
Chapter 7. Isometries and Symmetry Groups

7.1 Definition: For a map S : Rn → Rn, we say that S preserves distance when∥∥S(x)− S(y)
∥∥ = ‖x− y‖

for all x, y ∈ Rn. An isometry on Rn is an invertible map S : Rn → Rn which preserves
distance. The set of all isometries on Rn is denoted by Isom(Rn).

7.2 Theorem: The set of isometries on Rn is a group under composition.

Proof: The identity map I : Rn → Rn is an isometry because
∥∥I(x) − I(y)

∥∥ = ‖x − y‖
for all x, y ∈ Rn. Note that if S, T ∈ Isom(Rn) then we have ST ∈ Isom(Rn) because for
x, y ∈ Rn we have ∥∥S(T (x))− S(T (y))

∥∥ =
∥∥T (x)− T (y)

∥∥ = ‖x− y‖.
Finally, note that if S ∈ Isom(Rn) then S−1 ∈ Isom(Rn) because given u, v ∈ Rn, if we let
x = S−1(u) and y = S−1(v) so that u = S(x) and v = S(y) then we have∥∥S−1(u)− S−1(v)

∥∥ = ‖x− y‖ = ‖S(x)− S(y)‖ = ‖u− v‖.

Thus Isom(Rn) ≤ Perm(Rn) by the Subgroup Test.

7.3 Example: For a vector u ∈ Rn, the translation by u is the map Tu : Rn → Rn given
by Tu(x) = x+ u. Note that Tu is an isometry on Rn because∥∥Tu(x)− Tu(y)

∥∥ =
∥∥(u+ x)− (u+ y)

∥∥ = ‖x− y‖ .

7.4 Example: If A ∈ On(R), so that ATA = I, then the map S : Rn → Rn given by
S(x) = Ax is an isometry because for x, y ∈ Rn we have∥∥Ax−Ay∥∥2 =

∥∥A(x− y)
∥∥2 =

(
A(x− y)

)T (
A(x− y)

)
= (x− y)TATA(x− y) = (x− y)T (x− y) = ‖x− y‖2.

7.5 Example: For a vector space U in Rn, the reflection in U is the map FU : Rn → Rn
given by

FU (x) = x− 2 ProjU⊥(x)

where ProjU⊥(x) is the orthogonal projection of x onto U⊥. When {u1, u2, · · · , uk} is an
orthonormal basis for U⊥ and A =

(
u1, u2, · · · , uk

)
∈Mn×k(R), recall that

ProjU⊥(x) =
n∑
i=1

(x.ui)ui = AATx ,

FU (x) = x− 2AATx = (I − 2AAT )x.

Note that since {u1, u2, · · · , uk} is orthonormal, we have A ∈ On(R), that is ATA = I, and
it follows that (I − 2AAT ) ∈ On(R) because

(I−2AAT )T (I − 2AAT ) = I − 2AAT − 2AAT + 4AATAAT

= I − 4AAT + 4A(ATA)AT = I − 4AAT + 4AAT = I.

This shows that FU ∈ On(R) and hence FU ∈ Isom(Rn). In particular, when U is a
hyperspace (that is a vector space of dimension n − 1) and u is a non-zero vector in U⊥,
we have

ProjU⊥(x) = Proju(x) =
x.u
‖u‖2

u and FU (x) = x− 2
x.u
‖u‖2

u.
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7.6 Example: An affine space in Rn is a set of the form P = p + U =
{
p + x

∣∣x ∈ U}
for some point p ∈ Rn and some vector space U ∈ Rn. For an affine space P = p + U in
Rn, the reflection in P is the map FP : Rn → Rn given by

FP (x) = p+ FU (x− p).

Note that FP ∈ Isom(Rn) because FP is equal to the composite FP = TpFUT−p.

7.7 Theorem: (The Algebraic Classification of Isometries) A map S : Rn → Rn preserves
distance if and only if S is of the form S(x) = Ax+b for some A ∈ On(R) and some b ∈ Rn.

Proof: First note that if S(x) = Ax + b where A ∈ On(R) and b ∈ Rn, then S is the
composite S = TbA, which is an isometry.

Conversely, suppose that S is an isometry. Let b = S(0) and define L : R → R by
L(x) = S(x)− b. Note that S(0) = 0 and that for x ∈ Rn we have∥∥L(x)

∥∥ =
∥∥L(x)− L(0)

∥∥ =
∥∥(S(x)−b)− (S(0)−b)

∥∥ = ‖S(x)− S(0)‖ = ‖x− 0‖ = ‖x‖.

