Chapter 6. The Classification of Finite Abelian Groups

6.1 Definition: A free abelian group of rank n is an abelian group isomorphic to Z™.

6.2 Theorem: The rank of a free abelian group G is unique, that is if G = Z" and
G = 7™ then n = m.

Proof: Suppose that G = Z"™ and G = Z™ so that Z" = Z™. Let ¢ : Z™ — Z™ be
an isomorphism. Note that ¢ sends 27" bijectively to 2Z™, so it induces an isomorphism
W LM )20 — Z™ [22™ given by (k+2Z™) = ¢(k)+2Z™. Also note that Z,, [2Z™ = Zy"

and Z™ [2Z™ = 7™, so we have Zy" = Zy™. Thus 2" = |Z"| = |Z,™| = 2™ so n = m.
6.3 Definition: Let G be an additive abelian group. Let wq,us,---,u; € G. Let U =
{uy,uz,--+,u;}. A linear combination of elements in U (over Z) is an element of G of
the form

a = tiuy + toug + - - - tyuyfor some t; € Z.
The span of U (over Z) is the set of all linear combinations, that is
Spany(U) = (U) = {t1u1 + taup + - - + tju| each t; € Z}
We say that U is linearly independent (over Z) when for all ¢; € Z,
if tyug +t+ 2us + -+ - + tju; = 0 then every t; = 0.

We say that U is a basis for G (over Z) when U is linearly independent over Z and
Spany(U) = G. An ordered basis for G (over Z) is an ordered n-tuple (uy,usg, -, u,) €
G"™ such that U = {uq,ug, -, u,} is a basis for G (over Z) with |U| = n. Note that if U
is a basis for G over Z, every element in G can be written uniquely (up to the order of the
terms) as a linear combination of elements in U over Z.

6.4 Example: Let e, = (0,---,0,1,0,---,0) € Z" where the 1 is in the k" position.
Then {ey, ez, -+, e,} is a basis, which we call the standard basis for Z™ over Z.

6.5 Theorem: Let G be an abelian group. Then G is a free abelian group of rank n if
and only if G has a basis over Z with n-elements.

Proof: Suppose that G = Z™ and let ¢ : Z" — G is a group isomorphism. Verify that
the set U = {¢(el),¢(eg), e ,qb(en)} is a basis for G over Z. Conversely, suppose that
U = {ui,ug, -, uy} is a basis for G over Z. Verify that the map ¢ : Z"™ — G given by

¢(t17t27 e 7tn) = (tlul + t2U2 + -+ tnun)
is a group isomorphism.
6.6 Theorem: Let U = (uy,us9,---,u,) be an ordered basis over Z for the free abelian

group GG. Then we can perform any of the following operations to the elements in the basis
to obtain a new ordered basis for G over Z.

(1) u; > u; : interchange two elements,
(2) u; — %u; : multiply an element by +1,
(3) u; — u; + kuj: add an integer multiple of one element to another.

Proof: The proof is left as an exercise.



6.7 Theorem: (Subgroups and Quotient Groups of Z") Let G be a free abelian group of
rank n. Let H < G. Then H is a free abelian group of rank r for some 0 < r <n and

G/ngdl XZd2 X oo XZdT x 7"
for some d; € " with dy|dy, dz|ds, - -+, dp_1|d;.

Proof: We claim that there exists a basis {u,us,--,u,} for G and there exist r and
dy,dy, -+, d, with 0 <7 < nand dy|da, da|ds, - - -, dyp—1|d, such that {dyu1, doug, -, dyu, }
is a basis for H. Once we have proven this claim, it is not hard to check that the map
¢ G = Ly, X Lgy X -+ X Lq, X Z" " given by o(tius + -+ + tpuy) = (t1, -+, ty) is a
surjective group homomorphism with Ker(¢) = H, so that

G/ngdl XZd2 X"'XZdT x Z""

by the First Isomorphism Theorem.

When n =1 so G = Z, we have G = (a) = Spany{a} for some a € G with |a|] = oo,
and H = (ka) for some k > 0. If k = 0 so H = {0} (so the empty set is a basis for H), the
claim holds with w1 = a and » = 0. If £ > 0, the claim holds with u; =a, r =1, dy = k.

