Chapter 5. Cosets, Normal Subgroups, and Quotient Groups

5.1 Definition: Let G be a group with operation $*$, let $H \leq G$ and let $a \in G$. The left coset of H in G containing a is the set

$$
a * H=\{a x \mid x \in H\} .
$$

Similarly the right coset of H in G containing a is the set $H * a=\{x a \mid x \in H\}$. Usually, unless the operation is addition, we write $a * H$ as $a H$ and we write $H * a$ as $H a$. We denote the set of left cosets of H in G by G / H so we have

$$
G / H=\{a H \mid a \in G\} .
$$

The index of H in G, denoted by $[G: H]$ is the cardinality of the set of cosets, that is

$$
[G: H]=|G / H| .
$$

When G is abelian there is no difference between left and right cosets so we simply call them cosets.
5.2 Example: In the group \mathbb{Z}_{12}, the cosets of $H=\langle 3\rangle=\{0,4,8\}$ are

$$
\begin{aligned}
& 0+H=4+H=8+H=\{0,4,8\}=H \\
& 1+H=5+H=9+H=\{1,5,9\} \\
& 2+H=6+H=10+H=\{2,6,10\} \\
& 3+H=7+H=11+H=\{3,7,11\}
\end{aligned}
$$

5.3 Example: In the group \mathbb{Z}, for $n \in \mathbb{Z}^{+}$, the cosets of $\langle n\rangle=n \mathbb{Z}$ are

$$
k+n \mathbb{Z}=\{\cdots, k-2 n, k-n, k, k+n, k+2 n, \cdots\} \text { where } k \in \mathbb{Z}
$$

These are exactly the elements of \mathbb{Z}_{n}, so we have $\mathbb{Z} /\langle n\rangle=\mathbb{Z}_{n}$.
5.4 Theorem: Let G be a group, let $H \leq G$, and let $a, b \in G$. Then
(1) $b \in a H \Longleftrightarrow a^{-1} b \in H \Longleftrightarrow a H=b H$,
(2) either $a H=b H$ or $a H \cap b H=\emptyset$, and
(3) $|a H|=|H|$.

Analogous results hold for right cosets.
Proof: If $b \in a H$, say $b=a h$ with $h \in H$, then $a^{-1} b=h \in H$. Conversely if $a^{-1} b \in H$ then $b=a h \in a H$. Thus we have $b \in a H \Longleftrightarrow a^{-1} b \in H$. Now suppose that $b \in a H$, say $b=a h$ with $h \in H$. Let $x \in a H$, say $x=a k$ with $k \in H$. Then $x=a k=b h^{-1} k \in b H$. Thus $a H \subseteq b H$. Let $y \in b H$, say $y=b l$ with $l \in H$. Then $y=b l=a h l \in a H$. Thus $b H \subseteq a H$. Conversely, suppose that $a H=b H$. Then $b=b e \in b H=a H$. This completes the proof of (1).

To prove (2), suppose that $a H \cap b H \neq \emptyset$. Choose $x \in a H \cap b H$, say $x=a h=b l$ with $h, l \in H$. Then $a^{-1} b=h l^{-1} \in H$ so $a H=b H$ by (1).

To prove (3), define $\phi: H \rightarrow a H$ by $\phi(h)=a h$. Then ϕ is clearly surjective, and ϕ is injective since if $\phi(h)=\phi(k)$ then $a h=a k$ and so $h=k$ by cancellation.
5.5 Corollary: (Lagrange's Theorem) Let G be a group and let $H \leq G$. Then