For x, y ∈ Rn, we have

‖x− y‖2 = (x− y). (x− y) = x.x− x. y − y .x+ y . y = ‖x‖2 − 2x. y + ‖y‖2

from which we obtain the Polarization Identity:

x. y = 1
2

(
‖x‖2 + ‖y‖2 − ‖x− y‖2

)
.

For x, y ∈ Rn, using the Polarization Identity, we have

L(x).L(y) = 1
2

(
‖L(x)‖2+‖L(y)‖2−‖L(x)−L(y)‖2

)
= 1

2

(
‖x‖2+‖y‖2−‖x−y‖2

)
= ‖x−y‖2.

In particular, L(ei).L(ej) = ei . ej = δi,j for all i, j, so the set
{
L(e1), L(e2), · · · , L(en)

}
is an orthonormal basis for Rn. For x ∈ Rn, if we write x =

n∑
i−1

xiei and L(x) =
n∑
i=1

tiL(ei)

then we have
tk = L(x).L(ek) = x. ek = xk

and so we have L(x) =
∑
xkL(ek) = Ax where A =

(
L(e1), L(e2), · · · , L(en)

)
∈ Mn(R).

Since
{
L(e1), L(e2), · · · , L(en)

}
is an orthonormal set, it follows that ATA = I so we have

A ∈ On(R). Thus S(x) = Ax+ b with A ∈ On(R) and b ∈ Rn, as required.

7.8 Corollary: Every distance preserving map S : Rn → Rn is an isometry.

Proof: If S : Rn → Rn preserves distance then S is invertible; indeed if S is given by
S(x) = Ax+ b with A ∈ On(R) and b ∈ Rn then S−1 is given by S−1(x) = A−1x−A−1b.

7.9 Definition: Let S ∈ Isom(Rn), say S(x) = Ax+ b with A ∈ On(R) and b ∈ Rn. Note
that since ATA = I we have det(A) = ±1. We say that S preserves orientation when
det(A) = 1, and we say that S reverses orientation when det(A) = −1. We write

Isom+(Rn) =
{
S ∈ Isom(Rn)

∣∣S preserves orientation
}
.

7.10 Definition: For a nonempty set X ⊆ Rn, the symmetry group of X in Rn and
the rotation group of X in Rn are the groups

Sym(X) =
{
S ∈ Isom(Rn)

∣∣S(x) ∈ X for all x ∈ X
}

=
{
S ∈ Isom(Rn)

∣∣S(X) = X
}

Rot(X) = Sym(X) ∩ Isom+(Rn) =
{
S ∈ Isom+(Rn)

∣∣S(X) = X
}
.

2



7.11 Theorem: (The Fixed Point Theorem) Let G be a finite subgroup of Isom(Rn).
Then G has a fixed point, that is there is a point p ∈ G such that S(p) = p for all S ∈ G.

Proof: Let G = {S1, S2, · · · , Sm} ≤ Isom(Rn). Fix a point a ∈ Rn and let p = 1
m

m∑
i=1

Si(a).

Let k ∈ {1, 2, · · · ,m}, and say Sk = Ax = B with A ∈ On(R) and b ∈ Rn. Since left
multiplication by Sk is a permutation of G we have G =

{
SkS1, SkS2, · · · , SkSm

}
, and so

Sk(p) = Sk

(
1
m

m∑
i=1

Si(a)
)

= A
(

1
m

m∑
i=1

Si(a)
)

+ b =
(

1
m

m∑
i=1

ASi(a)
)

+ b

= 1
m

m∑
i=1

(
ASi(a) + b

)
= 1

m

m∑
i=1

SkSi(a) = 1
m

m∑
j=1

Sj = p.

Thus Sk(p) = p for all indices k, as required.

7.12 Example: The following maps are all isometries on R2.

(1) The identity map is the map I : R2 → R2 given by I(x) = x.
(2) For u ∈ R2, the translation by u is the map Tu : R2 → R2 given by Tu(x) = x+ u.
(3) For p ∈ R2 and θ ∈ R, the rotation about p by θ is the map Rp,θ : R2 → R2 given by

Rp,θ(x) = p+Rθ(x− p) where Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

(4) For a line L in R2, the reflection in L is the map FL : R2 → R2 which is given
by any of the following three equivalent formulas. When L is the line in R2 through p
perpendicular to u, we have

FL(x) = x− 2(x− p).u
‖u‖2

u.

When L is the line ax+ by + c = 0, the above formula becomes

FL(x, y) = (x, y)− 2(ax+ by + c)

a2 + b2
(a, b).

When L is the line through p in the direction of the vector
(

cos θ2 , sin
θ
2

)
, FL is given by

FL(x) = p+ Fθ(x− p) where Fθ =

(
cos θ sin θ
− sin θ cos θ

)
.

