Chapter 7. Isometries and Symmetry Groups

7.1 Definition: For a map $S : \mathbb{R}^n \to \mathbb{R}^n$, we say that S **preserves distance** when

$$||S(x) - S(y)|| = ||x - y||$$

for all $x, y \in \mathbb{R}^n$. An **isometry** on \mathbb{R}^n is an invertible map $S : \mathbb{R}^n \to \mathbb{R}^n$ which preserves distance. The set of all isometries on \mathbb{R}^n is denoted by $\text{Isom}(\mathbb{R}^n)$.

7.2 Theorem: The set of isometries on \mathbb{R}^n is a group under composition.

Proof: The identity map $I : \mathbb{R}^n \to \mathbb{R}^n$ is an isometry because ||I(x) - I(y)|| = ||x - y||for all $x, y \in \mathbb{R}^n$. Note that if $S, T \in \text{Isom}(\mathbb{R}^n)$ then we have $ST \in \text{Isom}(\mathbb{R}^n)$ because for $x, y \in \mathbb{R}^n$ we have

$$|S(T(x)) - S(T(y))|| = ||T(x) - T(y)|| = ||x - y||.$$

Finally, note that if $S \in \text{Isom}(\mathbb{R}^n)$ then $S^{-1} \in \text{Isom}(\mathbb{R}^n)$ because given $u, v \in \mathbb{R}^n$, if we let $x = S^{-1}(u)$ and $y = S^{-1}(v)$ so that u = S(x) and v = S(y) then we have

$$\left\|S^{-1}(u) - S^{-1}(v)\right\| = \|x - y\| = \|S(x) - S(y)\| = \|u - v\|.$$

Thus $\operatorname{Isom}(\mathbb{R}^n) \leq \operatorname{Perm}(\mathbb{R}^n)$ by the Subgroup Test.

7.3 Example: For a vector $u \in \mathbb{R}^n$, the **translation** by u is the map $T_u : \mathbb{R}^n \to \mathbb{R}^n$ given by $T_u(x) = x + u$. Note that T_u is an isometry on \mathbb{R}^n because

$$||T_u(x) - T_u(y)|| = ||(u+x) - (u+y)|| = ||x-y||.$$

7.4 Example: If $A \in O_n(\mathbb{R})$, so that $A^T A = I$, then the map $S : \mathbb{R}^n \to \mathbb{R}^n$ given by S(x) = Ax is an isometry because for $x, y \in \mathbb{R}^n$ we have

$$||Ax - Ay||^{2} = ||A(x - y)||^{2} = (A(x - y))^{T} (A(x - y))$$
$$= (x - y)^{T} A^{T} A(x - y) = (x - y)^{T} (x - y) = ||x - y||^{2}.$$

7.5 Example: For a vector space U in \mathbb{R}^n , the **reflection** in U is the map $F_U : \mathbb{R}^n \to \mathbb{R}^n$ given by

$$F_U(x) = x - 2\operatorname{Proj}_{U^\perp}(x)$$

where $\operatorname{Proj}_{U^{\perp}}(x)$ is the orthogonal projection of x onto U^{\perp} . When $\{u_1, u_2, \dots, u_k\}$ is an orthonormal basis for U^{\perp} and $A = (u_1, u_2, \dots, u_k) \in M_{n \times k}(\mathbb{R})$, recall that

$$\begin{aligned} \operatorname{Proj}_{U^{\perp}}(x) &= \sum_{i=1}^{n} (x \cdot u_i) u_i = A A^T x \,, \\ F_U(x) &= x - 2 A A^T x = (I - 2A A^T) x. \end{aligned}$$

Note that since $\{u_1, u_2, \dots, u_k\}$ is orthonormal, we have $A \in O_n(\mathbb{R})$, that is $A^T A = I$, and it follows that $(I - 2AA^T) \in O_n(\mathbb{R})$ because

$$(I - 2AA^{T})^{T}(I - 2AA^{T}) = I - 2AA^{T} - 2AA^{T} + 4AA^{T}AA^{T}$$
$$= I - 4AA^{T} + 4A(A^{T}A)A^{T} = I - 4AA^{T} + 4AA^{T} = I.$$