$$
|G|=|G / H||H| .
$$

Proof: The above theorem shows that the group G is partitioned into left cosets and that these cosets all have the same cardinality.
5.6 Corollary: Let G be a finite group, let $H \leq G$ and let $a \in G$. Then $|H|$ divides $|G|$ and $|a|$ divides $|G|$.
5.7 Corollary: (The Euler-Fermat Theorem) For $a \in U_{n}$ we have $a^{\varphi(n)}=1$.
5.8 Corollary: (The Classification of Groups of Order p) Let p be prime. Let G be a group with $|G|=p$. Then $G \cong \mathbb{Z}_{p}$.
Proof: Let $a \in \mathbb{Z}_{p}$ with $a \neq e$. Since $|a|$ divides $|G|=p$ we have $|a|=1$ or $|a|=p$. Since $a \neq e,|a| \neq 1$ so $|a|=p$. Since $\langle a\rangle=|a|=p=|G|$ and $\langle a\rangle \subseteq G$ we have $\langle a\rangle=G$ and so $G=\langle a\rangle \cong \mathbb{Z}_{p}$.
5.9 Theorem: Let G be a group and let $H \leq G$. The following are equivalent.
(1) we can define a binary operation $*$ on G / H by $(a H) *(b H)=(a b) H$,
(2) $a h a^{-1} \in H$ for all $a \in G, h \in H$, and
(3) $a H=H a$ for all $a \in H$.
(4) $a H a^{-1}=H$ for all $a \in H$.

In this case, G / H is a group under the above operation $*$ with identity $e H=H$.
Proof: Suppose that we can define an operation $*$ on G / H by $(a H) *(b H)=(a b) H$. The fact that this operation is well-defined means that for all $a_{1}, a_{2}, b_{1}, b_{2} \in G$, if $a_{1} H=a_{2} H$ and $b_{1} H=b_{2} H$ then $\left(a_{1} b_{1}\right) H=\left(a_{2} b_{2}\right) H$, or equivalently if $a_{1}^{-1} a_{2} \in H$ and $b_{1}{ }^{-1} b_{2} \in H$ then $\left(a_{1} b_{1}\right)^{-1}\left(a_{2} b_{2}\right) \in H$, that is $b_{1}^{-1} a_{1}^{-1} a_{2} b_{2} \in H$. For $a_{1}^{-1} a_{2}=h \in H$ and $b_{1}^{-1} b_{2}=$ $k \in H$, we have $b_{1}^{-1} a_{1}^{-1} a_{2} b_{2}=b_{1}^{-1} h b_{2}=b_{1}^{-1} b_{2} b_{2}^{-1} k b_{2}=k b_{2}{ }^{-1} h b_{2}$, and this lies in H if and only if $b_{2}{ }^{-1} h b_{2} \in H$. This proves that $(1) \Longleftrightarrow(2)$.

Suppose that (2) holds. Let $x \in a H$, say $x=a h$ with $h \in H$. Then $x=a h=$ $a h a^{-1} a \in H a$ since $a h a^{-1} \in H$. Thus $a H \subseteq H a$. Now let $y \in H a$, say $y=k a$ with $k \in H$. Then $y=k a=a a^{-1} k a \in a H$ since $a^{-1} k a \in H$ by (2). Thus $H a \subseteq H a$. This proves that $(2) \Longrightarrow(3)$.

Conversely, suppose that (3) holds. Let $a \in G$ and $h \in H$. Then $a h \in a H=H a$ so we can choose $k \in H$ so that $a h=k a$. Then we have $a h a^{-1}=k a a^{-1}=k \in H$. This proves that $(3) \Longrightarrow(2)$.

The proof that $(3) \Longleftrightarrow(4)$ is left as an exercise.
Now suppose that (1) holds and let $*$ be the above operation. We claim that G / H is a group. Indeed, the operation $*$ is associative since
$((a H) *(b H)) *(c H)=((a b) H) *(c H)=(a b c) H=(a H) *((b c) H))=(a H) *((b H) *(c H))$, the coset $e H=H$ is the identity for G / H since for $a \in G$ we have

$$
(a H) *(e H)=(a e) H=a H \text { and }(e H) *(a H)=(e a) H=a H
$$

and for $a \in G$, the inverse of the coset $a H$ is the coset $a^{-1} H$ since

$$
(a H) *\left(a^{-1} H\right)=\left(a a^{-1}\right) H=e H \text { and }\left(a^{-1} H\right) *(a H)=\left(a^{-1} a\right) H=e H .
$$

5.10 Definition: Let G be a group and let $H \leq G$. If H satisfies the equivalent conditions of the above theorem, then we say that H is a normal subgroup of G and we write $H \unlhd G$. When $H \unlhd G$, the group G / H is called the quotient group of G by H.

