Chapter 5. Cosets, Normal Subgroups, and Quotient Groups

5.1 Definition: Let G be a group with operation *, let $H \leq G$ and let $a \in G$. The **left coset** of H in G containing a is the set

$$a * H = \{ax | x \in H\}.$$

Similarly the **right coset** of H in G containing a is the set $H*a=\{xa|x\in H\}$. Usually, unless the operation is addition, we write a*H as aH and we write H*a as Ha. We denote the set of left cosets of H in G by G/H so we have

$$G/H = \{aH | a \in G\}.$$

The **index** of H in G, denoted by [G:H] is the cardinality of the set of cosets, that is

$$[G:H] = |G/H|.$$

When G is abelian there is no difference between left and right cosets so we simply call them cosets.

5.2 Example: In the group \mathbb{Z}_{12} , the cosets of $H = \langle 3 \rangle = \{0,4,8\}$ are

$$0 + H = 4 + H = 8 + H = \{0, 4, 8\} = H$$

$$1 + H = 5 + H = 9 + H = \{1, 5, 9\}$$

$$2 + H = 6 + H = 10 + H = \{2, 6, 10\}$$

$$3 + H = 7 + H = 11 + H = \{3, 7, 11\}$$

5.3 Example: In the group \mathbb{Z} , for $n \in \mathbb{Z}^+$, the cosets of $\langle n \rangle = n\mathbb{Z}$ are

$$k + n\mathbb{Z} = \{ \cdots, k - 2n, k - n, k, k + n, k + 2n, \cdots \}$$
 where $k \in \mathbb{Z}$.

These are exactly the elements of \mathbb{Z}_n , so we have $\mathbb{Z}/\langle n \rangle = \mathbb{Z}_n$.

- **5.4 Theorem:** Let G be a group, let $H \leq G$, and let $a, b \in G$. Then
- $(1)\ b\in aH\iff a^{-1}b\in H\iff aH=bH,$
- (2) either aH = bH or $aH \cap bH = \emptyset$, and
- (3) |aH| = |H|.

Analogous results hold for right cosets.

Proof: If $b \in aH$, say b = ah with $h \in H$, then $a^{-1}b = h \in H$. Conversely if $a^{-1}b \in H$ then $b = ah \in aH$. Thus we have $b \in aH \iff a^{-1}b \in H$. Now suppose that $b \in aH$, say b = ah with $h \in H$. Let $x \in aH$, say x = ak with $k \in H$. Then $x = ak = bh^{-1}k \in bH$. Thus $aH \subseteq bH$. Let $y \in bH$, say y = bl with $l \in H$. Then $y = bl = ahl \in aH$. Thus $bH \subseteq aH$. Conversely, suppose that aH = bH. Then $b = be \in bH = aH$. This completes the proof of (1).

To prove (2), suppose that $aH \cap bH \neq \emptyset$. Choose $x \in aH \cap bH$, say x = ah = bl with $h, l \in H$. Then $a^{-1}b = hl^{-1} \in H$ so aH = bH by (1).

To prove (3), define $\phi: H \to aH$ by $\phi(h) = ah$. Then ϕ is clearly surjective, and ϕ is injective since if $\phi(h) = \phi(k)$ then ah = ak and so h = k by cancellation.

5.5 Corollary: (Lagrange's Theorem) Let G be a group and let $H \leq G$. Then

$$|G| = |G/H| |H|.$$

Proof: The above theorem shows that the group G is partitioned into left cosets and that these cosets all have the same cardinality.

- **5.6 Corollary:** Let G be a finite group, let $H \leq G$ and let $a \in G$. Then |H| divides |G| and |a| divides |G|.
- **5.7 Corollary:** (The Euler-Fermat Theorem) For $a \in U_n$ we have $a^{\varphi(n)} = 1$.
- **5.8 Corollary:** (The Classification of Groups of Order p) Let p be prime. Let G be a group with |G| = p. Then $G \cong \mathbb{Z}_p$.

Proof: Let $a \in \mathbb{Z}_p$ with $a \neq e$. Since |a| divides |G| = p we have |a| = 1 or |a| = p. Since $a \neq e$, $|a| \neq 1$ so |a| = p. Since $\langle a \rangle = |a| = p = |G|$ and $\langle a \rangle \subseteq G$ we have $\langle a \rangle = G$ and so $G = \langle a \rangle \cong \mathbb{Z}_p$.