This shows that $F_U \in O_n(\mathbb{R})$ and hence $F_U \in \text{Isom}(\mathbb{R}^n)$. In particular, when U is a hyperspace (that is a vector space of dimension n-1) and u is a non-zero vector in U^{\perp} , we have

$$\operatorname{Proj}_{U^{\perp}}(x) = \operatorname{Proj}_{u}(x) = \frac{x \cdot u}{\|u\|^{2}} u \text{ and } F_{U}(x) = x - 2\frac{x \cdot u}{\|u\|^{2}} u.$$

7.6 Example: An **affine space** in \mathbb{R}^n is a set of the form $P = p + U = \{p + x | x \in U\}$ for some point $p \in \mathbb{R}^n$ and some vector space $U \in \mathbb{R}^n$. For an affine space P = p + U in \mathbb{R}^n , the **reflection** in P is the map $F_P : \mathbb{R}^n \to \mathbb{R}^n$ given by

$$F_P(x) = p + F_U(x - p).$$

Note that $F_P \in \text{Isom}(\mathbb{R}^n)$ because F_P is equal to the composite $F_P = T_p F_U T_{-p}$.

7.7 Theorem: (The Algebraic Classification of Isometries) $A \mod S : \mathbb{R}^n \to \mathbb{R}^n$ preserves distance if and only if S is of the form S(x) = Ax + b for some $A \in O_n(\mathbb{R})$ and some $b \in \mathbb{R}^n$.

Proof: First note that if S(x) = Ax + b where $A \in O_n(\mathbb{R})$ and $b \in \mathbb{R}^n$, then S is the composite $S = T_b A$, which is an isometry.

Conversely, suppose that S is an isometry. Let b = S(0) and define $L : \mathbb{R} \to \mathbb{R}$ by L(x) = S(x) - b. Note that S(0) = 0 and that for $x \in \mathbb{R}^n$ we have

$$\left\|L(x)\right\| = \left\|L(x) - L(0)\right\| = \left\|(S(x) - b) - (S(0) - b)\right\| = \left\|S(x) - S(0)\right\| = \left\|x - 0\right\| = \left\|x\right\|.$$

For $x, y \in \mathbb{R}^n$, we have

$$\|x - y\|^{2} = (x - y) \cdot (x - y) = x \cdot x - x \cdot y - y \cdot x + y \cdot y = \|x\|^{2} - 2x \cdot y + \|y\|^{2}$$

from which we obtain the **Polarization Identity**:

$$x \cdot y = \frac{1}{2} (||x||^2 + ||y||^2 - ||x - y||^2).$$

For $x, y \in \mathbb{R}^n$, using the Polarization Identity, we have

 $L(x) \cdot L(y) = \frac{1}{2} \left(\|L(x)\|^2 + \|L(y)\|^2 - \|L(x) - L(y)\|^2 \right) = \frac{1}{2} \left(\|x\|^2 + \|y\|^2 - \|x - y\|^2 \right) = \|x - y\|^2.$ In particular, $L(e_i) \cdot L(e_j) = e_i \cdot e_j = \delta_{i,j}$ for all i, j, so the set $\{L(e_1), L(e_2), \dots, L(e_n)\}$ is an orthonormal basis for \mathbb{R}^n . For $x \in \mathbb{R}^n$, if we write $x = \sum_{i=1}^n x_i e_i$ and $L(x) = \sum_{i=1}^n t_i L(e_i)$ then we have

$$t_k = L(x) \cdot L(e_k) = x \cdot e_k = x_k$$

and so we have $L(x) = \sum x_k L(e_k) = Ax$ where $A = (L(e_1), L(e_2), \dots, L(e_n)) \in M_n(\mathbb{R})$. Since $\{L(e_1), L(e_2), \dots, L(e_n)\}$ is an orthonormal set, it follows that $A^T A = I$ so we have $A \in O_n(\mathbb{R})$. Thus S(x) = Ax + b with $A \in O_n(\mathbb{R})$ and $b \in \mathbb{R}^n$, as required.

7.8 Corollary: Every distance preserving map $S : \mathbb{R}^n \to \mathbb{R}^n$ is an isometry.

Proof: If $S : \mathbb{R}^n \to \mathbb{R}^n$ preserves distance then S is invertible; indeed if S is given by S(x) = Ax + b with $A \in O_n(\mathbb{R})$ and $b \in \mathbb{R}^n$ then S^{-1} is given by $S^{-1}(x) = A^{-1}x - A^{-1}b$.

