} \backslash\left\{a_{1}, \cdots, a_{8}\right\}$, and then there are $\binom{4}{4}=1$ way to choose $\left.\left\{c_{1}, \cdots, c_{4}\right)\right\}$. From the set $\left\{a_{1}, \cdots, a_{8}\right\}$, there is 1 way to choose a_{1}, then 7 ways to choose a_{2}, then 1 way to choose a_{3}, then 5 ways to choose a_{4}, then 1 way to choose a_{5}, then 3 ways to choose a_{6}, then 1 way to choose a_{7} and then 1 way to choose a_{8}. From the set $\left\{b_{1}, \cdots, b_{6}\right\}$, there is 1 way to choose b_{1}, then 5 ways to choose b_{2}, then 4 ways to choose b_{3}, then 1 way to choose b_{4}, then 2 ways to choose b_{5} and then 1 way to choose b_{6}. From the set $\left\{c_{1}, \cdots, c_{4}\right\}$, there is 1 way to choose c_{1}, then 3 ways to choose c_{2}, then 2 ways to choose c_{3} and then 1 way to choose c_{4}. Thus the number of such elements in S_{20} is

$$
\binom{20}{8}\binom{12}{66}\binom{4}{4} \cdot \frac{8!}{8 \cdot 6 \cdot 4 \cdot 2} \cdot \frac{6!}{6 \cdot 3} \cdot \frac{4!}{4} .
$$

3.14 Theorem: (The Order of a Permutation) Let $\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{m}$ where the α_{i} are disjoint cycles with each α_{i} of length ℓ_{i}. Then $|\alpha|=\operatorname{lcm}\left\{\ell_{1}, \cdots, \ell_{m}\right\}$.

Proof: Since the α_{i} are disjoint, if we write $\alpha_{k}=\left(a_{k, 1}, \cdots, a_{k, \ell_{k}}\right)$ then we have

$$
\alpha\left(a_{k, 1}\right)=a_{k, 2}, \alpha^{2}\left(a_{k, 1}\right)=a_{k, 3}, \cdots, \alpha^{\ell_{m}-1}\left(a_{k, 1}\right)=a_{k, \ell_{m}}, \alpha^{\ell_{m}}\left(a_{k, 1}\right)=a_{k, 1}
$$

If p is a common multiple of all the ℓ_{i}, say $p=\ell_{i} q_{i}$, then

$$
\alpha_{i}^{p}=\alpha_{i}{ }^{\ell_{i} q_{i}}=\left(\alpha_{i}^{\ell_{i}}\right)^{q_{i}}=e^{q_{i}}=e \text { for all } i .
$$

Since the α_{i} commute, we have $\alpha^{p}=\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right)^{p}=\alpha_{1}{ }^{p} \alpha_{2}{ }^{p} \cdots \alpha_{m}{ }^{p}=e$.
If, on the other hand, p is not a common multiple of the ℓ_{i}, then we can choose k so that p is not a multiple of ℓ_{k}. Write $p=\ell_{k} q+r$ with $0<r<\ell_{k}$. Then

$$
\alpha_{k}^{p}=\alpha_{k}{ }^{\ell_{k} q+r}=\left(\alpha_{k}^{\ell_{k}}\right)^{q_{k}} \alpha_{k}^{r}=\alpha_{k}^{r}
$$

and we have $\alpha^{p}\left(a_{k, 1}\right)=\alpha_{k}{ }^{p}\left(a_{k, 1}\right)=\alpha_{k}^{r}\left(a_{k, 1}\right) \neq a_{k, 1}$ since $0<r<\ell_{k}$, and so $\alpha^{p} \neq e$.
3.15 Theorem: (The Conjugacy Class of a Permutation) Let $\alpha, \beta \in S_{n}$. Then α and β are conjugate in S_{n} if and only if, when written in cycle notation, α and β have the same number of cycles of each length.

Proof: Write α in cycle notation as $\alpha=\left(a_{11}, a_{12}, \cdots, a_{1, \ell_{1}}\right) \cdots\left(a_{m 1}, a_{m 2}, \cdots, a_{m, \ell_{m}}\right)$. Note that for all $\sigma \in S_{n}$ we have

$$
\sigma \alpha \sigma^{-1}=\left(\sigma\left(a_{11}\right), \sigma\left(a_{12}\right), \cdots, \sigma\left(a_{1, \ell_{1}}\right)\right) \cdots\left(\sigma\left(a_{m 1}\right), \sigma\left(a_{m 2}\right), \cdots, \sigma\left(a_{m, \ell_{m}}\right)\right):
$$

indeed, for the permutation on the right, $\sigma\left(a_{i, j}\right)$ is sent to $\sigma\left(a_{i, j+1}\right)$, and on the left, $\sigma\left(a_{i, j}\right)$ is sent by σ^{-1} to $a_{i, j}$, which is then sent to $a_{i, j+1}$ by α, which is then sent by σ to $\sigma\left(a_{i, j+1}\right)$.
3.16 Example: Let $\alpha=(1693)(275)(15873) \in S_{10}$. Find $|\alpha|$.

