Chapter 7. Isometries and Symmetry Groups

7.1 Definition: For a map S : R” — R", we say that S preserves distance when

I15(2) = $@)|| = ll= — vl
for all z,y € R™. An isometry on R" is an invertible map S : R™ — R™ which preserves
distance. The set of all isometries on R™ is denoted by Isom(R™).

7.2 Theorem: The set of isometries on R™ is a group under composition.
Proof: The identity map I : R" — R™ is an isometry because ||I(z) — I(y)|| = ||z — y||
for all z,y € R™. Note that if S,T € Isom(R"™) then we have ST € Isom(R"™) because for
x,y € R™ we have
[S(T(2)) = S(T ()| = |T(x) = TW)| = = - yll.

Finally, note that if S € Isom(R™) then S~1 € Isom(R™) because given u,v € R™, if we let
x=8"1(u) and y = S71(v) so that v = S(x) and v = S(y) then we have

157 (w) = 87 ()] = [l =yl = 1S(z) = SW)|| = lu—vl|.
Thus Isom(R™) < Perm(R"™) by the Subgroup Test.

7.3 Example: For a vector u € R", the translation by u is the map 7', : R" — R" given
by T, (x) = x + u. Note that T}, is an isometry on R™ because

|1 Tu(@) = T = [(u+2) = (u+p)|| = 2 —yll.

7.4 Example: If A € O,(R), so that ATA = I, then the map S : R® — R" given by
S(z) = Ax is an isometry because for x,y € R™ we have

4z = a4l = e~ )| = (Al - )" (A(e - )
= (@ -y ATA@@ —y) = (= —y) (x —y) = lz —y|*.
7.5 Example: For a vector space U in R", the reflection in U is the map F'; : R — R"
given by
Fy(z) =2 — 2Projy.(x)
where Proj;;. () is the orthogonal projection of 2 onto U+. When {u1,us,---,uz} is an
orthonormal basis for UL and A = (ul, Ug, -+ ,uk) € M, xr(R), recall that

Projy.(z) = S (z « us)u; = AATx

i=1
Fy(z) =2 —2AATe = (I —24AAT)z.

Note that since {uy,us, -, ug} is orthonormal, we have A € O, (R), that is ATA = I, and
it follows that (I — 2AAT) € O,(R) because

(I—2AATYT(I —24AT) =T — 2AAT — 24AT + 4AAT AAT
=T —4AAT 4+ 4A(ATA)AT =T — 4AAT +4AAT =T

This shows that F; € O,(R) and hence F}; € Isom(R"™). In particular, when U is a
hyperspace (that is a vector space of dimension n — 1) and u is a non-zero vector in U=,

we have
T U

Projy . (x) = Proj, (x) = Wu and Fy(x) =2 — QW u.



7.6 Example: An affine space in R" is a set of the form P =p+ U = {p + x‘x € U}
for some point p € R™ and some vector space U € R™. For an affine space P = p+ U in
R"™, the reflection in P is the map F'p : R® — R" given by

Fp(z) =p+ Fy(z —p).
Note that F'p € Isom(R") because F'p is equal to the composite Fp =T, Fy,T_,.

7.7 Theorem: (The Algebraic Classification of Isometries) A map S : R™ — R"™ preserves
distance if and only if S is of the form S(x) = Az +b for some A € O, (R) and some b € R".

Proof: First note that if S(x) = Az + b where A € O,(R) and b € R™, then S is the
composite S = T, A, which is an isometry.

Conversely, suppose that S is an isometry. Let b = S(0) and define L : R — R by
L(z) = S(z) — b. Note that S(0) = 0 and that for z € R™ we have

[Z(2)|| = [|Z(2) = L(O)|| = [|(S(2)=b) = (S(0)=b)[| = [|S(z) = S(0)|| = ||z — Ol = ||
For z,y € R", we have
lz—yl*=(@—y) @—y) =z z—aey—yrxty-y=|z]* =2z y+ |yl
from which we obtain the Polarization Identity:
vy =g (lzl? + lyl? = llz - ylI*).
For z,y € R", using the Polarization Identity, we have
L(z)-L(y) = 3 (IL@) P+ L) 12 = [ L(2)-LW)II?) = 3 (=] +yI* = llz=yl?) = [z —yl>.
In particular, L(e;) « L(e;) = €; » e = 6, ; for all i, j, so the set {L(e1), L(e2), -, L(es)}
is an orthonormal basis for R™. For x € R", if we write x = > x;e; and L(x) = > t;L(e;)
‘ i=1

1—1
then we have

ty = L(x) « L(eg) =z » e, = xx

and so we have L(z) = Y. z,L(e;) = Az where A = (L(ey), L(ea), -+, L(e,)) € M,(R).
Since {L(e1), L(e2), -, L(e,)} is an orthonormal set, it follows that AT A = I so we have
A € O,(R). Thus S(z) = Az + b with A € O,,(R) and b € R, as required.