5.11 Theorem: (The First Isomorphism Theorem)

(1) if $\phi: G \rightarrow H$ is a group homomorphism and $K=\operatorname{Ker}(\phi)$ then $K \unlhd G$ and $G / K \cong \phi(G)$, indeed the map $\Phi: G / K \rightarrow \phi(G)$ given by $\Phi(a K)=\phi(a)$ is a group isomorphism.
(2) if $K \unlhd G$ then the map $\phi: G \rightarrow G / K$ given by $\phi(a)=a K$ is a group homomorphism with $\operatorname{Ker}(\phi)=K$.

Proof: To prove (1), let $\phi: G \rightarrow H$ be a group homomorphism and let $K=\operatorname{Ker}(\phi)$. Let $a \in G$ let $k \in K$ so $\phi(k)=e$. Then $\phi\left(a k a^{-1}\right)=\phi(a) \phi(k) \phi\left(a^{-1}\right)=\phi(a) \phi(a)^{-1}=e$ and so $a k a^{-1} \in \operatorname{Ker}(\phi)=K$. This shows that $K \unlhd G$. Define $\Phi: G / H \rightarrow \phi(G)$ by $\Phi(a K)=\phi(a)$. Note that Φ is well-defined since if $a K=b K$ then $a^{-1} b \in K$ so we have $\phi(a)^{-1} \phi(b)=\phi\left(a^{-1} b\right)=e$ and hence $\phi(a)=\phi(b)$. Note that Φ is a group homomorphism since $\Phi((a K)(b K))=\Phi((a b) K)=\phi(a b) \phi(a) \phi(b)=\Phi(a K) \Phi(b K)$. Finally note that Φ is clearly onto, and Φ is $1: 1$ since if $\Phi(a K)=e$ then $\phi(a)=e$ so $a \in K$ and hence $a K=K$, which is the identity element of G / K.