(5) For a vector u ∈ R2 and a line L in R2 which is parallel to u, the glide reflection
Gu,L : R2 → R2 is the composite

Gu,L = TuFL = FLTu

(when L is not parallel to u, the composites TuFL and FLTu are not equal, and they are
not called glide reflections).

Of the above examples, the maps I, Tu and Rp,θ all preserve orientation, while the maps
FL and Gu,L reverse orientation.
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7.13 Theorem: (Composites of Reflections in R2) Let L and M be lines in R2.

(1) If L = M then FMFL = I.
(2) If L is parallel to M then FMFL=T2u where u is the vector from L orthogonally to M .
(3) If L∩M={p} then FMFL=Rp,2θ where θ is the angle from L counterclockwise to M .

Proof: Suppose first that L = M . Say L is the line through p in the direction of the vector(
cos θ2 , sin

θ
2

)
so that FL(x) = p+ Fθ(x− p). Then for all x ∈ R2 we have

FLFL(x) = FL
(
p+ Fθ(x− p)

)
= p+ Fθ

(
Fθ(x− p)

)
= p+ x− p = x = I(x).

Next, suppose that L is parallel to M . Let u be the vector from L orthogonally to M , let

p ∈ L and let q = p + u ∈ M . Then for x, y ∈ R2 we have FL(x) = x − 2(x−p).u
‖u‖2 u and

FM (y) = y − 2(y−p−u).u
‖u‖2 u and so

FMFL(x) = FM

(
x− 2(x−p).u

‖u‖2 u
)

=
(
x− 2(x−p).u

‖u‖2 u
)
−

2
(
x−p−u− 2(x−p).u

‖u‖2
u
).u

‖u‖2 u

= x− 2(x−p).u
‖u‖2 u− 2(x−p).u

‖u‖2 u+ 2u.u
‖u‖2 u+

4
(
(x−p).u)(u.u)

‖u‖4 u

= x+ 2u = T2u(x).

Finally, suppose that L ∩M = {p}. Say L is in the direction of
(

cos α2 , sin
α
2

)
and M is

in the direction of
(

cos β2 , sin
β
2

)
. Then for x, y ∈ R2 we have FL(x) = p + Fα(x − p) and

FM (y) = p+ Fβ(y − p) and so

FMFL(x) = FM
(
p+ Fα(x− p)

)
= p+ Fβ

(
Fα(x− p)

)
= p+Rβ−α(x− p) = Rp,2θ(x)

where θ = β
2 −

α
2 , which is the angle from L to M .

7.14 Theorem: (The Geometric Classification of Isometries on R2) Every isometry on R2

is equal to one of the maps I , Tu , Rp,θ , FL , Gu,L.

Proof: Let S ∈ Isom(R2), say S(x) = Ax + b with A ∈ O2(R) and b ∈ R2. Recall that
the elements in O2(R) are the rotation and reflection matrices Rθ and Fθ, and so with
S = TuRθ or S = TuFθ where u = −b. First suppose that S = TuRθ. Let M be the
line through the origin perpendicular to u. Let L = R−θ/2(M) so that FMFL = Rθ. Let
N = Tu/2(M) so that Tu = FNFM . Then S = TuRθ = FNFMFMFL = FMFL. By the
above theorem, S is equal to the identity, a translation, or a rotation.

Now suppose that S = TuFθ. Let L be the line through the origin in the direction of(
cos θ2 , sin

θ
2

)
so that Fθ = FL. Let M be the line through the origin which is perpendicular

to u and let N = Tu/2(M) so that Tu = FnFM . Then we have S = FNFMFL. Note that
FMFL = R2α where α is the angle from L to M . Let N ′ = N , let M ′ be the line through
(0, 0) which is perpendicular to N ′, and let L′ = R−α(M ′) so that FM ′FL′ = R2α. Then
S = FNFMFL = FNR2α = FN ′FM ′FL′ = Rp,πFL′ where p is the point of intersection
of M ′ and N ′ (which are perpendicular). Let L′′ = L′, let M ′′ be the line through
p parallel to L′ and let N ′′ = Rp.π/2(M ′′) so that Rp,π = FN ′′FM ′′ . Then we have
S = Rp,πFL′ = FN ′′FM ′′FL′′ . Since L′′ is parallel to M ′′ we have FM ′′FL′′ = T2v where v
is the vector from L′′ to M ′′. Since L′′ and M ′′ are perpendicular to N ′′, the vector v is
parallel to N ′′ and so S = FN ′′T2v is a glide reflection (or a reflection when v = 0).
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7.15 Theorem: (The Classification of Finite Groups of Isometries on R2) Every finite
subgroup of Isom(R2) is isomorphic to Cn or Dn for some n ∈ Z+.