7.9 Definition: Let $S \in \text{Isom}(\mathbb{R}^n)$, say S(x) = Ax + b with $A \in O_n(\mathbb{R})$ and $b \in \mathbb{R}^n$. Note that since $A^T A = I$ we have $\det(A) = \pm 1$. We say that S preserves orientation when $\det(A) = 1$, and we say that S reverses orientation when $\det(A) = -1$. We write

$$\operatorname{Isom}_{+}(\mathbb{R}^{n}) = \{ S \in \operatorname{Isom}(\mathbb{R}^{n}) | S \text{ preserves orientation} \}.$$

7.10 Definition: For a nonempty set $X \subseteq \mathbb{R}^n$, the symmetry group of X in \mathbb{R}^n and the rotation group of X in \mathbb{R}^n are the groups

$$\operatorname{Sym}(X) = \left\{ S \in \operatorname{Isom}(\mathbb{R}^n) \middle| S(x) \in X \text{ for all } x \in X \right\} = \left\{ S \in \operatorname{Isom}(\mathbb{R}^n) \middle| S(X) = X \right\}$$
$$\operatorname{Rot}(X) = \operatorname{Sym}(X) \cap \operatorname{Isom}_+(\mathbb{R}^n) = \left\{ S \in \operatorname{Isom}_+(\mathbb{R}^n) \middle| S(X) = X \right\}.$$

7.11 Theorem: (The Fixed Point Theorem) Let G be a finite subgroup of $\text{Isom}(\mathbb{R}^n)$. Then G has a fixed point, that is there is a point $p \in G$ such that S(p) = p for all $S \in G$.

Proof: Let $G = \{S_1, S_2, \dots, S_m\} \leq \text{Isom}(\mathbb{R}^n)$. Fix a point $a \in \mathbb{R}^n$ and let $p = \frac{1}{m} \sum_{i=1}^m S_i(a)$. Let $k \in \{1, 2, \dots, m\}$, and say $S_k = Ax = B$ with $A \in O_n(\mathbb{R})$ and $b \in \mathbb{R}^n$. Since left multiplication by S_k is a permutation of G we have $G = \{S_k S_1, S_k S_2, \dots, S_k S_m\}$, and so

$$S_k(p) = S_k\left(\frac{1}{m}\sum_{i=1}^m S_i(a)\right) = A\left(\frac{1}{m}\sum_{i=1}^m S_i(a)\right) + b = \left(\frac{1}{m}\sum_{i=1}^m AS_i(a)\right) + b$$
$$= \frac{1}{m}\sum_{i=1}^m \left(AS_i(a) + b\right) = \frac{1}{m}\sum_{i=1}^m S_kS_i(a) = \frac{1}{m}\sum_{j=1}^m S_j = p.$$

Thus $S_k(p) = p$ for all indices k, as required.

7.12 Example: The following maps are all isometries on \mathbb{R}^2 .

- (1) The **identity** map is the map $I : \mathbb{R}^2 \to \mathbb{R}^2$ given by I(x) = x.
- (2) For $u \in \mathbb{R}^2$, the **translation** by u is the map $T_u : \mathbb{R}^2 \to \mathbb{R}^2$ given by $T_u(x) = x + u$.
- (3) For $p \in \mathbb{R}^2$ and $\theta \in \mathbb{R}$, the **rotation** about p by θ is the map $R_{p,\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$R_{p,\theta}(x) = p + R_{\theta}(x-p)$$
 where $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

(4) For a line L in \mathbb{R}^2 , the **reflection** in L is the map $F_L : \mathbb{R}^2 \to \mathbb{R}^2$ which is given by any of the following three equivalent formulas. When L is the line in \mathbb{R}^2 through pperpendicular to u, we have

$$F_L(x) = x - \frac{2(x-p) \cdot u}{\|u\|^2} u$$

When L is the line ax + by + c = 0, the above formula becomes

$$F_L(x,y) = (x,y) - \frac{2(ax+by+c)}{a^2+b^2} \, (a,b).$$

When L is the line through p in the direction of the vector $\left(\cos\frac{\theta}{2},\sin\frac{\theta}{2}\right)$, F_L is given by

$$F_L(x) = p + F_{\theta}(x-p)$$
 where $F_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$

(5) For a vector $u \in \mathbb{R}^2$ and a line L in \mathbb{R}^2 which is parallel to u, the **glide reflection** $G_{u,L} : \mathbb{R}^2 \to \mathbb{R}^2$ is the composite

$$G_{u,L} = T_u F_L = F_L T_u$$

(when L is not parallel to u, the composites T_uF_L and F_LT_u are not equal, and they are not called glide reflections).