To prove (2) let $K \unlhd G$. Define $\phi: G \rightarrow G / K$ by $\phi(a)=a K$. Then ϕ is a group homomorphism since $\phi(a b)=(a b) K=(a K)(b K)=\phi(a) \phi(b)$, and $\operatorname{Ker}(\phi)=K$ since for $a \in G$ we have $a \in \operatorname{Ker}(\phi) \Longleftrightarrow \phi(a)=e K \Longleftrightarrow a K=e K \Longleftrightarrow a \in e K=K$.
5.12 Theorem: (The Second Isomorphism Theorem) Let G be a group, let $H \leq G$ and let $K \unlhd G$. Then $K \cap H \unlhd H, K H=\langle K \cup H\rangle$, and $H /(K \cap H) \cong K H / N$.
Proof: The proof is left as an exercise.
5.13 Theorem: (The Third Isomorphism Theorem) Let G be a group and let $H, K \unlhd G$ with $K \leq H$. Then $H / K \unlhd G / K$ and $(G / K) /(H / K) \cong G / H$.
Proof: The proof is left as an exercise.
5.14 Example: The map $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ given by $\phi(k)=k$ is a group homomorphism with Image $(\phi)=\langle n\rangle$ and $\operatorname{Ker}(\phi)=\langle n\rangle$, and we have $\mathbb{Z} /\langle n\rangle \cong \mathbb{Z}_{n}$.
5.15 Example: The map $\phi: \mathbb{R} \rightarrow \mathrm{S}^{1}$ given by $\phi(t)=e^{i 2 \pi t}$ is a group homomorphism, since $e^{i 2 \pi(s+t)}=e^{i 2 \pi s} e^{i 2 \pi t}$, with Image $(\phi)=\mathrm{S}^{1}$ and $\operatorname{Ker}(\phi)=\mathbb{Z}$ and we have $\mathbb{R} / \mathbb{Z} \cong S^{1}$.
5.16 Example: The map $\phi: \mathbb{C}^{*} \rightarrow \mathbb{R}^{+}$given by $\phi(z)=\|z\|$ is a group homomoprphism, since $\|z w\|=\|z\|\|w\|$, with Image $(\phi)=\mathbb{R}^{+}$and $\operatorname{Ker}(\phi)=\mathrm{S}^{1}$ so we have $\mathbb{C}^{*} / \mathrm{S}^{1} \cong \mathbb{R}^{+}$.
5.17 Example: The map $\phi: \mathbb{C}^{*} \rightarrow \mathrm{~S}^{1}$ given by $\phi(z)=\frac{z}{\|z\|}$, is a group homomorphism, since $\frac{z w}{\|z w\|}=\frac{z}{\|z\|} \frac{w}{\|w\|}$, with Image $(\phi)=\mathrm{S}^{1}$ and $\operatorname{Ker}(\phi)=\mathbb{R}^{+}$and so $\mathbb{C}^{*} / \mathbb{R}^{+} \cong \mathrm{S}^{1}$.
5.18 Example: For a commutative ring R, the determinant map $\phi: G L_{n}(R) \rightarrow R^{*}$ given by $\phi(A)=\operatorname{det}(A)$ is a group homomorphism, since $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$, and it is surjective since for $a \in R^{*}$ we have $A=\operatorname{diag}(a, 1, \cdots, 1) \in G L_{n}(R)$ and $\operatorname{det}(A)=a$, and we have $\operatorname{Ker}(\phi)=\left\{A \in G L_{n}(R) \mid \operatorname{det}(A)=1\right\}=S L_{n}(R)$, and so $S L_{n}(R) \unlhd G L_{n}(R)$ with $G L_{n}(R) / S L_{n}(R) \cong R^{*}$.
5.19 Example: For $n \geq 2$, the map $\phi: S_{n} \rightarrow \mathbb{Z}^{*}=\{ \pm 1\}$ given by $\phi(\alpha)=(-1)^{\alpha}$ is a group homomorphism since $(-1)^{\alpha \beta}=(-1)^{\alpha}(-1)^{\beta}$, and it is surjective since $(-1)^{e}=1$ and $(-1)^{(12)}=1$, and we have $\operatorname{Ker}(\phi)=\left\{\alpha \in S_{n} \mid(-1)^{\alpha}=1\right\}=A_{n}$, and so $A_{n} \unlhd S_{n}$ with $S_{n} / A_{n} \cong \mathbb{Z}^{*}=\{ \pm 1\}$.
5.20 Example: Let $H=\langle(6,2),(3,6)\rangle \leq \mathbb{Z}^{2}$. As an exercise, show that $\left|\mathbb{Z}^{2} / H\right|=30$ and that \mathbb{Z}^{2} / H is cyclic, then find a subjective group homomorphism $\phi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}_{30}$ with $\operatorname{Ker}(\phi)=H$.
5.21 Example: The $\operatorname{map} \phi: G \rightarrow \operatorname{Aut}(G)$ given by $\phi(a)=C_{a}$ (where C_{a} is conjugation by a, given by $C_{a}(x)=a x a^{-1}$) is a group homomorphism since $C_{a b}=C_{a} C_{b}$, and we have Image $(\phi)=\left\{C_{a} \mid a \in G\right\}=\operatorname{Inn}(G)$ and

$$
\begin{aligned}
\operatorname{Ker}(\phi) & =\left\{a \in G \mid C_{a}=I\right\}=\left\{a \in G \mid a x a^{-1}=x \text { for all } x \in G\right\} \\
& =\{a \in G \mid a x=x a \text { for all } x \in G\}=Z(G)
\end{aligned}
$$

and so $Z(G) \unlhd G$ with $G / Z(G) \cong \operatorname{Inn}(G)$.
5.22 Definition: Let $H \leq G$. The centralizer of H in G is the set

$$
C(H)=C_{\mathrm{G}}(H)=\{a \in G \mid a x=x a \text { for all } x \in H\}
$$

and the normalizer of H in G is the set

$$
N(H)=N_{\mathrm{G}}(H)=\{a \in G \mid a H=H a\} .
$$

5.23 Theorem: (The Normalizer/Centralizer Theorem) Let $H \leq G$. Then $C(H) \unlhd N(H)$ and $N(H) / C(H)$ is isomorphic to a subgroup of $\operatorname{Aut}(H)$.