Solution: First we write α in as a product of disjoint cycles. We have $\alpha=(127)(369)(58)$ and so $|\alpha|=\operatorname{lcm}(3,3,2)=6$.
3.17 Example: As an exercise, find the number of elements of each order in S_{6}.
3.18 Theorem: (Even and Odd Permutations) In S_{n}, with $n \geq 2$,
(1) every $\alpha \in S_{n}$ is a product of 2-cycles,
(2) if $e=\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \cdots\left(a_{\ell}, b_{\ell}\right)$ then ℓ is even, that is $\ell=0 \bmod 2$, and
(3) if $\alpha=\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \cdots\left(a_{\ell}, b_{\ell}\right)=\left(c_{1}, d_{1}\right)\left(c_{2}, d_{2}\right) \cdots\left(c_{m}, d_{m}\right)$ then $\ell=m \bmod 2$.

Solution: To prove part (1), note that given $\alpha \in S_{n}$ we can write α as a product of cycles, and we have

$$
\left(a_{1}, a_{2}, \cdots, a_{\ell}\right)=\left(a_{1}, a_{\ell}\right)\left(a_{1}, a_{\ell-1}\right) \cdots\left(a_{1}, a_{2}\right)
$$

We shall prove part (2) by induction. First note that we cannot write e as a single 2 -cycle, but we can write e as a product of two 2 -cycles, for example $e=(1,2)(1,2)$. Fix $\ell \geq 3$ and suppose, inductively, that for all $k<\ell$, if we can write e as a product of k 2 -cycles then k must be even. Suppose that e can be written as a product of $\ell 2$-cycles, say $e=\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \cdots\left(a_{\ell}, b_{\ell}\right)$. Let $a=a_{1}$. Of all the ways we can write e as a product of $\ell 2$-cycles, in the form $e=\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \cdots\left(x_{\ell}, y_{\ell}\right)$, with $x_{i}=a$ for some i, choose one way, say $e=\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right) \cdots\left(r_{\ell}, s_{\ell}\right)$ with $r_{m}=a$ and $r_{i}, s_{i} \neq a$ for all $i<m$, with m being as large as possible. Note that $m \neq \ell$ since for $\alpha=\left(r_{1}, s_{1}\right) \cdots\left(r_{\ell}, s_{\ell}\right)$ with $r_{\ell}=a$ and $r_{i}, s_{i} \neq a$ for $i<\ell$ we have $\alpha\left(s_{\ell}\right)=a \neq s_{\ell}$ and so $\alpha \neq e$. Consider the product $\left(r_{m}, s_{m}\right)\left(r_{m+1}, s_{m+1}\right)$. This product must be (after possibly interchanging r_{m+1} and s_{m+1}) of one of the forms

$$
(a, b)(a, b),(a, b)(a, c),(a, b)(b, c),(a, b)(c, d)
$$

where a, b, c, d are distinct. Note that

$$
\begin{aligned}
(a, b)(a, c) & =(a, c, b)=(b, c)(a, b), \\
(a, b)(b, c) & =(a, b, c)=(b, c)(a, c), \text { and } \\
(a, b)(c, d) & =(c, d)(a, b)
\end{aligned}
$$

and so in each of these three cases we could rewrite e as a product of $\ell 2$-cycles with the first occurrence of a being farther to the right, contradicting the fact that we chose m to be as large as possible. Thus the product $\left(r_{m}, s_{m}\right)\left(r_{m+1}, s_{m+1}\right)$ is of the form $(a, b)(a, b)$. By cancelling these two terms, we can write e as a product of $(\ell-2) 2$-cycles. By the induction hypothesis, $(\ell-2)$ is even, and so ℓ is even.

Finally, to prove part (3), suppose that $\alpha=\left(a_{1}, b_{1}\right) \cdots\left(a_{\ell}, b_{\ell}\right)=\left(c_{1}, d_{1}\right) \cdots\left(c_{m}, d_{m}\right)$. Then we have

$$
e=\alpha \alpha^{-1}=\left(a_{1}, b_{1}\right) \cdots\left(a_{\ell}, b_{\ell}\right)\left(c_{m}, d_{m}\right) \cdots\left(c_{1}, d_{1}\right)
$$

By part (2), $\ell+m$ is even, and so $\ell=m \bmod 2$.
3.19 Example: Show that

$$
S_{n}=\langle(12),(13),(14), \cdots,(1 n)\rangle=\langle(12),(23),(34), \cdots,(n-1, n)\rangle=\langle(12),(123 \cdots n)\rangle
$$