Of the above examples, the maps I, T_u and $R_{p,\theta}$ all preserve orientation, while the maps F_L and $G_{u,L}$ reverse orientation.

7.13 Theorem: (Composites of Reflections in \mathbb{R}^2) Let L and M be lines in \mathbb{R}^2 . (1) If L = M then $F_M F_L = I$. (2) If L is parallel to M then $F_M F_L = T_{2u}$ where u is the vector from L orthogonally to M. (3) If $L \cap M = \{p\}$ then $F_M F_L = R_{p,2\theta}$ where θ is the angle from L counterclockwise to M.

Proof: Suppose first that L = M. Say L is the line through p in the direction of the vector $\left(\cos\frac{\theta}{2},\sin\frac{\theta}{2}\right)$ so that $F_L(x) = p + F_{\theta}(x-p)$. Then for all $x \in \mathbb{R}^2$ we have

$$F_L F_L(x) = F_L(p + F_\theta(x - p)) = p + F_\theta(F_\theta(x - p)) = p + x - p = x = I(x).$$

Next, suppose that L is parallel to M. Let u be the vector from L orthogonally to M, let $p \in L$ and let $q = p + u \in M$. Then for $x, y \in \mathbb{R}^2$ we have $F_L(x) = x - \frac{2(x-p) \cdot u}{\|u\|^2} u$ and $F_M(y) = y - \frac{2(y-p-u) \cdot u}{\|u\|^2} u$ and so

$$\begin{split} F_M F_L(x) &= F_M \left(x - \frac{2(x-p) \cdot u}{\|u\|^2} \, u \right) \\ &= \left(x - \frac{2(x-p) \cdot u}{\|u\|^2} \, u \right) - \frac{2\left(x-p - u - \frac{2(x-p) \cdot u}{\|u\|^2} \, u \right) \cdot u}{\|u\|^2} \, u \\ &= x - \frac{2(x-p) \cdot u}{\|u\|^2} \, u - \frac{2(x-p) \cdot u}{\|u\|^2} \, u + \frac{2u \cdot u}{\|u\|^2} \, u + \frac{4\left((x-p) \cdot u \right)(u \cdot u)}{\|u\|^4} \, u \\ &= x + 2u = T_{2u}(x). \end{split}$$

Finally, suppose that $L \cap M = \{p\}$. Say L is in the direction of $\left(\cos\frac{\alpha}{2}, \sin\frac{\alpha}{2}\right)$ and M is in the direction of $\left(\cos\frac{\beta}{2}, \sin\frac{\beta}{2}\right)$. Then for $x, y \in \mathbb{R}^2$ we have $F_L(x) = p + F_\alpha(x-p)$ and $F_M(y) = p + F_\beta(y-p)$ and so

$$F_M F_L(x) = F_M (p + F_\alpha(x - p)) = p + F_\beta (F_\alpha(x - p)) = p + R_{\beta - \alpha}(x - p) = R_{p,2\theta}(x)$$

where $\theta = \frac{\beta}{2} - \frac{\alpha}{2}$, which is the angle from L to M.

7.14 Theorem: (The Geometric Classification of Isometries on \mathbb{R}^2) Every isometry on \mathbb{R}^2 is equal to one of the maps I, T_u , $R_{p,\theta}$, F_L , $G_{u,L}$.

Proof: Let $S \in \text{Isom}(\mathbb{R}^2)$, say S(x) = Ax + b with $A \in O_2(\mathbb{R})$ and $b \in \mathbb{R}^2$. Recall that the elements in $O_2(\mathbb{R})$ are the rotation and reflection matrices R_{θ} and F_{θ} , and so with $S = T_u R_{\theta}$ or $S = T_u F_{\theta}$ where u = -b. First suppose that $S = T_u R_{\theta}$. Let M be the line through the origin perpendicular to u. Let $L = R_{-\theta/2}(M)$ so that $F_M F_L = R_{\theta}$. Let $N = T_{u/2}(M)$ so that $T_u = F_N F_M$. Then $S = T_u R_{\theta} = F_N F_M F_M F_L = F_M F_L$. By the above theorem, S is equal to the identity, a translation, or a rotation.

