Chapter 7. Isometries and Symmetry Groups

7.1 Definition: For a map $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, we say that S preserves distance when

$$
\|S(x)-S(y)\|=\|x-y\|
$$

for all $x, y \in \mathbb{R}^{n}$. An isometry on \mathbb{R}^{n} is an invertible map $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which preserves distance. The set of all isometries on \mathbb{R}^{n} is denoted by $\operatorname{Isom}\left(\mathbb{R}^{n}\right)$.
7.2 Theorem: The set of isometries on \mathbb{R}^{n} is a group under composition.

Proof: The identity map $I: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isometry because $\|I(x)-I(y)\|=\|x-y\|$ for all $x, y \in \mathbb{R}^{n}$. Note that if $S, T \in \operatorname{Isom}\left(\mathbb{R}^{n}\right)$ then we have $S T \in \operatorname{Isom}\left(\mathbb{R}^{n}\right)$ because for $x, y \in \mathbb{R}^{n}$ we have

$$
\|S(T(x))-S(T(y))\|=\|T(x)-T(y)\|=\|x-y\| .
$$

Finally, note that if $S \in \operatorname{Isom}\left(\mathbb{R}^{n}\right)$ then $S^{-1} \in \operatorname{Isom}\left(\mathbb{R}^{n}\right)$ because given $u, v \in \mathbb{R}^{n}$, if we let $x=S^{-1}(u)$ and $y=S^{-1}(v)$ so that $u=S(x)$ and $v=S(y)$ then we have

$$
\left\|S^{-1}(u)-S^{-1}(v)\right\|=\|x-y\|=\|S(x)-S(y)\|=\|u-v\|
$$

Thus $\operatorname{Isom}\left(\mathbb{R}^{n}\right) \leq \operatorname{Perm}\left(\mathbb{R}^{n}\right)$ by the Subgroup Test.
7.3 Example: For a vector $u \in \mathbb{R}^{n}$, the translation by u is the map $T_{u}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $T_{u}(x)=x+u$. Note that T_{u} is an isometry on \mathbb{R}^{n} because

$$
\left\|T_{u}(x)-T_{u}(y)\right\|=\|(u+x)-(u+y)\|=\|x-y\| .
$$

7.4 Example: If $A \in O_{n}(\mathbb{R})$, so that $A^{T} A=I$, then the map $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $S(x)=A x$ is an isometry because for $x, y \in \mathbb{R}^{n}$ we have

$$
\begin{aligned}
\|A x-A y\|^{2} & =\|A(x-y)\|^{2}=(A(x-y))^{T}(A(x-y)) \\
& =(x-y)^{T} A^{T} A(x-y)=(x-y)^{T}(x-y)=\|x-y\|^{2} .
\end{aligned}
$$

7.5 Example: For a vector space U in \mathbb{R}^{n}, the reflection in U is the map $F_{U}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by

$$
F_{U}(x)=x-2 \operatorname{Proj}_{U^{\perp}}(x)
$$

where $\operatorname{Proj}_{U^{\perp}}(x)$ is the orthogonal projection of x onto U^{\perp}. When $\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ is an orthonormal basis for U^{\perp} and $A=\left(u_{1}, u_{2}, \cdots, u_{k}\right) \in M_{n \times k}(\mathbb{R})$, recall that

$$
\begin{gathered}
\operatorname{Proj}_{U^{\perp}}(x)=\sum_{i=1}^{n}\left(x \cdot u_{i}\right) u_{i}=A A^{T} x \\
F_{U}(x)=x-2 A A^{T} x=\left(I-2 A A^{T}\right) x
\end{gathered}
$$

Note that since $\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ is orthonormal, we have $A \in O_{n}(\mathbb{R})$, that is $A^{T} A=I$, and it follows that $\left(I-2 A A^{T}\right) \in O_{n}(\mathbb{R})$ because

$$
\begin{gathered}
\left(I-2 A A^{T}\right)^{T}\left(I-2 A A^{T}\right)=I-2 A A^{T}-2 A A^{T}+4 A A^{T} A A^{T} \\
=I-4 A A^{T}+4 A\left(A^{T} A\right) A^{T}=I-4 A A^{T}+4 A A^{T}=I
\end{gathered}
$$

