
Chapter 6. The Classification of Finite Abelian Groups

6.1 Definition: A free abelian group of rank n is an abelian group isomorphic to Zn.

6.2 Theorem: The rank of a free abelian group G is unique, that is if G ∼= Zn and
G ∼= Zm then n = m.

Proof: Suppose that G ∼= Zn and G ∼= Zm so that Zn ∼= Zm. Let φ : Zn → Zm be
an isomorphism. Note that φ sends 2Zn bijectively to 2Zm, so it induces an isomorphism
ψ : Zn

/
2Zn → Zm

/
2Zm given by ψ(k+2Zn) = φ(k)+2Zm. Also note that Zn

/
2Zn ∼= Z2

n

and Zm
/

2Zm ∼= Z2m, so we have Z2
n ∼= Z2

m. Thus 2n =
∣∣Z2

n
∣∣ =

∣∣Z2
m
∣∣ = 2m so n = m.

6.3 Definition: Let G be an additive abelian group. Let u1, u2, · · · , ul ∈ G. Let U =
{u1, u2, · · · , ul}. A linear combination of elements in U (over Z) is an element of G of
the form

a = t1u1 + t2u2 + · · · tnunfor some ti ∈ Z .

The span of U (over Z) is the set of all linear combinations, that is

SpanZ(U) = 〈U〉 =
{
t1u1 + t2u2 + · · ·+ tlul

∣∣ each ti ∈ Z
}

We say that U is linearly independent (over Z) when for all ti ∈ Z,

if t1u1 + t+ 2u2 + · · ·+ tlul = 0 then every ti = 0.

We say that U is a basis for G (over Z) when U is linearly independent over Z and
SpanZ(U) = G. An ordered basis for G (over Z) is an ordered n-tuple (u1, u2, · · · , un) ∈
Gn such that U = {u1, u2, · · · , un} is a basis for G (over Z) with |U | = n. Note that if U
is a basis for G over Z, every element in G can be written uniquely (up to the order of the
terms) as a linear combination of elements in U over Z.

6.4 Example: Let ek = (0, · · · , 0, 1, 0, · · · , 0) ∈ Zn where the 1 is in the kth position.
Then {e1, e2, · · · , en} is a basis, which we call the standard basis for Zn over Z.

6.5 Theorem: Let G be an abelian group. Then G is a free abelian group of rank n if
and only if G has a basis over Z with n-elements.

Proof: Suppose that G ∼= Zn and let φ : Zn → G is a group isomorphism. Verify that
the set U =

{
φ(e1), φ(e2), · · · , φ(en)

}
is a basis for G over Z. Conversely, suppose that

U = {u1, u2, · · · , un} is a basis for G over Z. Verify that the map φ : Zn → G given by

φ(t1, t2, · · · , tn) =
(
t1u1 + t2u2 + · · ·+ tnun

)
is a group isomorphism.

6.6 Theorem: Let U = (u1, u2, · · · , un) be an ordered basis over Z for the free abelian
group G. Then we can perform any of the following operations to the elements in the basis
to obtain a new ordered basis for G over Z.

(1) ui ↔ uj : interchange two elements,
(2) ui 7→ ±ui : multiply an element by ±1,
(3) ui 7→ ui + kuj : add an integer multiple of one element to another.

Proof: The proof is left as an exercise.
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6.7 Theorem: (Subgroups and Quotient Groups of Zn) Let G be a free abelian group of
rank n. Let H ≤ G. Then H is a free abelian group of rank r for some 0 ≤ r ≤ n and

G/H ∼= Zd1
× Zd2

× · · · × Zdr
× Zn−r

for some di ∈ Z+ with d1
∣∣d2, d2∣∣d3, · · · , dr−1

∣∣dr.

Proof: We claim that there exists a basis {u1, u2, · · · , un} for G and there exist r and
d1, d2, · · · , dr with 0 ≤ r ≤ n and d1

∣∣d2, d2∣∣d3, · · · , dr−1

∣∣dr such that {d1u1, d2u2, · · · , drur}
is a basis for H. Once we have proven this claim, it is not hard to check that the map
φ : G → Zd1

× Zd2
× · · · × Zdr

× Zn−r given by φ(t1u1 + · · · + tnun) = (t1, · · · , tn) is a
surjective group homomorphism with Ker(φ) = H, so that

G/H ∼= Zd1
× Zd2

× · · · × Zdr
× Zn−r

by the First Isomorphism Theorem.
When n = 1 so G ∼= Z, we have G = 〈a〉 = SpanZ{a} for some a ∈ G with |a| = ∞,

and H = 〈ka〉 for some k ≥ 0. If k = 0 so H = {0} (so the empty set is a basis for H), the
claim holds with u1 = a and r = 0. If k > 0, the claim holds with u1 = a, r = 1, d1 = k.