- **5.9 Theorem:** Let G be a group and let $H \leq G$. The following are equivalent.
- (1) we can define a binary operation * on G/H by (aH)*(bH)=(ab)H,
- (2) $aha^{-1} \in H$ for all $a \in G$, $h \in H$, and
- (3) aH = Ha for all $a \in H$.
- (4) $aHa^{-1} = H$ for all $a \in H$.

In this case, G/H is a group under the above operation * with identity eH = H.

Proof: Suppose that we can define an operation * on G/H by (aH)*(bH)=(ab)H. The fact that this operation is well-defined means that for all $a_1, a_2, b_1, b_2 \in G$, if $a_1H=a_2H$ and $b_1H=b_2H$ then $(a_1b_1)H=(a_2b_2)H$, or equivalently if $a_1^{-1}a_2 \in H$ and $b_1^{-1}b_2 \in H$ then $(a_1b_1)^{-1}(a_2b_2) \in H$, that is $b_1^{-1}a_1^{-1}a_2b_2 \in H$. For $a_1^{-1}a_2 = h \in H$ and $b_1^{-1}b_2 = k \in H$, we have $b_1^{-1}a_1^{-1}a_2b_2 = b_1^{-1}hb_2 = b_1^{-1}b_2b_2^{-1}kb_2 = kb_2^{-1}hb_2$, and this lies in H if and only if $b_2^{-1}hb_2 \in H$. This proves that $(1) \iff (2)$.

Suppose that (2) holds. Let $x \in aH$, say x = ah with $h \in H$. Then $x = ah = aha^{-1}a \in Ha$ since $aha^{-1} \in H$. Thus $aH \subseteq Ha$. Now let $y \in Ha$, say y = ka with $k \in H$. Then $y = ka = aa^{-1}ka \in aH$ since $a^{-1}ka \in H$ by (2). Thus $Ha \subseteq Ha$. This proves that (2) \Longrightarrow (3).

Conversely, suppose that (3) holds. Let $a \in G$ and $h \in H$. Then $ah \in aH = Ha$ so we can choose $k \in H$ so that ah = ka. Then we have $aha^{-1} = kaa^{-1} = k \in H$. This proves that (3) \Longrightarrow (2).

The proof that $(3) \iff (4)$ is left as an exercise.

Now suppose that (1) holds and let * be the above operation. We claim that G/H is a group. Indeed, the operation * is associative since

$$((aH)*(bH))*(cH) = ((ab)H)*(cH) = (abc)H = (aH)*((bc)H)) = (aH)*((bH)*(cH)),$$

the coset eH = H is the identity for G/H since for $a \in G$ we have

$$(aH) * (eH) = (ae)H = aH$$
 and $(eH) * (aH) = (ea)H = aH$,

and for $a \in G$, the inverse of the coset aH is the coset $a^{-1}H$ since

$$(aH)*(a^{-1}H) = (aa^{-1})H = eH$$
 and $(a^{-1}H)*(aH) = (a^{-1}a)H = eH$.

5.10 Definition: Let G be a group and let $H \leq G$. If H satisfies the equivalent conditions of the above theorem, then we say that H is a **normal** subgroup of G and we write $H \subseteq G$. When $H \subseteq G$, the group G/H is called the **quotient group** of G by H.

- **5.11 Theorem:** (The First Isomorphism Theorem)
- (1) if $\phi: G \to H$ is a group homomorphism and $K = \operatorname{Ker}(\phi)$ then $K \subseteq G$ and $G/K \cong \phi(G)$, indeed the map $\Phi: G/K \to \phi(G)$ given by $\Phi(aK) = \phi(a)$ is a group isomorphism.
- (2) if $K \subseteq G$ then the map $\phi : G \to G/K$ given by $\phi(a) = aK$ is a group homomorphism with $Ker(\phi) = K$.

Proof: To prove (1), let $\phi: G \to H$ be a group homomorphism and let $K = \operatorname{Ker}(\phi)$. Let $a \in G$ let $k \in K$ so $\phi(k) = e$. Then $\phi(aka^{-1}) = \phi(a)\phi(k)\phi(a^{-1}) = \phi(a)\phi(a)^{-1} = e$ and so $aka^{-1} \in \operatorname{Ker}(\phi) = K$. This shows that $K \unlhd G$. Define $\Phi: G/H \to \phi(G)$ by $\Phi(aK) = \phi(a)$. Note that Φ is well-defined since if aK = bK then $a^{-1}b \in K$ so we have $\phi(a)^{-1}\phi(b) = \phi(a^{-1}b) = e$ and hence $\phi(a) = \phi(b)$. Note that Φ is a group homomorphism since $\Phi((aK)(bK)) = \Phi((ab)K) = \phi(ab)\phi(a)\phi(b) = \Phi(aK)\Phi(bK)$. Finally note that Φ is clearly onto, and Φ is 1:1 since if $\Phi(aK) = e$ then $\phi(a) = e$ so $a \in K$ and hence aK = K, which is the identity element of G/K.