This shows that $F_{U} \in O_{n}(\mathbb{R})$ and hence $F_{U} \in \operatorname{Isom}\left(\mathbb{R}^{n}\right)$. In particular, when U is a hyperspace (that is a vector space of dimension $n-1$) and u is a non-zero vector in U^{\perp}, we have

$$
\operatorname{Proj}_{U}(x)=\operatorname{Proj}_{u}(x)=\frac{x \cdot u}{\|u\|^{2}} u \text { and } F_{U}(x)=x-2 \frac{x \cdot u}{\|u\|^{2}} u
$$

7.6 Example: An affine space in \mathbb{R}^{n} is a set of the form $P=p+U=\{p+x \mid x \in U\}$ for some point $p \in \mathbb{R}^{n}$ and some vector space $U \in \mathbb{R}^{n}$. For an affine space $P=p+U$ in \mathbb{R}^{n}, the reflection in P is the map $F_{P}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by

$$
F_{P}(x)=p+F_{U}(x-p)
$$

Note that $F_{P} \in \operatorname{Isom}\left(\mathbb{R}^{n}\right)$ because F_{P} is equal to the composite $F_{P}=T_{p} F_{U} T_{-p}$.
7.7 Theorem: (The Algebraic Classification of Isometries) A map $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserves distance if and only if S is of the form $S(x)=A x+b$ for some $A \in O_{n}(\mathbb{R})$ and some $b \in \mathbb{R}^{n}$.
Proof: First note that if $S(x)=A x+b$ where $A \in O_{n}(\mathbb{R})$ and $b \in \mathbb{R}^{n}$, then S is the composite $S=T_{b} A$, which is an isometry.

Conversely, suppose that S is an isometry. Let $b=S(0)$ and define $L: \mathbb{R} \rightarrow \mathbb{R}$ by $L(x)=S(x)-b$. Note that $S(0)=0$ and that for $x \in \mathbb{R}^{n}$ we have

$$
\|L(x)\|=\|L(x)-L(0)\|=\|(S(x)-b)-(S(0)-b)\|=\|S(x)-S(0)\|=\|x-0\|=\|x\|
$$

For $x, y \in \mathbb{R}^{n}$, we have

$$
\|x-y\|^{2}=(x-y) \cdot(x-y)=x \cdot x-x \cdot y-y \cdot x+y \cdot y=\|x\|^{2}-2 x \cdot y+\|y\|^{2}
$$

from which we obtain the Polarization Identity:

$$
x \cdot y=\frac{1}{2}\left(\|x\|^{2}+\|y\|^{2}-\|x-y\|^{2}\right) .
$$

For $x, y \in \mathbb{R}^{n}$, using the Polarization Identity, we have
$L(x) \cdot L(y)=\frac{1}{2}\left(\|L(x)\|^{2}+\|L(y)\|^{2}-\|L(x)-L(y)\|^{2}\right)=\frac{1}{2}\left(\|x\|^{2}+\|y\|^{2}-\|x-y\|^{2}\right)=\|x-y\|^{2}$. In particular, $L\left(e_{i}\right) \cdot L\left(e_{j}\right)=e_{i} \cdot e_{j}=\delta_{i, j}$ for all i, j, so the set $\left\{L\left(e_{1}\right), L\left(e_{2}\right), \cdots, L\left(e_{n}\right)\right\}$ is an orthonormal basis for \mathbb{R}^{n}. For $x \in \mathbb{R}^{n}$, if we write $x=\sum_{i-1}^{n} x_{i} e_{i}$ and $L(x)=\sum_{i=1}^{n} t_{i} L\left(e_{i}\right)$ then we have

$$
t_{k}=L(x) \cdot L\left(e_{k}\right)=x \cdot e_{k}=x_{k}
$$

and so we have $L(x)=\sum x_{k} L\left(e_{k}\right)=A x$ where $A=\left(L\left(e_{1}\right), L\left(e_{2}\right), \cdots, L\left(e_{n}\right)\right) \in M_{n}(\mathbb{R})$. Since $\left\{L\left(e_{1}\right), L\left(e_{2}\right), \cdots, L\left(e_{n}\right)\right\}$ is an orthonormal set, it follows that $A^{T} A=I$ so we have $A \in O_{n}(\mathbb{R})$. Thus $S(x)=A x+b$ with $A \in O_{n}(\mathbb{R})$ and $b \in \mathbb{R}^{n}$, as required.
7.8 Corollary: Every distance preserving map $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isometry.