7.8 Corollary: Every distance preserving map S : R — R" is an isometry.

Proof: If § : R® — R™ preserves distance then S is invertible; indeed if S is given by
S(x) = Ax + b with A € O,,(R) and b € R™ then S~! is given by S~ !(z) = A~ 1z — A~ 1b.

7.9 Definition: Let S € Isom(R"), say S(z) = Az +b with A € O,,(R) and b € R™. Note
that since ATA = I we have det(A) = 1. We say that S preserves orientation when
det(A) = 1, and we say that S reverses orientation when det(A4) = —1. We write

Isom (R™) = {S € Isom(Rn)|S preserves orientation}.

7.10 Definition: For a nonempty set X C R™, the symmetry group of X in R” and
the rotation group of X in R" are the groups

Sym(X) = {S € Isom(R")|S(z) € X for all z € X} = {S € Isom(R")|S(X) = X }
Rot(X) = Sym(X) NIsom (R") = {S € Isom (R™)|S(X) = X }.



7.11 Theorem: (The Fixed Point Theorem) Let G be a finite subgroup of Isom(R").
Then G has a fixed point, that is there is a point p € G such that S(p) = p for all S € G.

Proof: Let G = {S1,5,+,5,} < Isom(R"). Fix a point a € R™ and let p = = 3~ S;(a).
i=1

Let k € {1,2,---,m}, and say Sy = Az = B with A € O,(R) and b € R™. Since left

multiplication by S is a permutation of G we have G = {SkSl, SESo, -, SkSm}, and so

m

Sk0) = i (% ﬁ:;l Si(@) = A(% 3 Si@) +b= (4 g;l A5i(a)) +

=1 i (ASi(a) +b) = L iSkSi(a) =52 Si=p

=1 =1 7j=1
Thus Sk (p) = p for all indices k, as required.

7.12 Example: The following maps are all isometries on R2.

(1) The identity map is the map I : R? — R? given by I(z) = z.

(2) For u € R?, the translation by u is the map T, : R? — R? given by T,,(z) = x + u.

3) For p € R? and @ € R, the rotation about p by @ is the map R_, : R2 — R? given by
p,0

cosf —sinf )

P

R, ¢(x) = p+ Ry(x —p) where Ry = (sinQ cosf

(4) For a line L in R?, the reflection in L is the map F; : R?> — R? which is given
by any of the following three equivalent formulas. When L is the line in R? through p
perpendicular to u, we have

2(x —p) - u
[l

When L is the line ax + by + ¢ = 0, the above formula becomes
b
(az + by + ) (a,b).

a? + b2
When L is the line through p in the direction of the vector (cos

Fi(z)=2—

Fu(ey) = (2.y) -

0
29

Pl e e e 5= (20

sin g), F; is given by

(5) For a vector u € R? and a line L in R? which is parallel to u, the glide reflection
G, R? — R? is the composite

u
Gu,L = TuFL = FLTu
(when L is not parallel to u, the composites T, F; and F; T, are not equal, and they are

not called glide reflections).

Of the above examples, the maps I, T}, and R, , all preserve orientation, while the maps
Fj, and G, | reverse orientation.



7.13 Theorem: (Composites of Reflections in R?) Let L and M be lines in R2.
(1) If L = M then F),F; = I.
(2) If L is parallel to M then Fy;F; =T,, where u is the vector from L orthogonally to M.

(3) If LN M ={p} then F),F; =R, 55 where 0 is the angle from L counterclockwise to M.

Proof: Suppose first that L = M. Say L is the line through p in the direction of the vector
(cos g,sm %) so that Fy (z) = p+ Fy(z — p). Then for all z € R? we have

FF(x)=F (p+ Fyle—p) =p+ Fy(F(z—p)) =p+z—p=2=I(z)

Next, suppose that L is parallel to M. Let u be the vector from L orthogonally to M, let
p€ Landlet g=p+u € M. Then for x,y € R? we have F} (z) = x — 2(z=p) " U and

Tull®
Fy(y)=y— %u and so
ForF (@) = By (o = 2000 o)
2(x—p) ®* u
. . 2(33—17) o . 2(137P7U7W u) U
- (m Tul “) Tal? u
—o-depen, femen, g gy HepJers,

=z +2u="1T,,(z).

Finally, suppose that L N M = {p}. Say L is in the direction of (cos 5,s8in 5 ) and M is

in the direction of (cos /g,sm £). Then for z,y € R? we have Fy(z) = p+ F,(z — p) and

Fy(y) = p+ F(y — p) and so
FyFr(z) = Fy (p+ F(x—p)) =p+ F3(F,(x —p)) =p+ Ry_o(x —p) = R, 99()
where 6§ = g — 5, which is the angle from L to M.