Now suppose that $S = T_u F_{\theta}$. Let L be the line through the origin in the direction of $\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2}\right)$ so that $F_{\theta} = F_L$. Let M be the line through the origin which is perpendicular to u and let $N = T_{u/2}(M)$ so that $T_u = F_n F_M$. Then we have $S = F_N F_M F_L$. Note that $F_M F_L = R_{2\alpha}$ where α is the angle from L to M. Let N' = N, let M' be the line through (0,0) which is perpendicular to N', and let $L' = R_{-\alpha}(M')$ so that $F_{M'}F_{L'} = R_{2\alpha}$. Then $S = F_N F_M F_L = F_N R_{2\alpha} = F_{N'}F_{M'}F_{L'} = R_{p,\pi}F_{L'}$ where p is the point of intersection of M' and N' (which are perpendicular). Let L'' = L', let M'' be the line through p parallel to L' and let $N'' = R_{p,\pi/2}(M'')$ so that $R_{p,\pi} = F_{N''}F_{M''}$. Then we have $S = R_{p,\pi}F_{L'} = F_{N''}F_{M''}F_{L''}$. Since L'' is parallel to M'' we have $F_{M''}F_{L''} = T_{2v}$ where v is the vector from L'' to M''. Since L'' and M'' are perpendicular to N'', the vector v is parallel to N'' and so $S = F_{N''}T_{2v}$ is a glide reflection (or a reflection when v = 0).

7.15 Theorem: (The Classification of Finite Groups of Isometries on \mathbb{R}^2) Every finite subgroup of Isom(\mathbb{R}^2) is isomorphic to C_n or D_n for some $n \in \mathbb{Z}^+$.

Proof: Let G be a finite subgroup of $\operatorname{Isom}(\mathbb{R}^2)$. Note that G cannot contain a translation T_u with $u \neq 0$ or a glide reflection $G_{u,L}$ with $u \neq 0$ because T_u and $G_{u,L}$ both have infinite order. Similarly, G cannot contain a rotation $R_{p,\alpha}$ where α is an irrational multiple of 2π because such a rotation has infinite order. Note that if G contains two rotations $R_{p,\alpha}$ and $R_{q,\beta}$ then we must have p = q because G has a fixed point and $R_{p,\alpha}$ only fixes the point p and $R_{q,\beta}$ only fixes the point q. Note that if G contains only one unique reflection, then G cannot contain a rotation because if we had $R_{p,\alpha} \in G$ and $F_L \in G$ then p would be the unique fixed point of G so we would have $p \in L$ and would follow that $R_{p,\alpha}F_L = F_MF_LF_L = F_M$ so that $F_M \in G$ where $M = R_{p,\alpha/2}(L)$ so that $F_MF_M = R_{p,\alpha}$. Note that if G contains two distinct reflections F_L and F_M then we cannot have L and M parallel (since if they were parallel then F_MF_M would be a translation) so G contains the rotation $R_{p,\alpha} = F_MF_L$ where $L \cap M = \{p\}$, hence p is the unique fixed point of G, hence $p \in M$ for every line M such that $F_M \in G$.

We claim that if G contains a rotation, then the set R of all rotations in G is a cyclic subgroup of G. We have already seen that all rotations are about the same point, say p. Let α be the smallest positive real number for which $R_{p,\alpha} \in G$. Let $\beta = R_{p,\beta} \in G$. Write $\alpha = \frac{2\pi k}{n}$ and $\beta = \frac{2\pi l}{n}$. Write l = qk + r with $0 \leq r < k$. Then for $\gamma = \frac{2\pi r}{n}$ we have $R_{p,\gamma} = R_{p,\beta}(R_{p,\alpha})^{-q} \in G$ which implies that r = 0 by the minimality of α . Thus $R = \langle R_{p,\alpha} \rangle$.

Finally, not that if G contains a reflection F_L and a rotation, and the above group R is generated by $R_{p,\alpha}$, then G contains all the reflections $F_M = R_{p,k\alpha}F_L$ with $k \in \mathbb{Z}^+$ and no other reflections. Indeed, if $F_M \in G$ then we have already seen that $p \in M$ hence $F_M F_L$ is a rotation so we have $F_M F_L \in R = \langle R_{p,\alpha} \rangle$ so we have $F_M F_L = R_{p,k\alpha}$ for some $k \in \mathbb{Z}^+$ hence $F_M = R_{p,k\alpha}F_L$.