Proof: If $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserves distance then S is invertible; indeed if S is given by $S(x)=A x+b$ with $A \in O_{n}(\mathbb{R})$ and $b \in \mathbb{R}^{n}$ then S^{-1} is given by $S^{-1}(x)=A^{-1} x-A^{-1} b$.
7.9 Definition: Let $S \in \operatorname{Isom}\left(\mathbb{R}^{n}\right)$, say $S(x)=A x+b$ with $A \in O_{n}(\mathbb{R})$ and $b \in \mathbb{R}^{n}$. Note that since $A^{T} A=I$ we have $\operatorname{det}(A)= \pm 1$. We say that S preserves orientation when $\operatorname{det}(A)=1$, and we say that S reverses orientation when $\operatorname{det}(A)=-1$. We write

$$
\operatorname{Isom}_{+}\left(\mathbb{R}^{n}\right)=\left\{S \in \operatorname{Isom}\left(\mathbb{R}^{n}\right) \mid S \text { preserves orientation }\right\}
$$

7.10 Definition: For a nonempty set $X \subseteq \mathbb{R}^{n}$, the symmetry group of X in \mathbb{R}^{n} and the rotation group of X in \mathbb{R}^{n} are the groups

$$
\begin{aligned}
\operatorname{Sym}(X) & =\left\{S \in \operatorname{Isom}\left(\mathbb{R}^{n}\right) \mid S(x) \in X \text { for all } x \in X\right\}=\left\{S \in \operatorname{Isom}\left(\mathbb{R}^{n}\right) \mid S(X)=X\right\} \\
\operatorname{Rot}(X) & =\operatorname{Sym}(X) \cap \operatorname{Isom}_{+}\left(\mathbb{R}^{n}\right)=\left\{S \in \operatorname{Isom}_{+}\left(\mathbb{R}^{n}\right) \mid S(X)=X\right\}
\end{aligned}
$$

7.11 Theorem: (The Fixed Point Theorem) Let G be a finite subgroup of $\operatorname{Isom}\left(\mathbb{R}^{n}\right)$. Then G has a fixed point, that is there is a point $p \in G$ such that $S(p)=p$ for all $S \in G$.

Proof: Let $G=\left\{S_{1}, S_{2}, \cdots, S_{m}\right\} \leq \operatorname{Isom}\left(\mathbb{R}^{n}\right)$. Fix a point $a \in \mathbb{R}^{n}$ and let $p=\frac{1}{m} \sum_{i=1}^{m} S_{i}(a)$. Let $k \in\{1,2, \cdots, m\}$, and say $S_{k}=A x=B$ with $A \in O_{n}(\mathbb{R})$ and $b \in \mathbb{R}^{n}$. Since left multiplication by S_{k} is a permutation of G we have $G=\left\{S_{k} S_{1}, S_{k} S_{2}, \cdots, S_{k} S_{m}\right\}$, and so

$$
\begin{aligned}
S_{k}(p) & =S_{k}\left(\frac{1}{m} \sum_{i=1}^{m} S_{i}(a)\right)=A\left(\frac{1}{m} \sum_{i=1}^{m} S_{i}(a)\right)+b=\left(\frac{1}{m} \sum_{i=1}^{m} A S_{i}(a)\right)+b \\
& =\frac{1}{m} \sum_{i=1}^{m}\left(A S_{i}(a)+b\right)=\frac{1}{m} \sum_{i=1}^{m} S_{k} S_{i}(a)=\frac{1}{m} \sum_{j=1}^{m} S_{j}=p
\end{aligned}
$$