To prove (2) let $K \subseteq G$. Define $\phi : G \to G/K$ by $\phi(a) = aK$. Then ϕ is a group homomorphism since $\phi(ab) = (ab)K = (aK)(bK) = \phi(a)\phi(b)$, and $\operatorname{Ker}(\phi) = K$ since for $a \in G$ we have $a \in \operatorname{Ker}(\phi) \iff \phi(a) = eK \iff aK = eK \iff a \in eK = K$.

5.12 Theorem: (The Second Isomorphism Theorem) Let G be a group, let $H \leq G$ and let $K \subseteq G$. Then $K \cap H \subseteq H$, $KH = \langle K \cup H \rangle$, and $H/(K \cap H) \cong KH/N$.

Proof: The proof is left as an exercise.

5.13 Theorem: (The Third Isomorphism Theorem) Let G be a group and let $H, K \subseteq G$ with $K \subseteq H$. Then $H/K \subseteq G/K$ and $(G/K)/(H/K) \cong G/H$.

Proof: The proof is left as an exercise.

- **5.14 Example:** The map $\phi : \mathbb{Z} \to \mathbb{Z}_n$ given by $\phi(k) = k$ is a group homomorphism with $\operatorname{Image}(\phi) = \langle n \rangle$ and $\operatorname{Ker}(\phi) = \langle n \rangle$, and we have $\mathbb{Z}/\langle n \rangle \cong \mathbb{Z}_n$.
- **5.15 Example:** The map $\phi : \mathbb{R} \to S^1$ given by $\phi(t) = e^{i \, 2\pi t}$ is a group homomorphism, since $e^{i \, 2\pi (s+t)} = e^{i \, 2\pi s} e^{i \, 2\pi t}$, with $\operatorname{Image}(\phi) = S^1$ and $\operatorname{Ker}(\phi) = \mathbb{Z}$ and we have $\mathbb{R}/\mathbb{Z} \cong S^1$.
- **5.16 Example:** The map $\phi: \mathbb{C}^* \to \mathbb{R}^+$ given by $\phi(z) = ||z||$ is a group homomorphism, since $||zw|| = ||z|| \, ||w||$, with $\operatorname{Image}(\phi) = \mathbb{R}^+$ and $\operatorname{Ker}(\phi) = \operatorname{S}^1$ so we have $\mathbb{C}^*/\operatorname{S}^1 \cong \mathbb{R}^+$.
- **5.17 Example:** The map $\phi: \mathbb{C}^* \to S^1$ given by $\phi(z) = \frac{z}{\|z\|}$, is a group homomorphism, since $\frac{zw}{\|zw\|} = \frac{z}{\|z\|} \frac{w}{\|w\|}$, with $\operatorname{Image}(\phi) = S^1$ and $\operatorname{Ker}(\phi) = \mathbb{R}^+$ and so $\mathbb{C}^*/\mathbb{R}^+ \cong S^1$.
- **5.18 Example:** For a commutative ring R, the determinant map $\phi: GL_n(R) \to R^*$ given by $\phi(A) = \det(A)$ is a group homomorphism, since $\det(AB) = \det(A) \det(B)$, and it is surjective since for $a \in R^*$ we have $A = \operatorname{diag}(a, 1, \dots, 1) \in GL_n(R)$ and $\det(A) = a$, and we have $\operatorname{Ker}(\phi) = \{A \in GL_n(R) | \det(A) = 1\} = SL_n(R)$, and so $SL_n(R) \subseteq GL_n(R)$ with $GL_n(R)/SL_n(R) \cong R^*$.
- **5.19 Example:** For $n \geq 2$, the map $\phi: S_n \to \mathbb{Z}^* = \{\pm 1\}$ given by $\phi(\alpha) = (-1)^{\alpha}$ is a group homomorphism since $(-1)^{\alpha\beta} = (-1)^{\alpha}(-1)^{\beta}$, and it is surjective since $(-1)^e = 1$ and $(-1)^{(12)} = 1$, and we have $\operatorname{Ker}(\phi) = \{\alpha \in S_n | (-1)^{\alpha} = 1\} = A_n$, and so $A_n \subseteq S_n$ with $S_n/A_n \cong \mathbb{Z}^* = \{\pm 1\}$.
- **5.20 Example:** Let $H = \langle (6,2), (3,6) \rangle \leq \mathbb{Z}^2$. As an exercise, show that $|\mathbb{Z}^2/H| = 30$ and that \mathbb{Z}^2/H is cyclic, then find a subjective group homomorphism $\phi : \mathbb{Z}^2 \to \mathbb{Z}_{30}$ with $\operatorname{Ker}(\phi) = H$.