Proof: The proof is left as an exercise.
5.24 Theorem: (The Characterization of Internal Direct Products) Let G be a group. Let $H \unlhd G$ and $L \unlhd G$. Suppose that $H \cap K=\{e\}$ and that $G=H K=\{h k \mid h \in H, k \in K\}$. Then $G \cong H \times K$.

Proof: Define $\phi: H \times K \rightarrow G$ by $\phi(h, k)=h k$. The map ϕ is a group homomorphism since for $H_{1}, h_{2} \in H$ and $k_{1}, k_{2} \in K$ we have

$$
\begin{aligned}
\phi\left(\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)\right) & =\phi\left(h_{1} h_{2}, k_{1} k_{2}\right)=h_{1} h_{2} k_{1} k_{2}=h_{1} k_{1} k_{1}^{-1} h_{2} k_{1} h_{2}^{-1} h_{2} k_{2} \\
& =h_{1} k_{1} e h_{2} k_{2}=\phi\left(h_{1}, k_{1}\right) \phi\left(h_{2}, k_{2}\right),
\end{aligned}
$$

where we used the fact that the element $k_{1}{ }^{-1} h_{2} k_{1} h_{2}{ }^{-1}$ lies in both H and K (it lies in H since $H \unlhd G$ so that $k_{1}{ }^{-1} h_{2} k_{1} \in H$, and it lies in K since $K \unlhd G$ so that $h_{2} k_{1} h_{2}{ }^{-1} \in K$), and we have $H \cap K=\{e\}$. The map ϕ is surjective since $G=H K$ so that every element in G is of the form $h k=\phi(h, k)$ for some $h \in H, k \in K$, and the map ϕ is injective since for $h \in H$ and $k \in K$ we have $\phi(h, k)=e \Longrightarrow h k=e \Longrightarrow h=k^{-1} \Longrightarrow h, k \in H \cap K \Longrightarrow$ $h=k=e$, since $H \cap K=\{e\}$.
5.25 Theorem: (The Classification of Groups of Order $2 p$) Let p be prime. Then (up to isomorphism) the distinct groups of order $2 p$ are $\mathbb{Z}_{2 p}$ and D_{p}.
Proof: Let G be a group with $|G|=2 p$. Suppose that $G \not \not \mathbb{Z}_{2 p}$, so G is not cyclic. By Lagrange's Theorem, each element $a \in G$ has order $|a|=1,2, p$ or $2 p$. Since G is not cyclic, no element has order $2 p$ so every non-identity element in G has order 2 or p.

Suppose first that every non-identity element has order 2 . Note that G must be abelian since for all $a, b \in G$ we have $a^{2}=b^{2}=(b a)^{2}=e$ and so $a b=b^{2} a b a^{2}=b(b a)^{2} a=b a$. Fix two distinct non-identity elements $a, b \in G$ and consider the set $H=\{e, a, b, a b\}$. Note that H is closed under the operation and under inversion (since $a^{2}=b^{2}=e$ and $a b=b a$) and so $H=\langle a, b\rangle \leq G$. By Lagrange's Theorem, we have $|H|||G|$, that is 4$| 2 p$, and so we must have $p=2$ and so $|G|=4=|H|$, and so $G=H \cong \mathbb{Z}_{2}{ }^{2} \cong D_{2}$.

Now suppose that some non-identity element has order p with $p \neq 2$. Choose $a \in G$ with $|a|=p$. Choose $b \notin\langle a\rangle$. Note that since $\langle a\rangle=p$ and $|G|=2 p$, there are exactly two cosets of $\langle a\rangle$ in G, namely $\langle a\rangle$ and $b\langle a\rangle$, and G is the disjoint union $G=\langle a\rangle \cup b\langle a\rangle$. Note that $b^{2}\langle a\rangle \neq b\langle a\rangle$ since $b=b^{-1} b^{2} \notin\langle a\rangle$, and so we must have $b^{2}\langle a\rangle=\langle a\rangle$ and hence $b^{2} \in\langle a\rangle$. Note that $|b| \neq p$, since if we had $b^{p}=e$ then (since $p+1$ is even) we would have $b=b^{p+1} \in\left\langle b^{2}\right\rangle \subseteq\langle a\rangle$, and so $|b|=2$. Similarly, we have $|x|=2$ for every $x \notin\langle a\rangle$. Consider the element $a b$. Note that $a b \notin\langle a\rangle=a\langle a\rangle$ since $b=a^{-1} a b \notin\langle a\rangle$, and so we have $|a b|=2$. Thus $a b a b=e$ and so $a b=(a b)^{-1}=b^{-1} a^{-1}=b a^{p-1}$