Thus $S_{k}(p)=p$ for all indices k, as required.
7.12 Example: The following maps are all isometries on \mathbb{R}^{2}.
(1) The identity map is the map $I: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $I(x)=x$.
(2) For $u \in \mathbb{R}^{2}$, the translation by u is the map $T_{u}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T_{u}(x)=x+u$.
(3) For $p \in \mathbb{R}^{2}$ and $\theta \in \mathbb{R}$, the rotation about p by θ is the map $R_{p, \theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
R_{p, \theta}(x)=p+R_{\theta}(x-p) \text { where } R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

(4) For a line L in \mathbb{R}^{2}, the reflection in L is the $\operatorname{map} F_{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which is given by any of the following three equivalent formulas. When L is the line in \mathbb{R}^{2} through p perpendicular to u, we have

$$
F_{L}(x)=x-\frac{2(x-p) \cdot u}{\|u\|^{2}} u
$$

When L is the line $a x+b y+c=0$, the above formula becomes

$$
F_{L}(x, y)=(x, y)-\frac{2(a x+b y+c)}{a^{2}+b^{2}}(a, b) .
$$

When L is the line through p in the direction of the vector $\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2}\right), F_{L}$ is given by

$$
F_{L}(x)=p+F_{\theta}(x-p) \text { where } F_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) .
$$

(5) For a vector $u \in \mathbb{R}^{2}$ and a line L in \mathbb{R}^{2} which is parallel to u, the glide reflection $G_{u, L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the composite

$$
G_{u, L}=T_{u} F_{L}=F_{L} T_{u}
$$

(when L is not parallel to u, the composites $T_{u} F_{L}$ and $F_{L} T_{u}$ are not equal, and they are not called glide reflections).

Of the above examples, the maps I, T_{u} and $R_{p, \theta}$ all preserve orientation, while the maps F_{L} and $G_{u, L}$ reverse orientation.
7.13 Theorem: (Composites of Reflections in \mathbb{R}^{2}) Let L and M be lines in \mathbb{R}^{2}.
(1) If $L=M$ then $F_{M} F_{L}=I$.
(2) If L is parallel to M then $F_{M} F_{L}=T_{2 u}$ where u is the vector from L orthogonally to M.
(3) If $L \cap M=\{p\}$ then $F_{M} F_{L}=R_{p, 2 \theta}$ where θ is the angle from L counterclockwise to M.

Proof: Suppose first that $L=M$. Say L is the line through p in the direction of the vector $\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2}\right)$ so that $F_{L}(x)=p+F_{\theta}(x-p)$. Then for all $x \in \mathbb{R}^{2}$ we have

$$
F_{L} F_{L}(x)=F_{L}\left(p+F_{\theta}(x-p)\right)=p+F_{\theta}\left(F_{\theta}(x-p)\right)=p+x-p=x=I(x)
$$

Next, suppose that L is parallel to M. Let u be the vector from L orthogonally to M, let $p \in L$ and let $q=p+u \in M$. Then for $x, y \in \mathbb{R}^{2}$ we have $F_{L}(x)=x-\frac{2(x-p) \cdot u}{\|u\|^{2}} u$ and $F_{M}(y)=y-\frac{2(y-p-u) \cdot u}{\|u\|^{2}} u$ and so

$$
\begin{aligned}
F_{M} F_{L}(x) & =F_{M}\left(x-\frac{2(x-p) \cdot u}{\|u\|^{2}} u\right) \\
& =\left(x-\frac{2(x-p) \cdot u}{\|u\|^{2}} u\right)-\frac{2\left(x-p-u-\frac{2(x-p) \cdot}{\|u\|^{2}} u\right) \cdot u}{\|u\|^{2}} u \\
& =x-\frac{2(x-p) \cdot u}{\|u\|^{2}} u-\frac{2(x-p) \cdot u}{\|u\|^{2}} u+\frac{2 u \cdot u}{\|u\|^{2}} u+\frac{4((x-p) \cdot u)(u \cdot u)}{\|u\|^{4}} u \\
& =x+2 u=T_{2 u}(x) .
\end{aligned}
$$