We summarize. If G contains no rotations and no reflections then $G = \{I\}$. If G contains only reflections then $G = \{I, F\}$ for some reflection F. If G contains only rotations then $G = \langle R \rangle$ for some rotation $R = R_{p,2\pi/n}$ with $n \in \mathbb{Z}^+$. If G contains a reflection and a rotation, then we have $G = \langle R, F \rangle = \{R^k, R^k F | k \in \mathbb{Z}_n\}$ for some rotation of the form $R = R_{p,2\pi/n}$ and a reflection $F = F_L$ for some line L with $p \in L$. In the final case one can verify that $G \cong D_n$.

7.16 Example: The following maps are all isometries on \mathbb{R}^3 .

(1) the **identity** map is the map $I : \mathbb{R}^3 \to \mathbb{R}^3$ given by I(x) = x.

(2) For $u \in \mathbb{R}^3$, the **translation** by u is the map $T_u : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_u(x) = x + u$.

(3) For a point $p \in \mathbb{R}^3$, a nonzero vector $0 \neq u \in \mathbb{R}^3$ and an angle $\theta \in \mathbb{R}$ the **rotation** $R_{p,u,\theta} : \mathbb{R}^3 \to \mathbb{R}^3$ is given by

$$R_{p,u,\theta}(x) = p + R_{u,\theta}(x-p)$$

where $R_{u,\theta}$ is the rotation in \mathbb{R}^3 about the vector u by the angle θ ; if $\{u, v, w\}$ is a positively oriented orthogonal basis for \mathbb{R}^3 with all three vectors u, v and w of the same length, then $R = R_{u,\theta}$ is given by $R(u) = u, R(v) = (\cos \theta)v + (\sin \theta)w$ and $R(w) = -(\sin \theta)v + (\cos \theta)w$. (4) For a point $p \in \mathbb{R}^3$, a nonzero vector $0 \neq u \in \mathbb{R}^3$ and an angle $\theta \in \mathbb{R}$ the **twist** $W_{p,u,\theta} : \mathbb{R}^3 \to \mathbb{R}^3$ is the composite $W_{p,u,\theta} = T_u R_{p,u,\theta} = R_{p,u,\theta} T_u$.

(5) For a plane P in \mathbb{R}^3 , the **reflection** in P is the map $F_P : \mathbb{R}^3 \to \mathbb{R}^3$ described in example 7.6.

(6) For a vector $u \in \mathbb{R}^3$ and a plane P in \mathbb{R}^3 which is parallel to u, the **glide reflection** $G_{u,P} : \mathbb{R}^3 \to \mathbb{R}^3$ is the composite $G_{u,P} = T_u F_P = F_P T_u$.

(7) For a point $p \in \mathbb{R}^3$, a nonzero vector $0 \neq u \in \mathbb{R}^3$ and an angle $\theta \in \mathbb{R}$, the **rotary** reflection $H_{p,u,\theta} : \mathbb{R}^3 \to \mathbb{R}^3$ is the composite $H_{p,u,\theta} = R_{p,u,\theta}F_P = F_P R_{p,u,\theta}$ where P is the plane through p perpendicular to u.

7.17 Theorem: (The Geometric Classification of Isometries in \mathbb{R}^3) Every isometry on \mathbb{R}^3 is equal one of the following

$$I, T_u, R_{p,u,\theta}, W_{p,u,\theta}, F_P, G_{u,P}, H_{p,u,\theta}$$

Proof: We omit the proof.

7.18 Theorem: (The Classification of Finite Rotation Groups in \mathbb{R}^3) Every finite rotation group is isomorphic to one of the groups

$$C_n, D_n, A_4, S_4, A_5.$$

Proof: We omit the proof.

7.19 Definition: Let X be a set and let $G \leq Perm(X)$. For $f \in G$, the **fixed point set** of f is the set

$$\operatorname{Fix}(f) = \left\{ x \in X \middle| f(x) = x \right\} \subseteq X.$$