Let n ≥ 2 and suppose, inductively, that the claim holds for free abelian groups of
rank n− 1. Let G ∼= Zn with H ≤ G. If H = {0} (so the empty set is a basis for H), the
claim holds with r = 0. Suppose that H 6= {0}. Let T be the set of all coefficients ti in all
linear combinations a = t1v1 + t2v2 + · · · + tnvn over all elements a ∈ H and all possible
choices of basis {v1, v2, · · · , vn} for G. Let d1 ∈ Z+ be the smallest positive integer in T .
Choose a basis {v1, v2, · · · , vn} for G and an element a = d1v1+t2v2+t3v3+· · ·+tnvn ∈ H.
Note that d1

∣∣ti for all i ≥ 2 because if we write ti = qid1 + ri with 0 ≤ ri < di then

a = d1v1 + (q2d1 + r2)v2 + (q3d1 + r3)v2 + · · ·+ (qnd1 + rn)vn

= d1(v1 + q2v2 + q3v3 + · · ·+ qnvn) + r2v2 + r3v3 + · · ·+ rnvn

and so each ri = 0 by the choice of d1 since {v1+
∑
qivi , v2, v3, · · · , vn} is a basis for G.

Let u1 = v1+
∑
qivi so that {u1, v2, v3, · · · , vn} is a basis for G and a = d1u1 ∈ H.

Let G0 = Span{v2, v3, · · · , vn} and let H0 = H∩G0. Let a ∈ H. Since {u1, v2, · · · , vn}
is a basis forG, we know that a can be written uniquely in the form a = t1u1+t2v2+· · · tnvn.
Note that we must have d1

∣∣t1 because if we write t1 = q1d1+r1 with 0 ≤ r1 < d1 then since
a = (q1d1+r1)u1+t2v2+ · · ·+tnvn ∈ H, we have r1u1+t2v2+ · · ·+tnvn = a−q1d1u1 ∈ H,
and so r1 = 0 by the choice of d1. Also note that for b = a− t1u1 = t2v2 + · · ·+ tnvn we
have b ∈ Span{v2, · · · , vn} = G0 and since d1

∣∣t1 and d1u1 ∈ H we have t1u1 ∈ H, and so

b ∈ H ∩ G0 = H0. Thus every a ∈ H can be written uniquely as a = t1u1 + b with d1
∣∣t1

and b ∈ H0.
By the induction hypothesis, we can find a basis {u2, u3, · · · , un} forG0 and we can find

r and d2, d3, · · · , dn with 1 ≤ r ≤ n and d2
∣∣d3, d3∣∣d4, · · · dr−1

∣∣dr such that {d2u2, · · · , drur}
is a basis for H0. Since each a ∈ H can be written uniquely as a = t1u1 + b with d1

∣∣t1
and b ∈ H0 = Span{d2u2, · · · , dnun}, it follows that {d1u1, d2u2, · · · , dnun} is a basis
for H. Finally, note that we must have d1

∣∣d2 because if we write d2 = q2d1 + r2 with
0 ≤ r2 < d1 then we have d1u1 + d2u2 ∈ H, so that d1u1 + (q2d1 + r2)u2 ∈ H, hence
d1(u1 + q2u2) + r2u2 ∈ H and so r2 = 0 by the choice of d1, since {u1 + q2u2, u2, · · · , un}
is another basis for G.
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6.8 Theorem: (The Classification of Finite Abelian Groups) Every finite abelian group
is isomorphic to a unique group of the form

Zn1
× Zn2

× · · · × Zn`

for some integer ` ≥ 0 and some integers ni with 2 ≤ n1, n1
∣∣n2, n2∣∣n3, · · · , n`−1

∣∣n`.
Alternatively, every finite abelian group is isomorphic to a unique group of the form

Zp1
k1 × Zp2

k2 × · · · × Zpm
km

for some integer m ≥ 0 and some primes pi with p1 ≤ p2 ≤ · · · ≤ pm and some positive
integers ki with ki ≤ ki+1 whenever pi = pi+1.

Proof: First we prove that every finite abelian group is isomorphic to a group of the first
form. Let G be a finite abelian group under +, say |G| = n and G = {a1, a2, · · · .an}. Define
φ : Zn → G by φ(t1, t2, · · · , tn) = t1a1 + · · · + tnan. Then φ is a group homomorphism
since G is abelian, and φ is clearly onto. By the First Isomorphism Theorem we have
G ∼= Zn

/
Ker(φ). By the previous theorem,

G ∼= Zd1
× Zd2

× · · · × Zdr
× Zn−r

for some integers r and d1, d2, · · · , dr with 0 ≤ r ≤ n and d1
∣∣d2, d2∣∣d3, · · · , dr−1

∣∣dr. Since
G is finite we must have r = n. Say d1 = d2 = · · · dk = 1 and dk+1 > 1. Then we have

G = Zn1 × Zn2 × · · · × Zn`

as required, by taking ` = n−k and ni = dk+i.