Finally, suppose that $L \cap M=\{p\}$. Say L is in the direction of $\left(\cos \frac{\alpha}{2}, \sin \frac{\alpha}{2}\right)$ and M is in the direction of $\left(\cos \frac{\beta}{2}, \sin \frac{\beta}{2}\right)$. Then for $x, y \in \mathbb{R}^{2}$ we have $F_{L}(x)=p+F_{\alpha}(x-p)$ and $F_{M}(y)=p+F_{\beta}(y-p)$ and so

$$
F_{M} F_{L}(x)=F_{M}\left(p+F_{\alpha}(x-p)\right)=p+F_{\beta}\left(F_{\alpha}(x-p)\right)=p+R_{\beta-\alpha}(x-p)=R_{p, 2 \theta}(x)
$$

where $\theta=\frac{\beta}{2}-\frac{\alpha}{2}$, which is the angle from L to M.
7.14 Theorem: (The Geometric Classification of Isometries on \mathbb{R}^{2}) Every isometry on \mathbb{R}^{2} is equal to one of the maps $I, T_{u}, R_{p, \theta}, F_{L}, G_{u, L}$.

Proof: Let $S \in \operatorname{Isom}\left(\mathbb{R}^{2}\right)$, say $S(x)=A x+b$ with $A \in O_{2}(\mathbb{R})$ and $b \in \mathbb{R}^{2}$. Recall that the elements in $O_{2}(\mathbb{R})$ are the rotation and reflection matrices R_{θ} and F_{θ}, and so with $S=T_{u} R_{\theta}$ or $S=T_{u} F_{\theta}$ where $u=-b$. First suppose that $S=T_{u} R_{\theta}$. Let M be the line through the origin perpendicular to u. Let $L=R_{-\theta / 2}(M)$ so that $F_{M} F_{L}=R_{\theta}$. Let $N=T_{u / 2}(M)$ so that $T_{u}=F_{N} F_{M}$. Then $S=T_{u} R_{\theta}=F_{N} F_{M} F_{M} F_{L}=F_{M} F_{L}$. By the above theorem, S is equal to the identity, a translation, or a rotation.

