Chapter 6. The Classification of Finite Abelian Groups

6.1 Definition: A free abelian group of rank n is an abelian group isomorphic to \mathbb{Z}^{n}.
6.2 Theorem: The rank of a free abelian group G is unique, that is if $G \cong \mathbb{Z}^{n}$ and $G \cong \mathbb{Z}^{m}$ then $n=m$.

Proof: Suppose that $G \cong \mathbb{Z}^{n}$ and $G \cong \mathbb{Z}^{m}$ so that $\mathbb{Z}^{n} \cong \mathbb{Z}^{m}$. Let $\phi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}$ be an isomorphism. Note that ϕ sends $2 \mathbb{Z}^{n}$ bijectively to $2 \mathbb{Z}^{m}$, so it induces an isomorphism $\psi: \mathbb{Z}^{n} / 2 \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m} / 2 \mathbb{Z}^{m}$ given by $\psi\left(k+2 \mathbb{Z}^{n}\right)=\phi(k)+2 \mathbb{Z}^{m}$. Also note that $\mathbb{Z}_{n} / 2 \mathbb{Z}^{n} \cong \mathbb{Z}_{2}^{n}$ and $\mathbb{Z}^{m} / 2 \mathbb{Z}^{m} \cong \mathbb{Z}^{2 m}$, so we have $\mathbb{Z}_{2}{ }^{n} \cong \mathbb{Z}_{2}{ }^{m}$. Thus $2^{n}=\left|\mathbb{Z}_{2}{ }^{n}\right|=\left|\mathbb{Z}_{2}{ }^{m}\right|=2^{m}$ so $n=m$.
6.3 Definition: Let G be an additive abelian group. Let $u_{1}, u_{2}, \cdots, u_{l} \in G$. Let $U=$ $\left\{u_{1}, u_{2}, \cdots, u_{l}\right\}$. A linear combination of elements in U (over \mathbb{Z}) is an element of G of the form

$$
a=t_{1} u_{1}+t_{2} u_{2}+\cdots t_{n} u_{n} \text { for some } t_{i} \in \mathbb{Z}
$$

The span of U (over \mathbb{Z}) is the set of all linear combinations, that is

$$
\operatorname{Span}_{\mathbb{Z}}(U)=\langle U\rangle=\left\{t_{1} u_{1}+t_{2} u_{2}+\cdots+t_{l} u_{l} \mid \text { each } t_{i} \in \mathbb{Z}\right\}
$$

We say that U is linearly independent (over \mathbb{Z}) when for all $t_{i} \in \mathbb{Z}$,

$$
\text { if } t_{1} u_{1}+t+2 u_{2}+\cdots+t_{l} u_{l}=0 \text { then every } t_{i}=0
$$

We say that U is a basis for G (over \mathbb{Z}) when U is linearly independent over \mathbb{Z} and $\operatorname{Span}_{\mathbb{Z}}(U)=G$. An ordered basis for G (over \mathbb{Z}) is an ordered n-tuple $\left(u_{1}, u_{2}, \cdots, u_{n}\right) \in$ G^{n} such that $U=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ is a basis for G (over \mathbb{Z}) with $|U|=n$. Note that if U is a basis for G over \mathbb{Z}, every element in G can be written uniquely (up to the order of the terms) as a linear combination of elements in U over \mathbb{Z}.
6.4 Example: Let $e_{k}=(0, \cdots, 0,1,0, \cdots, 0) \in \mathbb{Z}^{n}$ where the 1 is in the $k^{\text {th }}$ position. Then $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ is a basis, which we call the standard basis for \mathbb{Z}^{n} over \mathbb{Z}.
6.5 Theorem: Let G be an abelian group. Then G is a free abelian group of rank n if and only if G has a basis over \mathbb{Z} with n-elements.
Proof: Suppose that $G \cong \mathbb{Z}^{n}$ and let $\phi: \mathbb{Z}^{n} \rightarrow G$ is a group isomorphism. Verify that the set $U=\left\{\phi\left(e_{1}\right), \phi\left(e_{2}\right), \cdots, \phi\left(e_{n}\right)\right\}$ is a basis for G over \mathbb{Z}. Conversely, suppose that $U=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ is a basis for G over \mathbb{Z}. Verify that the map $\phi: \mathbb{Z}^{n} \rightarrow G$ given by

$$
\phi\left(t_{1}, t_{2}, \cdots, t_{n}\right)=\left(t_{1} u_{1}+t_{2} u_{2}+\cdots+t_{n} u_{n}\right)
$$

is a group isomorphism.
6.6 Theorem: Let $U=\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ be an ordered basis over \mathbb{Z} for the free abelian group G. Then we can perform any of the following operations to the elements in the basis to obtain a new ordered basis for G over \mathbb{Z}.
(1) $u_{i} \leftrightarrow u_{j}$: interchange two elements,
(2) $u_{i} \mapsto \pm u_{i}$: multiply an element by ± 1,
(3) $u_{i} \mapsto u_{i}+k u_{j}$: add an integer multiple of one element to another.