5.21 Example: The map $\phi: G \to \operatorname{Aut}(G)$ given by $\phi(a) = C_a$ (where C_a is conjugation by a, given by $C_a(x) = axa^{-1}$) is a group homomorphism since $C_{ab} = C_aC_b$, and we have $\operatorname{Image}(\phi) = \{C_a | a \in G\} = \operatorname{Inn}(G)$ and

$$\operatorname{Ker}(\phi) = \left\{ a \in G \middle| C_a = I \right\} = \left\{ a \in G \middle| axa^{-1} = x \text{ for all } x \in G \right\}$$
$$= \left\{ a \in G \middle| ax = xa \text{ for all } x \in G \right\} = Z(G)$$

and so $Z(G) \subseteq G$ with $G/Z(G) \cong Inn(G)$.

5.22 Definition: Let $H \leq G$. The **centralizer** of H in G is the set

$$C(H) = C_{G}(H) = \{ a \in G | ax = xa \text{ for all } x \in H \}$$

and the **normalizer** of H in G is the set

$$N(H) = N_{\mathsf{G}}(H) = \left\{ a \in G \middle| aH = Ha \right\}.$$

5.23 Theorem: (The Normalizer/Centralizer Theorem) Let $H \leq G$. Then $C(H) \leq N(H)$ and N(H)/C(H) is isomorphic to a subgroup of Aut(H).

Proof: The proof is left as an exercise.

5.24 Theorem: (The Characterization of Internal Direct Products) Let G be a group. Let $H \subseteq G$ and $L \subseteq G$. Suppose that $H \cap K = \{e\}$ and that $G = HK = \{hk | h \in H, k \in K\}$. Then $G \cong H \times K$.

Proof: Define $\phi: H \times K \to G$ by $\phi(h,k) = hk$. The map ϕ is a group homomorphism since for $H_1, h_2 \in H$ and $k_1, k_2 \in K$ we have

$$\phi((h_1, k_1)(h_2, k_2)) = \phi(h_1 h_2, k_1 k_2) = h_1 h_2 k_1 k_2 = h_1 k_1 k_1^{-1} h_2 k_1 h_2^{-1} h_2 k_2$$
$$= h_1 k_1 e h_2 k_2 = \phi(h_1, k_1) \phi(h_2, k_2),$$

where we used the fact that the element $k_1^{-1}h_2k_1h_2^{-1}$ lies in both H and K (it lies in H since $H \subseteq G$ so that $k_1^{-1}h_2k_1 \in H$, and it lies in K since $K \subseteq G$ so that $h_2k_1h_2^{-1} \in K$), and we have $H \cap K = \{e\}$. The map ϕ is surjective since G = HK so that every element in G is of the form $hk = \phi(h, k)$ for some $h \in H$, $k \in K$, and the map ϕ is injective since for $h \in H$ and $k \in K$ we have $\phi(h, k) = e \Longrightarrow hk = e \Longrightarrow h = k^{-1} \Longrightarrow h, k \in H \cap K \Longrightarrow h = k = e$, since $H \cap K = \{e\}$.

5.25 Theorem: (The Classification of Groups of Order 2p) Let p be prime. Then (up to isomorphism) the distinct groups of order 2p are \mathbb{Z}_{2p} and D_p .

Proof: Let G be a group with |G| = 2p. Suppose that $G \not\cong \mathbb{Z}_{2p}$, so G is not cyclic. By Lagrange's Theorem, each element $a \in G$ has order |a| = 1, 2, p or 2p. Since G is not cyclic, no element has order 2p so every non-identity element in G has order 2p or 2p.