Let n > 2 and suppose, inductively, that the claim holds for free abelian groups of
rank n — 1. Let G =2 Z" with H < G. If H = {0} (so the empty set is a basis for H), the
claim holds with 7 = 0. Suppose that H # {0}. Let T be the set of all coefficients ¢; in all
linear combinations a = tiv1 + tove + - - - + t,v, over all elements a € H and all possible
choices of basis {v1,vs, -+, v,} for G. Let dy € Z1 be the smallest positive integer in 7T
Choose a basis {v1, ve, -+, v, } for G and an element a = dyv1 +tovy+tsvs+---+t,v, € H.
Note that d; ‘ti for all © > 2 because if we write t; = ¢;dy + r; with 0 < r; < d; then

a = dyvy + (gady + 1r2)ve + (q3dy + r3)ve + -+ + (qndy + 7)) vy
= dq(v1 + q2v2 + q3v3 + - - + @uUp) + T2V + 13z + -+ TR0,

and so each r; = 0 by the choice of d; since {vi+>_ q;v;,v2,vs3,---,v,} is a basis for G.
Let uy = v1+Y_ q;v; so that {uy,va,vs, -, v,} is a basis for G and a = dyu; € H.

Let Go = Span{vs,vs,---,v,} and let Hy = HNGy. Let a € H. Since {uy,ve, -, v, }
is a basis for GG, we know that a can be written uniquely in the form a = tyu;+tovo+- - - t,vy,.
Note that we must have dy !tl because if we write t; = ¢1d;+7r, with 0 < r; < d; then since
a = (q1dy+71)us +tava+- - -+t,v, € H, we have ryuy +tovg+- - - +1t,v, = a—qirdiuy € H,
and so r; = 0 by the choice of dy. Also note that for b = a — tyu; = tovg + -+ + t,v, we
have b € Span{vy,---,v,} = Gy and since dl‘tl and dyu; € H we have tyu; € H, and so
be HNGy = Hy. Thus every a € H can be written uniquely as a = tyu; + b with dl}tl
and b € Hy.

By the induction hypothesis, we can find a basis {us, ug, - - - , u, } for Gg and we can find
rand dg,dg, -, d, with 1 <7 <n and da|ds, ds|dy, - - - dr—1|d, such that {dous, -, dyu, }
is a basis for Hy. Since each a € H can be written uniquely as a = tyu; + b with dl}tl
and b € Hy = Span{daug,---,d,uy,}, it follows that {djuy,dsus,---,dyu,} is a basis
for H. Finally, note that we must have d1|d2 because if we write do = qody + 12 with
0 < ry < dj then we have dyu; + dous € H, so that dyu; + (gady + r2)us € H, hence
dy(u1 + gauz) + rous € H and so ro = 0 by the choice of dy, since {u; + goug, ua, -, u,}
is another basis for G.



6.8 Theorem: (The Classification of Finite Abelian Groups) Every finite abelian group
is isomorphic to a unique group of the form

Ly X Lipy X +++ X L,

for some integer ¢ > 0 and some integers n; with 2 < nq, nllng, ng‘ng, cee ne_1|ng.
Alternatively, every finite abelian group is isomorphic to a unique group of the form

Zplkl X Zp2k2 X X mekm

for some integer m > 0 and some primes p; with p1 < py < --+ < p,, and some positive
integers k; with k; < k;y1 whenever p; = p;+1.

Proof: First we prove that every finite abelian group is isomorphic to a group of the first
form. Let G be a finite abelian group under +, say |G| = n and G = {a1, as, - - - .a, }. Define
¢ : 72" = G by ¢(t1,te, -, t,) = t1ay + -+ + tha,. Then ¢ is a group homomorphism
since GG is abelian, and ¢ is clearly onto. By the First Isomorphism Theorem we have
G = Z" [Ker(¢). By the previous theorem,

G=Zgy X Lgy X -+ X Lq, X" "

for some integers r and dy,ds,---,d, with 0 < r <n and dlldz,dg‘dg, o -,dr_1|dr. Since
G is finite we must have r =n. Say dy =dy = ---d =1 and di+; > 1. Then we have

G =Zpy X Lipy X -+ X L,

as required, by taking { = n—k and n; = dj;.