We have shown that G is the disjoint union $G=\langle a\rangle \cup b\langle a\rangle$, so we have

$$
G=\left\{e, a, a^{2}, \cdots, a^{p-1}, b, b a, b a^{2}, \cdots, b a^{p-1}\right\}
$$

with the listed elements distinct. Since $a b=b a^{-1}$, we have $a^{2} b=a b a^{-1}=b a^{-2}$ and $a^{3} b=a b a^{-2}=b a^{-3}$ and so on so that $a^{k} b=b a^{-k}$. This determines the operation on G completely. Indeed we have

$$
a^{k} \cdot a^{l}=a^{k+l}, a^{k} \cdot b a^{l}=b a^{l-k}, b a^{k} \cdot a^{l}=b a^{k+l}, b a^{k} \cdot b a^{l}=a^{l-k} .
$$

Compare this to the operation in $D_{p}=\left\{I, R_{1}, \cdots, R_{p-1}, F_{0}, F_{1}, \cdots, F_{p-1}\right\}$ given by

$$
R_{k} \cdot R_{l}=R_{k+l}, R_{k} \cdot F_{-l}=F_{-(l-k)}, F_{-k} R_{l}=F_{-(k+l)}, F_{-k} F_{-l}=F_{-(l-k)}
$$

We see that the map $\phi: G \rightarrow D_{p}$ given by $\phi\left(a^{k}\right)=R_{k}$ and $\phi\left(b a^{k}\right)=F_{k}$ is an isomorphism.
5.26 Theorem: (The Classification of Groups of Order p^{2}) Let p be prime. Then (up to isomorphism) the distinct groups of order p^{2} are $\mathbb{Z}_{p^{2}}$ and $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
Proof: Let G be a group with $|G|=p^{2}$. Suppose that $G \not \not \mathbb{Z}_{p^{2}}$ so that G is not cyclic. Each $a \in G$ has order $|a|=1, p$ or p^{2}. Since G is not cyclic, every non-identity element has order p.

Let a be a non-identity element in G. We claim that $\langle a\rangle \unlhd G$. Suppose, for a contradiction, that $\langle a\rangle \nexists G$. Choose $x \in G$ and $a^{k} \in\langle a\rangle$ so that $x a^{k} x^{-1} \notin\langle a\rangle$. This implies that $x a x^{-1} \notin\langle a\rangle$ since $x a^{k} x^{-1}=\left(x a x^{-1}\right)^{k}$. Since $x a x^{-1} \neq e$ we have $\left|x a x^{-1}\right|=p$. Note that $\langle a\rangle \cap\left\langle x a x^{-1}\right\rangle=\{e\}$ because $\langle a\rangle \cap\left\langle x a x^{-1}\right\rangle$ is a proper subgroup of $\langle a\rangle \cong \mathbb{Z}_{p}$. It follows that the cosets

$$
e\left\langle x a x^{-1}\right\rangle, a\left\langle x a x^{-1}\right\rangle, a^{2}\left\langle x a x^{-1}\right\rangle, \cdots, a^{p-1}\left\langle x a x^{-1}\right\rangle
$$

are distinct since if $a^{k}\left\langle x a x^{-1}\right\rangle=a^{l}\left\langle x a x^{-1}\right\rangle$ then $a^{l-k} \in\left\langle x a x^{-1}\right\rangle$ so $a^{l-k} \in\langle a\rangle \cap\left\langle x a x^{-1}\right\rangle$ and hence $a^{l-k}=e$. Thus G is the disjoint union of these p cosets. In particular, the element x^{-1} lies in some coset. But this is not possible since if $x^{-1} \in a^{k}\left\langle x a x^{-1}\right\rangle$ with say $x^{-1}=a^{k} x a^{l} x^{-1}$, then we would have $a^{k} x a^{l}=e$ and hence $x=a^{-k-l} \in\langle a\rangle$. This proves the claim.