Solution: By Part (1) of the above theorem, S_{n} is generated by the set of all 2-cycles $(k l)$. Any 2-cycle $(k l)$ can be written as $(k l)=(1 k)(1 l)(1 k)$ so $S_{n}=\langle(12),(13),(14), \cdots,(1 n)\rangle$. Any 2-cycle of the form $(1 k)$ can be written as $(1 k)=(12)(23) \cdots(k-1, k) \cdots(23)(12)$ and so $S_{n}=\langle(12),(23), \cdots,(n-1, n)\rangle$. Any 2 -cycle of the form $(k, k+1)$ can be written as $(k, k+1)=(123 \cdots n)^{k-1}(12)(123 \cdots n)^{-(k-1)}$ and so $S_{n}=\langle(12)(123 \cdots n)\rangle$.
3.20 Definition: For $n \geq 2$, a permutation $\alpha \in S_{n}$ is called even if it can be written as a product of an even number of 2 -cycles. Otherwise α can be written as a product of an odd number of 2-cycles, and then it is called odd. We define the parity of $\alpha \in S_{n}$ to be

$$
(-1)^{\alpha}=\left\{\begin{array}{r}
1 \text { if } \alpha \text { is even } \\
-1 \text { if } \alpha \text { is odd }
\end{array}\right.
$$

3.21 Theorem: (Properties of Parity) Let $n \geq 2$ and let $\alpha, \beta \in S_{n}$. Then
(1) $(-1)^{e}=1$,
(2) if α is an ℓ-cycle then $(-1)^{\alpha}=(-1)^{\ell-1}$,
(3) $(-1)^{\alpha \beta}=(-1)^{\alpha}(-1)^{\beta}$, and
(4) $(-1)^{\alpha^{-1}}=(-1)^{\alpha}$.

Proof: Part (1) holds because, for example, $e=(1,2)(1,2)$. Part (2) holds because we have $\left(a_{1}, a_{2}, \cdots, a_{\ell}\right)=\left(a_{1}, a_{\ell}\right)\left(a_{1}, a_{\ell-1}\right) \cdots\left(a_{1}, a_{2}\right)$. Part (3) holds because if α is a product of ℓ 2 -cycles and β is a product of $m 2$-cycles then $\alpha \beta$ is a product of $(\ell+m) 2$-cycles. Part (4) holds because if $\alpha=\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \cdots\left(a_{\ell}, b_{\ell}\right)$ then $\alpha^{-1}=\left(a_{\ell}, b_{\ell}\right) \cdots\left(a_{2}, b_{2}\right)\left(a_{1}, b_{1}\right)$.
3.22 Example: Let $\alpha=(1793)(245)(164385) \in S_{10}$. Find $(-1)^{\alpha}$ and $|\alpha|$.

Solution: By the above theorem, we have $(-1)^{\alpha}=(-1)^{3}(-1)^{2}(-1)^{5}=1$. To find $|\alpha|$, we first write α as a product of disjoint cycles. We have $\alpha=(165793824)$ and so $|\alpha|=9$.
3.23 Definition: For $n \geq 2$ we define the alternating group A_{n} to be

$$
A_{n}=\left\{\alpha \in S_{n} \mid(-1)^{\alpha}=1\right\}
$$

Note that $A_{n} \leq S_{n}$ by the Properties of Parity Theorem. Note that

$$
\left|A_{n}\right|=\frac{1}{2}\left|S_{n}\right|=\frac{n!}{2}
$$

because we have a bijective correspondence

$$
F:\left\{\alpha \in S_{n} \mid(-1)^{\alpha}=1\right\} \rightarrow\left\{\alpha \in S_{n} \mid(-1)^{\alpha}=-1\right\}
$$

given by $F(\alpha)=(12) \alpha$.
3.24 Remark: The rotation group of the regular tetrahedron can be identified with A_{4} by labelling the vertices of the tetrahedron by $1,2,3$ and 4 and identifying each rotation with a permutation of $\{1,2,3,4\}$.
3.25 Example: Show that A_{n} is generated by the set of all 3 -cycles, then show that for any $a \neq b \in\{1,2, \cdots, n\}, A_{n}$ is generated by the 3 -cycles of the form $(a b k)$ with $k \neq a, b$.

Solution: We already know that every permutation in A_{n} is equal to a product of an even number of 2-cycles. Every product of a pair of 2-cycles is of one of the forms (ab)(ab), $(a b)(a c)$ or $(a b)(c d)$, where a, b, c, d are distinct, and we have

$$
(a b)(a b)=(a b c)(a c b),(a b)(a c)=(a c b),(a b)(c d)=(a d c)(a b c),
$$

and so A_{n} is generated by the set of all 3 -cycles. Now fix $a, b \in\{1,2, \cdots, n\}$ with $a \neq b$. Note that every 3 -cycle is of one of the forms $(a b k),(a k b),(a k l),(b k l)$ or $(k l m)$, where a, b, k, l, m are all distinct, and we have

$$
(a k b)=(a b k)^{2},(a k l)=(a b l)(a b k)^{2},(b k l)=(a b l)^{2}(a b k),(k l m)=(a b k)^{2}(a b m)(a b l)^{2}(a b k)
$$