7.14 Theorem: (The Geometric Classification of Isometries on R?) Every isometry on R?
is equal to one of the maps I , T,, , R, o, F, , G, .

Proof: Let S € Isom(R?), say S(x) = Az + b with A € O3(R) and b € R%. Recall that
the elements in O3(R) are the rotation and reflection matrices R, and Fj, and so with
S =T,Ryor S=T1T,F, where u = —b. First suppose that S = T} Ry. Let M be the
line through the origin perpendicular to u. Let L = R_, 5(M) so that Fy F; = R,. Let
N =T, 5(M) so that T, = FyFy,. Then § = T,Ry = FyFyFyFy = FyFy. By the
above theorem, S is equal to the identity, a translation, or a rotation.

Now suppose that S =T, Fy. Let L be the line through the origin in the direction of
(cos g, sin 2 ) so that Fy = F;. Let M be the line through the origin which is perpendicular
to u and let N =T, ,5(M) so that T,, = F, F};. Then we have S = Fy F),F;. Note that
Fy F; = Ry, where « is the angle from L to M. Let N’ = N, let M’ be the line through
(0,0) which is perpendicular to N’, and let L' = R__(M’) so that Fy; F;, = R,,. Then
S = FxFyF, = FyRy, = Fy/Fyp Fpy = R, Fy, where p is the point of intersection
of M’ and N’ (which are perpendicular). Let L" = L', let M"” be the line through
p parallel to L' and let N = R, ,o(M") so that R, = Fy.Fy,. Then we have
S=R, Fr, = FxyEFyFy. Since L is parallel to M" we have Fy;, Iy, = Ty, where v
is the vector from L” to M". Since L” and M" are perpendicular to N”, the vector v is
parallel to N and so S = Fy.T}, is a glide reflection (or a reflection when v = 0).



7.15 Theorem: (The Classification of Finite Groups of Isometries on R?) Every finite
subgroup of Isom(R?) is isomorphic to C,, or D,, for some n € Z*.

Proof: Let G be a finite subgroup of Isom(RR?). Note that GG cannot contain a translation
T, with u # 0 or a glide reflection G, 1, with u # 0 because T, and G,, ;, both have infinite
order. Similarly, G cannot contain a rotation R, , where « is an irrational multiple of 27
because such a rotation has infinite order. Note that if G' contains two rotations R, ,
and R, 5 then we must have p = ¢ because G has a fixed point and R, , only fixes
the point p and R, 53 only fixes the point g. Note that if G contains only one unique
reflection, then G cannot contain a rotation because if we had R, , € G and F, € G then
p would be the unique fixed point of G so we would have p € L and would follow that
R, F = FyFLF, = Fysothat Fy, € G where M = Rp,a/Q(L) so that Fp, F'yy = R, .
Note that if G contains two distinct reflections F'; and F',; then we cannot have L and M
parallel (since if they were parallel then F',,; F';, would be a translation) so G contains the
rotation R, , = Fy,F'; where L N M = {p}, hence p is the unique fixed point of G, hence
p € M for every line M such that Fy; € G.

We claim that if G contains a rotation, then the set R of all rotations in G is a cyclic
subgroup of GG. We have already seen that all rotations are about the same point, say
p. Let a be the smallest positive real number for which R, , € G. Let 8 = R, 5 € G.

Write o = % and 8 = 27“ Write | = gk + r with 0 < r < k. Then for v = 2_27“ we
have <Rp’7 = Rp75(Rp7a)_q € G which implies that » = 0 by the minimality of a. Thus
R=(R

f1e :

Firfally, not that if G contains a reflection F'; and a rotation, and the above group
R is generated by R, ,, then G contains all the reflections F, = R, F; with k € Z*
and no other reflections. Indeed, if F';; € G then we have already seen that p € M hence
F,,F; is a rotation so we have F'j;F; € R = <Rp,a> so we have Iy F; = R, ., for some
k € Z" hence Fy; = R, ;. Fp.

We summarize. If G contains no rotations and no reflections then G = {I}. If
G contains only reflections then G = {I, F} for some reflection F. If G contains only

rotations then G = (R) for some rotation R = R, ./, with n € Z*. If G contains a
reflection and a rotation, then we have G = (R, F') = {R’“, RFF ’k € Zn} for some rotation
of the form R = R, , ./, and a reflection F' = F'; for some line L with p € L. In the final
case one can verify that G = D,,.



7.16 Example: The following maps are all isometries on R3.

(1) the identity map is the map I : R3 — R? given by I(x) = z.