Now suppose that $S=T_{u} F_{\theta}$. Let L be the line through the origin in the direction of $\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2}\right)$ so that $F_{\theta}=F_{L}$. Let M be the line through the origin which is perpendicular to u and let $N=T_{u / 2}(M)$ so that $T_{u}=F_{n} F_{M}$. Then we have $S=F_{N} F_{M} F_{L}$. Note that $F_{M} F_{L}=R_{2 \alpha}$ where α is the angle from L to M. Let $N^{\prime}=N$, let M^{\prime} be the line through $(0,0)$ which is perpendicular to N^{\prime}, and let $L^{\prime}=R_{-\alpha}\left(M^{\prime}\right)$ so that $F_{M^{\prime}} F_{L^{\prime}}=R_{2 \alpha}$. Then $S=F_{N} F_{M} F_{L}=F_{N} R_{2 \alpha}=F_{N^{\prime}} F_{M^{\prime}} F_{L^{\prime}}=R_{p, \pi} F_{L^{\prime}}$ where p is the point of intersection of M^{\prime} and N^{\prime} (which are perpendicular). Let $L^{\prime \prime}=L^{\prime}$, let $M^{\prime \prime}$ be the line through p parallel to L^{\prime} and let $N^{\prime \prime}=R_{p . \pi / 2}\left(M^{\prime \prime}\right)$ so that $R_{p, \pi}=F_{N^{\prime \prime}} F_{M^{\prime \prime}}$. Then we have $S=R_{p, \pi} F_{L^{\prime}}=F_{N^{\prime \prime}} F_{M^{\prime \prime}} F_{L^{\prime \prime}}$. Since $L^{\prime \prime}$ is parallel to $M^{\prime \prime}$ we have $F_{M^{\prime \prime}} F_{L^{\prime \prime}}=T_{2 v}$ where v is the vector from $L^{\prime \prime}$ to $M^{\prime \prime}$. Since $L^{\prime \prime}$ and $M^{\prime \prime}$ are perpendicular to $N^{\prime \prime}$, the vector v is parallel to $N^{\prime \prime}$ and so $S=F_{N^{\prime \prime}} T_{2 v}$ is a glide reflection (or a reflection when $v=0$).
7.15 Theorem: (The Classification of Finite Groups of Isometries on \mathbb{R}^{2}) Every finite subgroup of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$ is isomorphic to C_{n} or D_{n} for some $n \in \mathbb{Z}^{+}$.
Proof: Let G be a finite subgroup of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$. Note that G cannot contain a translation T_{u} with $u \neq 0$ or a glide reflection $G_{u, L}$ with $u \neq 0$ because T_{u} and $G_{u, L}$ both have infinite order. Similarly, G cannot contain a rotation $R_{p, \alpha}$ where α is an irrational multiple of 2π because such a rotation has infinite order. Note that if G contains two rotations $R_{p, \alpha}$ and $R_{q, \beta}$ then we must have $p=q$ because G has a fixed point and $R_{p, \alpha}$ only fixes the point p and $R_{q, \beta}$ only fixes the point q. Note that if G contains only one unique reflection, then G cannot contain a rotation because if we had $R_{p, \alpha} \in G$ and $F_{L} \in G$ then p would be the unique fixed point of G so we would have $p \in L$ and would follow that $R_{p, \alpha} F_{L}=F_{M} F_{L} F_{L}=F_{M}$ so that $F_{M} \in G$ where $M=R_{p, \alpha / 2}(L)$ so that $F_{M} F_{M}=R_{p, \alpha}$. Note that if G contains two distinct reflections F_{L} and F_{M} then we cannot have L and M parallel (since if they were parallel then $F_{M} F_{M}$ would be a translation) so G contains the rotation $R_{p, \alpha}=F_{M} F_{L}$ where $L \cap M=\{p\}$, hence p is the unique fixed point of G, hence $p \in M$ for every line M such that $F_{M} \in G$.

We claim that if G contains a rotation, then the set R of all rotations in G is a cyclic subgroup of G. We have already seen that all rotations are about the same point, say p. Let α be the smallest positive real number for which $R_{p, \alpha} \in G$. Let $\beta=R_{p, \beta} \in G$. Write $\alpha=\frac{2 \pi k}{n}$ and $\beta=\frac{2 \pi l}{n}$. Write $l=q k+r$ with $0 \leq r<k$. Then for $\gamma=\frac{2 \pi r}{n}$ we have $R_{p, \gamma}=R_{p, \beta}\left(R_{p, \alpha}\right)^{-q} \in G$ which implies that $r=0$ by the minimality of α. Thus $R=\left\langle R_{p, \alpha}\right\rangle$.

Finally, not that if G contains a reflection F_{L} and a rotation, and the above group R is generated by $R_{p, \alpha}$, then G contains all the reflections $F_{M}=R_{p, k \alpha} F_{L}$ with $k \in \mathbb{Z}^{+}$ and no other reflections. Indeed, if $F_{M} \in G$ then we have already seen that $p \in M$ hence $F_{M} F_{L}$ is a rotation so we have $F_{M} F_{L} \in R=\left\langle R_{p, \alpha}\right\rangle$ so we have $F_{M} F_{L}=R_{p, k \alpha}$ for some $k \in \mathbb{Z}^{+}$hence $F_{M}=R_{p, k \alpha} F_{L}$.

We summarize. If G contains no rotations and no reflections then $G=\{I\}$. If G contains only reflections then $G=\{I, F\}$ for some reflection F. If G contains only rotations then $G=\langle R\rangle$ for some rotation $R=R_{p, 2 \pi / n}$ with $n \in \mathbb{Z}^{+}$. If G contains a reflection and a rotation, then we have $G=\langle R, F\rangle=\left\{R^{k}, R^{k} F \mid k \in \mathbb{Z}_{n}\right\}$ for some rotation of the form $R=R_{p, 2 \pi / n}$ and a reflection $F=F_{L}$ for some line L with $p \in L$. In the final case one can verify that $G \cong D_{n}$.
7.16 Example: The following maps are all isometries on \mathbb{R}^{3}.
(1) the identity map is the map $I: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $I(x)=x$.
(2) For $u \in \mathbb{R}^{3}$, the translation by u is the map $T_{u}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $T_{u}(x)=x+u$.
(3) For a point $p \in \mathbb{R}^{3}$, a nonzero vector $0 \neq u \in \mathbb{R}^{3}$ and an angle $\theta \in \mathbb{R}$ the rotation $R_{p, u, \theta}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is given by