Proof: The proof is left as an exercise.
6.7 Theorem: (Subgroups and Quotient Groups of \mathbb{Z}^{n}) Let G be a free abelian group of rank n. Let $H \leq G$. Then H is a free abelian group of rank r for some $0 \leq r \leq n$ and

$$
G / H \cong \mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{n-r}
$$

for some $d_{i} \in \mathbb{Z}^{+}$with $d_{1}\left|d_{2}, d_{2}\right| d_{3}, \cdots, d_{r-1} \mid d_{r}$.
Proof: We claim that there exists a basis $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ for G and there exist r and $d_{1}, d_{2}, \cdots, d_{r}$ with $0 \leq r \leq n$ and $d_{1}\left|d_{2}, d_{2}\right| d_{3}, \cdots, d_{r-1} \mid d_{r}$ such that $\left\{d_{1} u_{1}, d_{2} u_{2}, \cdots, d_{r} u_{r}\right\}$ is a basis for H. Once we have proven this claim, it is not hard to check that the map $\phi: G \rightarrow \mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{n-r}$ given by $\phi\left(t_{1} u_{1}+\cdots+t_{n} u_{n}\right)=\left(t_{1}, \cdots, t_{n}\right)$ is a surjective group homomorphism with $\operatorname{Ker}(\phi)=H$, so that

$$
G / H \cong \mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{n-r}
$$

by the First Isomorphism Theorem.
When $n=1$ so $G \cong \mathbb{Z}$, we have $G=\langle a\rangle=\operatorname{Span}_{\mathbb{Z}}\{a\}$ for some $a \in G$ with $|a|=\infty$, and $H=\langle k a\rangle$ for some $k \geq 0$. If $k=0$ so $H=\{0\}$ (so the empty set is a basis for H), the claim holds with $u_{1}=a$ and $r=0$. If $k>0$, the claim holds with $u_{1}=a, r=1, d_{1}=k$.

Let $n \geq 2$ and suppose, inductively, that the claim holds for free abelian groups of rank $n-1$. Let $G \cong \mathbb{Z}^{n}$ with $H \leq G$. If $H=\{0\}$ (so the empty set is a basis for H), the claim holds with $r=0$. Suppose that $H \neq\{0\}$. Let T be the set of all coefficients t_{i} in all linear combinations $a=t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{n} v_{n}$ over all elements $a \in H$ and all possible choices of basis $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ for G. Let $d_{1} \in \mathbb{Z}^{+}$be the smallest positive integer in T. Choose a basis $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ for G and an element $a=d_{1} v_{1}+t_{2} v_{2}+t_{3} v_{3}+\cdots+t_{n} v_{n} \in H$. Note that $d_{1} \mid t_{i}$ for all $i \geq 2$ because if we write $t_{i}=q_{i} d_{1}+r_{i}$ with $0 \leq r_{i}<d_{i}$ then

$$
\begin{aligned}
a & =d_{1} v_{1}+\left(q_{2} d_{1}+r_{2}\right) v_{2}+\left(q_{3} d_{1}+r_{3}\right) v_{2}+\cdots+\left(q_{n} d_{1}+r_{n}\right) v_{n} \\
& =d_{1}\left(v_{1}+q_{2} v_{2}+q_{3} v_{3}+\cdots+q_{n} v_{n}\right)+r_{2} v_{2}+r_{3} v_{3}+\cdots+r_{n} v_{n}
\end{aligned}
$$

and so each $r_{i}=0$ by the choice of d_{1} since $\left\{v_{1}+\sum q_{i} v_{i}, v_{2}, v_{3}, \cdots, v_{n}\right\}$ is a basis for G. Let $u_{1}=v_{1}+\sum q_{i} v_{i}$ so that $\left\{u_{1}, v_{2}, v_{3}, \cdots, v_{n}\right\}$ is a basis for G and $a=d_{1} u_{1} \in H$.