Suppose first that every non-identity element has order 2. Note that G must be abelian since for all $a, b \in G$ we have $a^2 = b^2 = (ba)^2 = e$ and so $ab = b^2aba^2 = b(ba)^2a = ba$. Fix two distinct non-identity elements $a, b \in G$ and consider the set $H = \{e, a, b, ab\}$. Note that H is closed under the operation and under inversion (since $a^2 = b^2 = e$ and ab = ba) and so $H = \langle a, b \rangle \leq G$. By Lagrange's Theorem, we have |H| ||G|, that is 4|2p, and so we must have p = 2 and so |G| = 4 = |H|, and so $G = H \cong \mathbb{Z}_2^2 \cong D_2$.

Now suppose that some non-identity element has order p with $p \neq 2$. Choose $a \in G$ with |a| = p. Choose $b \notin \langle a \rangle$. Note that since $\langle a \rangle = p$ and |G| = 2p, there are exactly two cosets of $\langle a \rangle$ in G, namely $\langle a \rangle$ and $b \langle a \rangle$, and G is the disjoint union $G = \langle a \rangle \cup b \langle a \rangle$. Note that $b^2 \langle a \rangle \neq b \langle a \rangle$ since $b = b^{-1}b^2 \notin \langle a \rangle$, and so we must have $b^2 \langle a \rangle = \langle a \rangle$ and hence $b^2 \in \langle a \rangle$. Note that $|b| \neq p$, since if we had $b^p = e$ then (since p+1 is even) we would have $b = b^{p+1} \in \langle b^2 \rangle \subseteq \langle a \rangle$, and so |b| = 2. Similarly, we have |x| = 2 for every $x \notin \langle a \rangle$. Consider the element ab. Note that $ab \notin \langle a \rangle = a \langle a \rangle$ since $b = a^{-1}ab \notin \langle a \rangle$, and so we have |ab| = 2. Thus abab = e and so $ab = (ab)^{-1} = b^{-1}a^{-1} = ba^{p-1}$

We have shown that G is the disjoint union $G = \langle a \rangle \cup b \langle a \rangle$, so we have

$$G = \{e, a, a^2, \dots, a^{p-1}, b, ba, ba^2, \dots, ba^{p-1}\}$$

with the listed elements distinct. Since $ab = ba^{-1}$, we have $a^2b = aba^{-1} = ba^{-2}$ and $a^3b = aba^{-2} = ba^{-3}$ and so on so that $a^kb = ba^{-k}$. This determines the operation on G completely. Indeed we have

$$a^k \cdot a^l = a^{k+l} \ , \ a^k \cdot ba^l = ba^{l-k} \ , \ ba^k \cdot a^l = ba^{k+l} \ , \ ba^k \cdot ba^l = a^{l-k} \ .$$

Compare this to the operation in $D_p = \{I, R_1, \dots, R_{p-1}, F_0, F_1, \dots, F_{p-1}\}$ given by

$$R_k \cdot R_l = R_{k+l} , R_k \cdot F_{-l} = F_{-(l-k)} , F_{-k}R_l = F_{-(k+l)} , F_{-k}F_{-l} = F_{-(l-k)} .$$

We see that the map $\phi: G \to D_p$ given by $\phi(a^k) = R_k$ and $\phi(ba^k) = F_k$ is an isomorphism.

5.26 Theorem: (The Classification of Groups of Order p^2) Let p be prime. Then (up to isomorphism) the distinct groups of order p^2 are \mathbb{Z}_{p^2} and $\mathbb{Z}_p \times \mathbb{Z}_p$.

Proof: Let G be a group with $|G| = p^2$. Suppose that $G \not\cong \mathbb{Z}_{p^2}$ so that G is not cyclic. Each $a \in G$ has order |a| = 1, p or p^2 . Since G is not cyclic, every non-identity element has order p.

Let a be a non-identity element in G. We claim that $\langle a \rangle \subseteq G$. Suppose, for a contradiction, that $\langle a \rangle \not\subseteq G$. Choose $x \in G$ and $a^k \in \langle a \rangle$ so that $x \, a^k x^{-1} \notin \langle a \rangle$. This implies that $x a x^{-1} \notin \langle a \rangle$ since $x \, a^k x^{-1} = (x a x^{-1})^k$. Since $x a x^{-1} \neq e$ we have $|x a x^{-1}| = p$. Note that $\langle a \rangle \cap \langle x a x^{-1} \rangle = \{e\}$ because $\langle a \rangle \cap \langle x a x^{-1} \rangle$ is a proper subgroup of $\langle a \rangle \cong \mathbb{Z}_p$. It follows that the cosets