(2) For u € R3, the translation by u is the map T}, : R® — R? given by T}, (7) = x + u.
(3) For a point p € R3, a nonzero vector 0 # u € R3 and an angle §# € R the rotation

R, .0 :R®> = R’ is given by

Rp,uﬂ(x) =p+t Ruﬁ(x —p)

where R,  is the rotation in R3 about the vector u by the angle 6; if {u, v, w} is a positively
oriented orthogonal basis for R with all three vectors u, v and w of the same length, then
R =R, ,is given by R(u) = u, R(v) = (cos 0)v+(sinf)w and R(w) = —(sinf)v+ (cos 0)w
(4) For a point p € R3, a nonzero vector 0 # u € R3 and an angle § € R the twist
W, wo i R — R3 is the composite Wy, 0 = T, R, g = R, 0T,

(5) For a plane P in R3, the reflection in P is the map Fp : R3 — R3 described in
example 7.6.

(6) For a vector u € R? and a plane P in R? which is parallel to u, the glide reflection
G, p : R* = R? is the composite G, p =T, Fp = FpT,,.

(7) For a point p € R3, a nonzero vector 0 # u € R? and an angle § € R , the rotary
reflection H,, , o : R3 — R3 is the composite H,.o=R,,oF'p =FpR,, o where P is
the plane through p perpendicular to u.

7.17 Theorem: (The Geometric Classification of Isometries in R3) Every isometry on R3
is equal one of the following

I,T,, R

D,u,0

W

p,u,0

Fp, Gup, Hyup-

p,u,

Proof: We omit the proof.

7.18 Theorem: (The Classification of Finite Rotation Groups in R?) Every finite rotation
group is isomorphic to one of the groups

Cn, Dn, Ag, Sy, As.
Proof: We omit the proof.

7.19 Definition: Let X be a set and let G < Perm(X). For f € G, the fixed point set
of f is the set
Fix(f) = {z € X|f(z) =z} C X.

For a € X, the orbit of ¢ under G is the set
Orb(a) = {f(a ‘fGG}gX.

Note that the distinct orbits are dlSJOlIlt since for a,b € X, if b € Orb(a) with say b = f(a)
then we have a € Orb(b) since a = f~1(b). The set of distinct orbits is denoted by X/G
so we have

X/G = {Orb(a ‘a €X}.
For a € X, the stabilizer of a in G is the subgroup
Stab(a) = {f € G|f(a) =a} < G.

Note that Stab(a) is a subgroup of G because I(a) = a so that I € Stab(a), if f,g € Stab(a)
then (fg)(a) = f(g(a)) = f(a) = a so that fg € Stab(a), and if f € Stab(a) then

f~Ya) = f~1(f(a)) = a so that f=! € Stab(a).



7.20 Theorem: (The Orbit/Stabilizer Theorem) Let X be a set and let G be a finite
subgroup of Perm(X). Then for all a € X we have

|G| = |Orb(a)||Stab(a)|.

Proof: Let a € X. Let H = Stab(a) < G. Define ® : G/H — Orb(a) by ®(fH) = f(a).
Note that ® is well defined because for f,g € G we have

JH=gH =g~ f € H= g f(a) =a= f(a) = g(a) = O(fH) = D(gH).
Note that ® is injective because for f,g € G we have

O(fH) = ®(gH) = f(a) = gla) =g 'fla)=a—= g 'f€e H—= fH =gH.
Finally, note that ® is clearly surjective.
7.21 Theorem: (The Burnside-Cauchy-Frobenius Lemma) Let X be a set and let G be
a finite subgroup of Perm(X). Then

G| X/G| = Z |Fix(a)

acG
Proof: Let T = {(f,a)‘f €Gac X, fla)= a}. Then we have
7| =" [{ac X|f(a) = a}| = Y [Fix(f)|
fea fea

and we have

T1=3_ {f €Glf(@) = a}| = }_ [Stabla \—Z,O'G'

aeX acX
|G|Z|Ob =Gl > Z =lcl Y 1=I6l|x/6|.
AeX/G aeA AeX/G

7.22 Example: In how many ways (up to symmetry under the symmetry group Dg) can
we colour the vertices of the regular hexagon Cg using 3 colours?

Solution: Let X be the set of possible colourings without considering symmetry under
Dg, and note that |X| = 3%. Each element of Dg permutes the vertices of Cg and hence
permutes the elements of X, and in this way we identify Dg with a subgroup of Perm(X).
We make a table showing |Fix(A)| for each A € Dg < Perm(X).

A # of such A ‘FiX(A)|

I 1 30

Rs 1 33

Ry, Ry 2 32

R17 R5 2 31

F07 FQ; F4 3 34

Fy, F3, F; 3 33

The number of colourings up to Dg symmetry is equal to the number of orbits, which is
| X/Dg| = |D | > |Fix(A)| = 5(3°+3%+2.32+2.31 + 3.3+ 3-3%) = 92.
A€Dg

7.23 Example: Let G be the rotation group of a cube Q. In how many ways (up to
symmetry under G) can we colour the 8 vertices of () using 2 colours?
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