Let $G_{0}=\operatorname{Span}\left\{v_{2}, v_{3}, \cdots, v_{n}\right\}$ and let $H_{0}=H \cap G_{0}$. Let $a \in H$. Since $\left\{u_{1}, v_{2}, \cdots, v_{n}\right\}$ is a basis for G, we know that a can be written uniquely in the form $a=t_{1} u_{1}+t_{2} v_{2}+\cdots t_{n} v_{n}$. Note that we must have $d_{1} \mid t_{1}$ because if we write $t_{1}=q_{1} d_{1}+r_{1}$ with $0 \leq r_{1}<d_{1}$ then since $a=\left(q_{1} d_{1}+r_{1}\right) u_{1}+t_{2} v_{2}+\cdots+t_{n} v_{n} \in H$, we have $r_{1} u_{1}+t_{2} v_{2}+\cdots+t_{n} v_{n}=a-q_{1} d_{1} u_{1} \in H$, and so $r_{1}=0$ by the choice of d_{1}. Also note that for $b=a-t_{1} u_{1}=t_{2} v_{2}+\cdots+t_{n} v_{n}$ we have $b \in \operatorname{Span}\left\{v_{2}, \cdots, v_{n}\right\}=G_{0}$ and since $d_{1} \mid t_{1}$ and $d_{1} u_{1} \in H$ we have $t_{1} u_{1} \in H$, and so $b \in H \cap G_{0}=H_{0}$. Thus every $a \in H$ can be written uniquely as $a=t_{1} u_{1}+b$ with $d_{1} \mid t_{1}$ and $b \in H_{0}$.

By the induction hypothesis, we can find a basis $\left\{u_{2}, u_{3}, \cdots, u_{n}\right\}$ for G_{0} and we can find r and $d_{2}, d_{3}, \cdots, d_{n}$ with $1 \leq r \leq n$ and $d_{2}\left|d_{3}, d_{3}\right| d_{4}, \cdots d_{r-1} \mid d_{r}$ such that $\left\{d_{2} u_{2}, \cdots, d_{r} u_{r}\right\}$ is a basis for H_{0}. Since each $a \in H$ can be written uniquely as $a=t_{1} u_{1}+b$ with $d_{1} \mid t_{1}$ and $b \in H_{0}=\operatorname{Span}\left\{d_{2} u_{2}, \cdots, d_{n} u_{n}\right\}$, it follows that $\left\{d_{1} u_{1}, d_{2} u_{2}, \cdots, d_{n} u_{n}\right\}$ is a basis for H. Finally, note that we must have $d_{1} \mid d_{2}$ because if we write $d_{2}=q_{2} d_{1}+r_{2}$ with $0 \leq r_{2}<d_{1}$ then we have $d_{1} u_{1}+d_{2} u_{2} \in H$, so that $d_{1} u_{1}+\left(q_{2} d_{1}+r_{2}\right) u_{2} \in H$, hence $d_{1}\left(u_{1}+q_{2} u_{2}\right)+r_{2} u_{2} \in H$ and so $r_{2}=0$ by the choice of d_{1}, since $\left\{u_{1}+q_{2} u_{2}, u_{2}, \cdots, u_{n}\right\}$ is another basis for G.
6.8 Theorem: (The Classification of Finite Abelian Groups) Every finite abelian group is isomorphic to a unique group of the form

$$
\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{\ell}}
$$

for some integer $\ell \geq 0$ and some integers n_{i} with $2 \leq n_{1}, n_{1}\left|n_{2}, n_{2}\right| n_{3}, \cdots, n_{\ell-1} \mid n_{\ell}$.
Alternatively, every finite abelian group is isomorphic to a unique group of the form

$$
\mathbb{Z}_{p_{1}^{k_{1}}} \times \mathbb{Z}_{p_{2}^{k_{2}}} \times \cdots \times \mathbb{Z}_{p_{m}{ }^{k_{m}}}
$$

for some integer $m \geq 0$ and some primes p_{i} with $p_{1} \leq p_{2} \leq \cdots \leq p_{m}$ and some positive integers k_{i} with $k_{i} \leq k_{i+1}$ whenever $p_{i}=p_{i+1}$.

Proof: First we prove that every finite abelian group is isomorphic to a group of the first form. Let G be a finite abelian group under + , say $|G|=n$ and $G=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$. Define $\phi: \mathbb{Z}^{n} \rightarrow G$ by $\phi\left(t_{1}, t_{2}, \cdots, t_{n}\right)=t_{1} a_{1}+\cdots+t_{n} a_{n}$. Then ϕ is a group homomorphism since G is abelian, and ϕ is clearly onto. By the First Isomorphism Theorem we have $G \cong \mathbb{Z}^{n} / \operatorname{Ker}(\phi)$. By the previous theorem,

$$
G \cong \mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \times \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{n-r}
$$