$$e\langle xax^{-1}\rangle, a\langle xax^{-1}\rangle, a^2\langle xax^{-1}\rangle, \cdots, a^{p-1}\langle xax^{-1}\rangle$$

are distinct since if $a^k\langle xax^{-1}\rangle=a^l\langle xax^{-1}\rangle$ then $a^{l-k}\in\langle xax^{-1}\rangle$ so $a^{l-k}\in\langle a\rangle\cap\langle xax^{-1}\rangle$ and hence $a^{l-k}=e$. Thus G is the disjoint union of these p cosets. In particular, the element x^{-1} lies in some coset. But this is not possible since if $x^{-1}\in a^k\langle xax^{-1}\rangle$ with say $x^{-1}=a^kx\,a^lx^{-1}$, then we would have $a^kx\,a^l=e$ and hence $x=a^{-k-l}\in\langle a\rangle$. This proves the claim.

Fix a non-identity element $a \in G$ and choose an element $b \in G$ with $b \notin \langle a \rangle$. Then we have $\langle a \rangle \subseteq G$ and $\langle b \rangle \subseteq G$. As above, we have $\langle a \rangle \cap \langle b \rangle = \{e\}$ (since $\langle a \rangle \cap \langle b \rangle$ is a proper subgroup of $\langle a \rangle \cong \mathbb{Z}_p$), and as above this implies that the cosets

$$e\langle b \rangle$$
, $a\langle b \rangle$, $a^2\langle b \rangle$, \cdots , $a^{p-1}\langle b \rangle$

are distinct (since if $a^k \langle b \rangle = a^l \langle b \rangle$ then $a^{l-k} \in \langle b \rangle$ hence $a^{l-k} \in \langle a \rangle \cap \langle b \rangle = \{e\}$). Thus every element of G is of the form $a^i b^j$, that is $G = \langle a \rangle \langle b \rangle$. By the Characterization of Internal Direct Products, we have $G \cong \langle a \rangle \times \langle b \rangle \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

5.27 Definition: A group G is **simple** when its only normal subgroups are $\{e\}$ and G.

5.28 Theorem: For $n \geq 5$, the alternating group A_n is simple.

Proof: Let $H \subseteq A_n$. We shall show that $H = A_n$. We consider 5 cases. Case 1: suppose first that H contains a 3-cycle, say $(abc) \in H$. Then for any $k \neq a, b, c$ we have $(abk) = (ab)(ck)(abc)^2(ck)(ab) \in H$ It follows that $A_n = H$ because A_n is generated by the 3-cycles of the form (abk) with $k \neq a, b$ (as shown in Example 4.25). Case 2: suppose that H contains an element α which, when written in cycle notation, has a cycle of length $r \geq 4$, say $\alpha = (a_1 a_2 a_3 \cdots a_r) \beta \in H$. Then $(a_1 a_3 a_r) = \alpha^{-1} (a_1 a_2 a_3) \alpha (a_1 a_2 a_3)^{-1} \in H$ and so $H = A_n$ by Case 1. Case 3: suppose that H contains an element α which, when written in cycle notation, has at least two 3-cycles, say $\alpha = (a_1 a_2 a_3)(a_4 a_5 a_6)\beta \in H$. Then we have $(a_1a_4a_2a_6a_3) = \alpha^{-1}(a_1a_2a_4)\alpha(a_1a_2a_4)^{-1} \in H$ and so $H = A_n$ by Case 2. Case 4: suppose that H contains an element α which, when written in cycle notation, is a product of one 3-cycle and some 2-cycles, say $\alpha = (a_1 a_2 a_3)\beta \in H$ where β is a product of disjoint 2-cycles so that $\beta^2 = e$. Then $(a_1a_3a_2) = \alpha^2 \in H$ and so $H = A_n$ by Case 1. Case 5: suppose that H contains an element α which, when written in cycle notation, is a product of 2-cycles, say $\alpha = (a_1 a_2)(a_3 a_4)\beta \in H$. Then $(a_1a_3)(a_2a_4) = \alpha^{-1}(a_1a_2a_3)\alpha(a_1a_2a_3)^{-1} \in H$. Let $\gamma = (a_1a_3)(a_2a_4)$ and choose b distinct from a_1, a_2, a_3, a_4 . Then $(a_1a_3b) = \gamma(a_1a_2b)\gamma(a_1a_3b)^{-1} \in H$ and so $H = A_n$ by Case 1.