Next we describe a bijective correspondence between groups of the first form and
groups of the second form. Given a group G = Zn1

× · · · × Zn`
of the first form, we

can obtain an isomorphic group H of the second form as follows. For each j = 1, 2, · · · `,
decompose nj into its prime factorization nj =

∏
pji

kji , replace the group Znj by the
isomorphic group

∏
Zpji

kji , and then let H be the product of all the groups pji
kji arranged

in the required order. For example, for G = Z2 × Z4 × Z12 × Z24 × Z720, we have

G = Z2 × Z4 × Z12 × Z24 × Z720

∼= Z2 × Z4 × (Z4 × Z3)× (Z8 × Z3)× (Z16 × Z9 × Z5)
∼= Z2 × Z4 × Z4 × Z8 × Z16 × Z3 × Z3 × Z9 × Z5 = H .

Conversely, given the group H = Zp1
k1 × · · · × Zpm

km of the second form, we can re-
cover the group G of the first form as follows. First rewrite the list of (not neces-
sarily distinct) primes p1, p2, · · · , pm as q1, q1, · · · , q1, q2, q2, · · · , q2, · · · , qr, qr, · · · , qr where
the qi are distinct primes, where say qi occurs si times in the list, and rewrite the list
p1

k1 , · · · , pmkm in the form q1
k1,1 , · · · , q1k1,s1 , q2

k2,1 , · · · , q2k2,s2 · · · qrkr,1 , · · · qrkr,sr . Then
let s = max{s1, s2, · · · , sr}, and replace each of the products Zqi

ki,1 × · · · × Z
qi

ki,si
by

the isomorphic product Zqili1 × · · · × Zqi
li,s where li,1 = li,2 = · · · = li,s−si = 0 and

li,s−si+j = ki,j for j = 1, 2, · · · , si. We then have

H =
r∏

i=1

s∏
j=1

Zqi
lij
∼=

s∏
j=1

r∏
i=1

Zqi
lij
∼=

s∏
j=1

Znj
= G , where nj =

r∏
i=1

q
lij
i .
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For example, for H = Z2 × Z2 × Z8 × Z3 × Z9 × Z9 × Z81 × Z5 × Z25 × Z7 we have

H = Z2 × Z2 × Z8 × Z3 × Z9 × Z9 × Z81 × Z5 × Z25 × Z7

∼= (Z1 × Z2 × Z2 × Z8)× (Z3 × Z9 × Z9 × Z81)

× (Z1 × Z1 × Z5 × Z25)× (Z1 × Z1 × Z1 × Z7)
∼= (Z1 × Z3 × Z1 × Z1)× (Z2 × Z9 × Z1 × Z1)

× (Z2 × Z9 × Z5 × Z1)× (Z8 × Z81 × Z25 × Z7)
∼= Z3 × Z18 × Z90 × Z113400 = G .

You should convince yourself that the above two procedures give a bijective correspondence
between groups of the two forms described in the statement of the theorem.

Finally, we show uniqueness for groups G of the second form. To do this, we shall
show that the primes pi and the exponents ki are uniquely determined by the isomorphism
class of the group G. Suppose that

G ∼= Zp1
k1 × Zp2

k2 × · · · × Zpm
km

where the pi are prime and each ki ∈ Z+. Let p be a prime number. Let nk be the
number of elements in G whose order divides pk. Let ak be the number of indices i
such that pi = p and ki = k. Let bk be the number of indices i such that pi = p
and ki ≥ k. Note that ak = bk − bk+1. Using the fact that for xi ∈ Zpi

ki we have∣∣(x1, x2, · · · , xm)
∣∣ = lcm

(
|x1|, |x2|, · · · , |xm|

)
, verify that

n1 = pb1

n2 = pa1p2b2

n3 = pa1p2a2p3b3

...

nk = pa1p2a2p3a3 · · · p(k−1)ak−1pkbk

so we have

nk
nk−1

=
p(k−1)ak−1pkbk

p(k−1)bk−1
=
p(k−1)ak−1pkbk

p(k−1)(ak−1+bk)
= pb

k

, and so

pak = pbk−bk+1 = pbk
/
pbk+1 =

nk
nk−1

/
nk+1

nk
=

nk
2

nk−1nk+1
.

This formula shows that the number of elements of each order in G determines the values
of each prime pi and each exponent ki.

6.9 Corollary: Let G and H be finite abelian groups. If G and H have the same number
of elements of each order then G ∼= H.

6.10 Corollary: Let n =
∏
pi

ki where the pi are distinct primes and each ki ∈ Z+. Then
the number of distinct abelian groups of order n (up to isomorphism) is equal to

∏
P (ki)

where P (ki) is the number of partitions of ki.

Proof: The abelian groups of order pk are the groups
∏

Zpji where the ji partition k.
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