$$
R_{p, u, \theta}(x)=p+R_{u, \theta}(x-p)
$$

where $R_{u, \theta}$ is the rotation in \mathbb{R}^{3} about the vector u by the angle θ; if $\{u, v, w\}$ is a positively oriented orthogonal basis for \mathbb{R}^{3} with all three vectors u, v and w of the same length, then $R=R_{u, \theta}$ is given by $R(u)=u, R(v)=(\cos \theta) v+(\sin \theta) w$ and $R(w)=-(\sin \theta) v+(\cos \theta) w$. (4) For a point $p \in \mathbb{R}^{3}$, a nonzero vector $0 \neq u \in \mathbb{R}^{3}$ and an angle $\theta \in \mathbb{R}$ the twist $W_{p, u, \theta}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the composite $W_{p, u, \theta}=T_{u} R_{p, u, \theta}=R_{p, u, \theta} T_{u}$.
(5) For a plane P in \mathbb{R}^{3}, the reflection in P is the map $F_{P}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ described in example 7.6.
(6) For a vector $u \in \mathbb{R}^{3}$ and a plane P in \mathbb{R}^{3} which is parallel to u, the glide reflection $G_{u, P}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the composite $G_{u, P}=T_{u} F_{P}=F_{P} T_{u}$.
(7) For a point $p \in \mathbb{R}^{3}$, a nonzero vector $0 \neq u \in \mathbb{R}^{3}$ and an angle $\theta \in \mathbb{R}$, the rotary reflection $H_{p, u, \theta}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the composite $H_{p, u, \theta}=R_{p, u, \theta} F_{P}=F_{P} R_{p, u, \theta}$ where P is the plane through p perpendicular to u.
7.17 Theorem: (The Geometric Classification of Isometries in \mathbb{R}^{3}) Every isometry on \mathbb{R}^{3} is equal one of the following

$$
I, T_{u}, R_{p, u, \theta}, W_{p, u, \theta}, F_{P}, G_{u, P}, H_{p, u, \theta}
$$

Proof: We omit the proof.
7.18 Theorem: (The Classification of Finite Rotation Groups in \mathbb{R}^{3}) Every finite rotation group is isomorphic to one of the groups

$$
C_{n}, D_{n}, A_{4}, S_{4}, A_{5}
$$

Proof: We omit the proof.
7.19 Definition: Let X be a set and let $G \leq \operatorname{Perm}(X)$. For $f \in G$, the fixed point set of f is the set

$$
\operatorname{Fix}(f)=\{x \in X \mid f(x)=x\} \subseteq X
$$

For $a \in X$, the orbit of a under G is the set

$$
\operatorname{Orb}(a)=\{f(a) \mid f \in G\} \subseteq X
$$

Note that the distinct orbits are disjoint since for $a, b \in X$, if $b \in \operatorname{Orb}(a)$ with say $b=f(a)$ then we have $a \in \operatorname{Orb}(b)$ since $a=f^{-1}(b)$. The set of distinct orbits is denoted by X / G so we have

$$
X / G=\{\operatorname{Orb}(a) \mid a \in X\} .
$$

For $a \in X$, the stabilizer of a in G is the subgroup

$$
\operatorname{Stab}(a)=\{f \in G \mid f(a)=a\} \leq G
$$

Note that $\operatorname{Stab}(a)$ is a subgroup of G because $I(a)=a$ so that $I \in \operatorname{Stab}(a)$, if $f, g \in \operatorname{Stab}(a)$ then $(f g)(a)=f(g(a))=f(a)=a$ so that $f g \in \operatorname{Stab}(a)$, and if $f \in \operatorname{Stab}(a)$ then $f^{-1}(a)=f^{-1}(f(a))=a$ so that $f^{-1} \in \operatorname{Stab}(a)$.
7.20 Theorem: (The Orbit/Stabilizer Theorem) Let X be a set and let G be a finite subgroup of $\operatorname{Perm}(X)$. Then for all $a \in X$ we have