for some integers r and $d_{1}, d_{2}, \cdots, d_{r}$ with $0 \leq r \leq n$ and $d_{1}\left|d_{2}, d_{2}\right| d_{3}, \cdots, d_{r-1} \mid d_{r}$. Since G is finite we must have $r=n$. Say $d_{1}=d_{2}=\cdots d_{k}=1$ and $d_{k+1}>1$. Then we have

$$
G=\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{\ell}}
$$

as required, by taking $\ell=n-k$ and $n_{i}=d_{k+i}$.
Next we describe a bijective correspondence between groups of the first form and groups of the second form. Given a group $G=\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{\ell}}$ of the first form, we can obtain an isomorphic group H of the second form as follows. For each $j=1,2, \cdots \ell$, decompose n_{j} into its prime factorization $n_{j}=\prod p_{j i}{ }^{k_{j i}}$, replace the group $\mathbb{Z}_{n_{j}}$ by the isomorphic group $\Pi \mathbb{Z}_{p_{j i}{ }^{k_{j i}}}$, and then let H be the product of all the groups $p_{j i}{ }^{k_{j i}}$ arranged in the required order. For example, for $G=\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{12} \times \mathbb{Z}_{24} \times \mathbb{Z}_{720}$, we have

$$
\begin{aligned}
G & =\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{12} \times \mathbb{Z}_{24} \times \mathbb{Z}_{720} \\
& \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times\left(\mathbb{Z}_{4} \times \mathbb{Z}_{3}\right) \times\left(\mathbb{Z}_{8} \times \mathbb{Z}_{3}\right) \times\left(\mathbb{Z}_{16} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}\right) \\
& \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{8} \times \mathbb{Z}_{16} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}=H
\end{aligned}
$$

Conversely, given the group $H=\mathbb{Z}_{p_{1} k_{1}} \times \cdots \times \mathbb{Z}_{p_{m} k_{m}}$ of the second form, we can recover the group G of the first form as follows. First rewrite the list of (not necessarily distinct) primes $p_{1}, p_{2}, \cdots, p_{m}$ as $q_{1}, q_{1}, \cdots, q_{1}, q_{2}, q_{2}, \cdots, q_{2}, \cdots, q_{r}, q_{r}, \cdots, q_{r}$ where the q_{i} are distinct primes, where say q_{i} occurs s_{i} times in the list, and rewrite the list $p_{1}{ }^{k_{1}}, \cdots, p_{m}{ }^{k_{m}}$ in the form $q_{1}^{k_{1,1}}, \cdots, q_{1}{ }^{k_{1, s_{1}}}, q_{2}^{k_{2,1}}, \cdots, q_{2}{ }^{k_{2, s_{2}}} \cdots q_{r}{ }^{k_{r, 1}}, \cdots q_{r}{ }^{k_{r, s_{r}}}$. Then let $s=\max \left\{s_{1}, s_{2}, \cdots, s_{r}\right\}$, and replace each of the products $\mathbb{Z}_{q_{i} k_{i, 1}} \times \cdots \times \mathbb{Z}_{q_{i}}{ }^{k_{i, s_{i}}}$ by the isomorphic product $\mathbb{Z}_{q_{i}{ }^{l}{ }^{i 1}} \times \cdots \times \mathbb{Z}_{q_{i}{ }^{l_{i, s}}}$ where $l_{i, 1}=l_{i, 2}=\cdots=l_{i, s-s_{i}}=0$ and $l_{i, s-s_{i}+j}=k_{i, j}$ for $j=1,2, \cdots, s_{i}$. We then have

$$
H=\prod_{i=1}^{r} \prod_{j=1}^{s} \mathbb{Z}_{q_{i}^{l_{i j}}} \cong \prod_{j=1}^{s} \prod_{i=1}^{r} \mathbb{Z}_{q_{i}{ }^{l_{i j}}} \cong \prod_{j=1}^{s} \mathbb{Z}_{n_{j}}=G, \text { where } n_{j}=\prod_{i=1}^{r} q_{i}^{l_{i j}} .
$$