Next we describe a bijective correspondence between groups of the first form and
groups of the second form. Given a group G = Z,, X --- X Z,, of the first form, we
can obtain an isomorphic group H of the second form as follows. For each j =1,2,---/,
decompose n; into its prime factorization n; = Hpjz-kﬁ, replace the group Z,, by the
isomorphic group [ | ijikji , and then let H be the product of all the groups pjikﬂ arranged
in the required order. For example, for G = Zgy X Zy X Z1o X ZLiog X ZLrog, We have

G:Z2><Z4XZ12XZ24XZ720
gZQXZ4X(Z4XZg)X(ZgXZg)X(Z16XZQXZ5)
%ZQ><Z4><Z4><ZgXZ16X23X23XZ9XZ5=H.

Conversely, given the group H = Z, x X -+ X Zj, . of the second form, we can re-
cover the group G of the first form as follows. First rewrite the list of (not neces-

Sal"ﬂy dlStlIlCt) primes P1,P2,»Pm aS 41,491, ,41,42,42, ", 42,y qr,qr, "5 4y where
the ¢; are distinct primes, where say ¢; occurs s; times in the list, and rewrite the list

p1, -+ pm®m in the form gFnr o g gofr e gofree g Fa g s Then
let s = max{sy, s2, -, 8,}, and replace each of the products Lyrig X oo X quki’si by
the isomorphic product Zqizl1 X o X Z s where [;1 = l;2 = -+ = l; s—s, = 0 and
lijs—si+j = kij for j =1,2,--- 5, We then have
T
H= HHZ . NHHZ 1 NHZ — G, where n; = [[ ¢/ .
i=1j=1 j=1i=1 i=1



For example, for H = Zo X Zo X g X 73 X Tg X Tg X Zig1 X L5 X Lo X L7 we have
H =795 X 7o X Zig X Zig X Zig X Lig X Zig1 X L X Ligs X L7
& (Zy X Lo X Lo X 7g) X (L3 X Zg X Zg X Zs1)
X (21 X Zy X L5 X Las) X (Zq X Ly X Ly X Z7)
> (Zy X Zg x Ly X L) X (Lo X Lg X Zq X Z1)
X (Lo X Lg X L5 X 1) X (ZLg X ZLgy1 X Los X L)
& 73 X Zng X Zgo X Z113400 = G .
You should convince yourself that the above two procedures give a bijective correspondence
between groups of the two forms described in the statement of the theorem.
Finally, we show uniqueness for groups G of the second form. To do this, we shall

show that the primes p; and the exponents k; are uniquely determined by the isomorphism
class of the group G. Suppose that

G = Zplkl X Zp2k2 X X mekm

where the p; are prime and each k; € ZT. Let p be a prime number. Let n; be the
number of elements in G whose order divides p*. Let a; be the number of indices i
such that p; = p and k; = k. Let b; be the number of indices ¢ such that p, = p
and k; > k. Note that ap = by — bpy1. Using the fact that for z; € Lyki we have

}(331,332, to ,I’m)l = 1CH1(‘33‘1|, |332’, B ‘xm‘)v Verify that
b
ny =p 1
2b
n2 — palp 2
2 3b
ng = pa1p azp 3
nk — pa1p2a2p3a3 .. ‘p(k—l)akflpkbk
so we have
k—1 _1.,kb k—1 _1,,kb
Nk _p( )ak 1p k - p( Jag 1p k _pbk and so
NEg—1 p(k_l)bkfl p(k_l)(akfl‘Fbk) ’
2
a by —b by/ b ng N4+1 ng
Pt = pPk Okt = pOk/pOrt1 — / — )
Nk—1 N Ng—1Mk4+1

This formula shows that the number of elements of each order in GG determines the values
of each prime p; and each exponent k;.

6.9 Corollary: Let G and H be finite abelian groups. If G and H have the same number
of elements of each order then G = H.

6.10 Corollary: Let n = [[p;** where the p; are distinct primes and each k; € Z*+. Then
the number of distinct abelian groups of order n (up to isomorphism) is equal to [[ P(k;)
where P(k;) is the number of partitions of k;.

Proof: The abelian groups of order p* are the groups [ Z,;, where the j; partition k.
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