$$
|G|=|\operatorname{Orb}(a)||\operatorname{Stab}(a)| .
$$

Proof: Let $a \in X$. Let $H=\operatorname{Stab}(a) \leq G$. Define $\Phi: G / H \rightarrow \operatorname{Orb}(a)$ by $\Phi(f H)=f(a)$. Note that Φ is well defined because for $f, g \in G$ we have

$$
f H=g H \Longrightarrow g^{-1} f \in H \Longrightarrow g^{-1} f(a)=a \Longrightarrow f(a)=g(a) \Longrightarrow \Phi(f H)=\Phi(g H) .
$$

Note that Φ is injective because for $f, g \in G$ we have

$$
\Phi(f H)=\Phi(g H) \Longrightarrow f(a)=g(a) \Longrightarrow g^{-1} f(a)=a \Longrightarrow g^{-1} f \in H \Longrightarrow f H=g H .
$$

Finally, note that Φ is clearly surjective.
7.21 Theorem: (The Burnside-Cauchy-Frobenius Lemma) Let X be a set and let G be a finite subgroup of $\operatorname{Perm}(X)$. Then

$$
|G||X / G|=\sum_{a \in G}|\operatorname{Fix}(a)|
$$

Proof: Let $T=\{(f, a) \mid f \in G, a \in X, f(a)=a\}$. Then we have

$$
|T|=\sum_{f \in G}|\{a \in X \mid f(a)=a\}|=\sum_{f \in G}|\operatorname{Fix}(f)|
$$

and we have

$$
\begin{aligned}
|T| & =\sum_{a \in X}|\{f \in G \mid f(a)=a\}|=\sum_{a \in X}|\operatorname{Stab}(a)|=\sum_{a \in X} \frac{|G|}{|\operatorname{Orb}(a)|} \\
& =|G| \sum_{a \in X} \frac{1}{|\operatorname{Orb}(a)|}=|G| \sum_{A \in X / G} \sum_{a \in A} \frac{1}{|A|}=|G| \sum_{A \in X / G} 1=|G||X / G| .
\end{aligned}
$$

7.22 Example: In how many ways (up to symmetry under the symmetry group D_{6}) can we colour the vertices of the regular hexagon C_{6} using 3 colours?

Solution: Let X be the set of possible colourings without considering symmetry under D_{6}, and note that $|X|=3^{6}$. Each element of D_{6} permutes the vertices of C_{6} and hence permutes the elements of X, and in this way we identify D_{6} with a subgroup of $\operatorname{Perm}(X)$. We make a table showing $|\operatorname{Fix}(A)|$ for each $A \in D_{6} \leq \operatorname{Perm}(X)$.

A	$\#$ of such A	$\|\operatorname{Fix}(A)\|$
I	1	3^{6}
R_{3}	1	3^{3}
R_{2}, R_{4}	2	3^{2}
R_{1}, R_{5}	2	3^{1}
F_{0}, F_{2}, F_{4}	3	3^{4}
F_{1}, F_{3}, F_{5}	3	3^{3}

The number of colourings up to D_{6} symmetry is equal to the number of orbits, which is

$$
\left|X / D_{6}\right|=\frac{1}{\left|D_{6}\right|} \sum_{A \in D_{6}}|\operatorname{Fix}(A)|=\frac{1}{12}\left(3^{6}+3^{3}+2 \cdot 3^{2}+2 \cdot 3^{1}+3 \cdot 3^{4}+3 \cdot 3^{2}\right)=92
$$

7.23 Example: Let G be the rotation group of a cube Q. In how many ways (up to symmetry under G) can we colour the 8 vertices of Q using 2 colours?