For $a \in X$, the **orbit** of a under G is the set

$$\operatorname{Orb}(a) = \left\{ f(a) \middle| f \in G \right\} \subseteq X.$$

Note that the distinct orbits are disjoint since for $a, b \in X$, if $b \in Orb(a)$ with say b = f(a)then we have $a \in Orb(b)$ since $a = f^{-1}(b)$. The set of distinct orbits is denoted by X/Gso we have

$$X/G = \left\{ \operatorname{Orb}(a) \middle| a \in X \right\}$$

For $a \in X$, the **stabilizer** of a in G is the subgroup

$$\operatorname{Stab}(a) = \left\{ f \in G \middle| f(a) = a \right\} \le G.$$

Note that $\operatorname{Stab}(a)$ is a subgroup of G because I(a) = a so that $I \in \operatorname{Stab}(a)$, if $f, g \in \operatorname{Stab}(a)$ then (fg)(a) = f(g(a)) = f(a) = a so that $fg \in \operatorname{Stab}(a)$, and if $f \in \operatorname{Stab}(a)$ then $f^{-1}(a) = f^{-1}(f(a)) = a$ so that $f^{-1} \in \operatorname{Stab}(a)$.

7.20 Theorem: (The Orbit/Stabilizer Theorem) Let X be a set and let G be a finite subgroup of Perm(X). Then for all $a \in X$ we have

$$|G| = |\operatorname{Orb}(a)| |\operatorname{Stab}(a)|.$$

Proof: Let $a \in X$. Let $H = \text{Stab}(a) \leq G$. Define $\Phi : G/H \to \text{Orb}(a)$ by $\Phi(fH) = f(a)$. Note that Φ is well defined because for $f, g \in G$ we have

$$fH = gH \Longrightarrow g^{-1}f \in H \Longrightarrow g^{-1}f(a) = a \Longrightarrow f(a) = g(a) \Longrightarrow \Phi(fH) = \Phi(gH).$$

Note that Φ is injective because for $f, g \in G$ we have

$$\Phi(fH) = \Phi(gH) \Longrightarrow f(a) = g(a) \Longrightarrow g^{-1}f(a) = a \Longrightarrow g^{-1}f \in H \Longrightarrow fH = gH.$$

Finally, note that Φ is clearly surjective.

7.21 Theorem: (The Burnside-Cauchy-Frobenius Lemma) Let X be a set and let G be a finite subgroup of Perm(X). Then

$$|G||X/G| = \sum_{a \in G} |\operatorname{Fix}(a)|.$$

Proof: Let $T = \{(f, a) | f \in G, a \in X, f(a) = a\}$. Then we have

$$|T| = \sum_{f \in G} \left| \{a \in X | f(a) = a\} \right| = \sum_{f \in G} \left| \operatorname{Fix}(f) \right|$$

and we have

$$\begin{aligned} |T| &= \sum_{a \in X} \left| \{ f \in G \big| f(a) = a \} \right| = \sum_{a \in X} \left| \operatorname{Stab}(a) \right| = \sum_{a \in X} \frac{|G|}{|\operatorname{Orb}(a)|} \\ &= |G| \sum_{a \in X} \frac{1}{|\operatorname{Orb}(a)|} = |G| \sum_{A \in X/G} \sum_{a \in A} \frac{1}{|A|} = |G| \sum_{A \in X/G} 1 = |G| \left| X/G \right|. \end{aligned}$$

7.22 Example: In how many ways (up to symmetry under the symmetry group D_6) can we colour the vertices of the regular hexagon C_6 using 3 colours?

Solution: Let X be the set of possible colourings without considering symmetry under D_6 , and note that $|X| = 3^6$. Each element of D_6 permutes the vertices of C_6 and hence permutes the elements of X, and in this way we identify D_6 with a subgroup of Perm(X). We make a table showing |Fix(A)| for each $A \in D_6 \leq Perm(X)$.

A	# of such A	$ \operatorname{Fix}(A) $
Ι	1	3^6
R_3	1	3^3
R_{2}, R_{4}	2	3^2
R_{1}, R_{5}	2	3^1
F_0, F_2, F_4	3	3^{4}
F_1, F_3, F_5	3	3^3

The number of colourings up to D_6 symmetry is equal to the number of orbits, which is

$$\left| X/D_6 \right| = \frac{1}{|D_6|} \sum_{A \in D_6} \left| \operatorname{Fix}(A) \right| = \frac{1}{12} \left(3^6 + 3^3 + 2 \cdot 3^2 + 2 \cdot 3^1 + 3 \cdot 3^4 + 3 \cdot 3^2 \right) = 92.$$

7.23 Example: Let G be the rotation group of a cube Q. In how many ways (up to symmetry under G) can we colour the 8 vertices of Q using 2 colours?