Fix a non-identity element $a \in G$ and choose an element $b \in G$ with $b \notin\langle a\rangle$. Then we have $\langle a\rangle \unlhd G$ and $\langle b\rangle \unlhd G$. As above, we have $\langle a\rangle \cap\langle b\rangle=\{e\}$ (since $\langle a\rangle \cap\langle b\rangle$ is a proper subgroup of $\langle a\rangle \cong \mathbb{Z}_{p}$), and as above this implies that the cosets

$$
e\langle b\rangle, a\langle b\rangle, a^{2}\langle b\rangle, \cdots, a^{p-1}\langle b\rangle
$$

are distinct (since if $a^{k}\langle b\rangle=a^{l}\langle b\rangle$ then $a^{l-k} \in\langle b\rangle$ hence $a^{l-k} \in\langle a\rangle \cap\langle b\rangle=\{e\}$). Thus every element of G is of the form $a^{i} b^{j}$, that is $G=\langle a\rangle\langle b\rangle$. By the Characterization of Internal Direct Products, we have $G \cong\langle a\rangle \times\langle b\rangle \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
5.27 Definition: A group G is simple when its only normal subgroups are $\{e\}$ and G.
5.28 Theorem: For $n \geq 5$, the alternating group A_{n} is simple.

Proof: Let $H \unlhd A_{n}$. We shall show that $H=A_{n}$. We consider 5 cases. Case 1: suppose first that H contains a 3-cycle, say $(a b c) \in H$. Then for any $k \neq a, b, c$ we have $(a b k)=(a b)(c k)(a b c)^{2}(c k)(a b) \in H$ It follows that $A_{n}=H$ because A_{n} is generated by the 3 -cycles of the form $(a b k)$ with $k \neq a, b$ (as shown in Example 4.25). Case 2: suppose that H contains an element α which, when written in cycle notation, has a cycle of length $r \geq 4$, say $\alpha=\left(a_{1} a_{2} a_{3} \cdots a_{r}\right) \beta \in H$. Then $\left(a_{1} a_{3} a_{r}\right)=\alpha^{-1}\left(a_{1} a_{2} a_{3}\right) \alpha\left(a_{1} a_{2} a_{3}\right)^{-1} \in H$ and so $H=A_{n}$ by Case 1. Case 3: suppose that H contains an element α which, when written in cycle notation, has at least two 3 -cycles, say $\alpha=\left(a_{1} a_{2} a_{3}\right)\left(a_{4} a_{5} a_{6}\right) \beta \in H$. Then we have $\left(a_{1} a_{4} a_{2} a_{6} a_{3}\right)=\alpha^{-1}\left(a_{1} a_{2} a_{4}\right) \alpha\left(a_{1} a_{2} a_{4}\right)^{-1} \in H$ and so $H=A_{n}$ by Case 2. Case 4: suppose that H contains an element α which, when written in cycle notation, is a product of one 3 -cycle and some 2 -cycles, say $\alpha=\left(a_{1} a_{2} a_{3}\right) \beta \in H$ where β is a product of disjoint 2 -cycles so that $\beta^{2}=e$. Then $\left(a_{1} a_{3} a_{2}\right)=\alpha^{2} \in H$ and so $H=A_{n}$ by Case 1. Case 5: suppose that H contains an element α which, when written in cycle notation, is a product of 2-cycles, say $\alpha=\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right) \beta \in H$. Then $\left(a_{1} a_{3}\right)\left(a_{2} a_{4}\right)=\alpha^{-1}\left(a_{1} a_{2} a_{3}\right) \alpha\left(a_{1} a_{2} a_{3}\right)^{-1} \in H$. Let $\gamma=\left(a_{1} a_{3}\right)\left(a_{2} a_{4}\right)$ and choose b distinct from $a_{1}, a_{2}, a_{3}, a_{4}$. Then $\left(a_{1} a_{3} b\right)=\gamma\left(a_{1} a_{2} b\right) \gamma\left(a_{1} a_{3} b\right)^{-1} \in H$ and so $H=A_{n}$ by Case 1.