For example, for $H=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{9} \times \mathbb{Z}_{9} \times \mathbb{Z}_{81} \times \mathbb{Z}_{5} \times \mathbb{Z}_{25} \times \mathbb{Z}_{7}$ we have

$$
\begin{aligned}
H= & \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{9} \times \mathbb{Z}_{9} \times \mathbb{Z}_{81} \times \mathbb{Z}_{5} \times \mathbb{Z}_{25} \times \mathbb{Z}_{7} \\
\cong & \left(\mathbb{Z}_{1} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{8}\right) \times\left(\mathbb{Z}_{3} \times \mathbb{Z}_{9} \times \mathbb{Z}_{9} \times \mathbb{Z}_{81}\right) \\
& \quad \times\left(\mathbb{Z}_{1} \times \mathbb{Z}_{1} \times \mathbb{Z}_{5} \times \mathbb{Z}_{25}\right) \times\left(\mathbb{Z}_{1} \times \mathbb{Z}_{1} \times \mathbb{Z}_{1} \times \mathbb{Z}_{7}\right) \\
\cong & \left(\mathbb{Z}_{1} \times \mathbb{Z}_{3} \times \mathbb{Z}_{1} \times \mathbb{Z}_{1}\right) \times\left(\mathbb{Z}_{2} \times \mathbb{Z}_{9} \times \mathbb{Z}_{1} \times \mathbb{Z}_{1}\right) \\
& \quad \times\left(\mathbb{Z}_{2} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5} \times \mathbb{Z}_{1}\right) \times\left(\mathbb{Z}_{8} \times \mathbb{Z}_{81} \times \mathbb{Z}_{25} \times \mathbb{Z}_{7}\right) \\
\cong & \mathbb{Z}_{3} \times \mathbb{Z}_{18} \times \mathbb{Z}_{90} \times \mathbb{Z}_{113400}=G .
\end{aligned}
$$

You should convince yourself that the above two procedures give a bijective correspondence between groups of the two forms described in the statement of the theorem.

Finally, we show uniqueness for groups G of the second form. To do this, we shall show that the primes p_{i} and the exponents k_{i} are uniquely determined by the isomorphism class of the group G. Suppose that

$$
G \cong \mathbb{Z}_{p_{1} k_{1}} \times \mathbb{Z}_{p_{2}^{k_{2}}} \times \cdots \times \mathbb{Z}_{p_{m} k_{m}}
$$

where the p_{i} are prime and each $k_{i} \in \mathbb{Z}^{+}$. Let p be a prime number. Let n_{k} be the number of elements in G whose order divides p^{k}. Let a_{k} be the number of indices i such that $p_{i}=p$ and $k_{i}=k$. Let b_{k} be the number of indices i such that $p_{i}=p$ and $k_{i} \geq k$. Note that $a_{k}=b_{k}-b_{k+1}$. Using the fact that for $x_{i} \in \mathbb{Z}_{p_{i}{ }^{k_{i}}}$ we have $\left|\left(x_{1}, x_{2}, \cdots, x_{m}\right)\right|=\operatorname{lcm}\left(\left|x_{1}\right|,\left|x_{2}\right|, \cdots,\left|x_{m}\right|\right)$, verify that

$$
\begin{aligned}
n_{1}= & p^{b_{1}} \\
n_{2}= & p^{a_{1}} p^{2 b_{2}} \\
n_{3}= & p^{a_{1}} p^{2 a_{2}} p^{3 b_{3}} \\
& \vdots \\
& \\
n_{k}= & p^{a_{1}} p^{2 a_{2}} p^{3 a_{3}} \cdots p^{(k-1) a_{k-1}} p^{k b_{k}}
\end{aligned}
$$

so we have

$$
\begin{aligned}
\frac{n_{k}}{n_{k-1}} & =\frac{p^{(k-1) a_{k-1}} p^{k b_{k}}}{p^{(k-1) b_{k-1}}}=\frac{p^{(k-1) a_{k-1}} p^{k b_{k}}}{p^{(k-1)\left(a_{k-1}+b_{k}\right)}}=p^{b^{k}}, \text { and so } \\
p^{a_{k}} & =p^{b_{k}-b_{k+1}}=p^{b_{k}} / p^{b_{k+1}}=\frac{n_{k}}{n_{k-1}} / \frac{n_{k+1}}{n_{k}}=\frac{n_{k}^{2}}{n_{k-1} n_{k+1}} .
\end{aligned}
$$

This formula shows that the number of elements of each order in G determines the values of each prime p_{i} and each exponent k_{i}.
6.9 Corollary: Let G and H be finite abelian groups. If G and H have the same number of elements of each order then $G \cong H$.
6.10 Corollary: Let $n=\prod p_{i}{ }^{k_{i}}$ where the p_{i} are distinct primes and each $k_{i} \in \mathbb{Z}^{+}$. Then the number of distinct abelian groups of order n (up to isomorphism) is equal to $\prod P\left(k_{i}\right)$ where $P\left(k_{i}\right)$ is the number of partitions of k_{i}.

Proof: The abelian groups of order p^{k} are the groups $\prod \mathbb{Z}_{p^{j_{i}}}$ where the j_{i} partition k.