Proof: Let G be a finite subgroup of Isom(R2). Note that G cannot contain a translation
Tu with u 6= 0 or a glide reflection Gu,L with u 6= 0 because Tu and Gu,L both have infinite
order. Similarly, G cannot contain a rotation Rp,α where α is an irrational multiple of 2π
because such a rotation has infinite order. Note that if G contains two rotations Rp,α
and Rq,β then we must have p = q because G has a fixed point and Rp,α only fixes
the point p and Rq,β only fixes the point q. Note that if G contains only one unique
reflection, then G cannot contain a rotation because if we had Rp,α ∈ G and FL ∈ G then
p would be the unique fixed point of G so we would have p ∈ L and would follow that
Rp,αFL = FMFLFL = FM so that FM ∈ G where M = Rp,α/2(L) so that FMFM = Rp,α.
Note that if G contains two distinct reflections FL and FM then we cannot have L and M
parallel (since if they were parallel then FMFM would be a translation) so G contains the
rotation Rp,α = FMFL where L ∩M = {p}, hence p is the unique fixed point of G, hence
p ∈M for every line M such that FM ∈ G.

We claim that if G contains a rotation, then the set R of all rotations in G is a cyclic
subgroup of G. We have already seen that all rotations are about the same point, say
p. Let α be the smallest positive real number for which Rp,α ∈ G. Let β = Rp,β ∈ G.

Write α = 2πk
n and β = 2πl

n . Write l = qk + r with 0 ≤ r < k. Then for γ = 2πr
n we

have Rp,γ = Rp,β(Rp,α
)−q ∈ G which implies that r = 0 by the minimality of α. Thus

R =
〈
Rp,α

〉
.

Finally, not that if G contains a reflection FL and a rotation, and the above group
R is generated by Rp,α, then G contains all the reflections FM = Rp,kαFL with k ∈ Z+

and no other reflections. Indeed, if FM ∈ G then we have already seen that p ∈M hence
FMFL is a rotation so we have FMFL ∈ R =

〈
Rp,α

〉
so we have FMFL = Rp,kα for some

k ∈ Z+ hence FM = Rp,kαFL.
We summarize. If G contains no rotations and no reflections then G = {I}. If

G contains only reflections then G = {I, F} for some reflection F . If G contains only
rotations then G = 〈R〉 for some rotation R = Rp,2π/n with n ∈ Z+. If G contains a

reflection and a rotation, then we have G = 〈R,F 〉 =
{
Rk, RkF

∣∣k ∈ Zn
}

for some rotation
of the form R = Rp,2π/n and a reflection F = FL for some line L with p ∈ L. In the final
case one can verify that G ∼= Dn.
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7.16 Example: The following maps are all isometries on R3.

(1) the identity map is the map I : R3 → R3 given by I(x) = x.
(2) For u ∈ R3, the translation by u is the map Tu : R3 → R3 given by Tu(x) = x+ u.
(3) For a point p ∈ R3, a nonzero vector 0 6= u ∈ R3 and an angle θ ∈ R the rotation
Rp,u,θ : R3 → R3 is given by

Rp,u,θ(x) = p+Ru,θ(x− p)

where Ru,θ is the rotation in R3 about the vector u by the angle θ; if {u, v, w} is a positively

oriented orthogonal basis for R3 with all three vectors u, v and w of the same length, then
R = Ru,θ is given by R(u) = u, R(v) = (cos θ)v+(sin θ)w and R(w) = −(sin θ)v+(cos θ)w.

(4) For a point p ∈ R3, a nonzero vector 0 6= u ∈ R3 and an angle θ ∈ R the twist
Wp,u,θ : R3 → R3 is the composite Wp,u,θ = TuRp,u,θ = Rp,u,θTu.

(5) For a plane P in R3, the reflection in P is the map FP : R3 → R3 described in
example 7.6.
(6) For a vector u ∈ R3 and a plane P in R3 which is parallel to u, the glide reflection
Gu,P : R3 → R3 is the composite Gu,P = TuFP = FPTu.

(7) For a point p ∈ R3, a nonzero vector 0 6= u ∈ R3 and an angle θ ∈ R , the rotary
reflection Hp,u,θ : R3 → R3 is the composite Hp,u,θ = Rp,u,θFP = FPRp,u,θ where P is
the plane through p perpendicular to u.

7.17 Theorem: (The Geometric Classification of Isometries in R3) Every isometry on R3

is equal one of the following

I , Tu , Rp,u,θ , Wp,u,θ , FP , Gu,P , Hp,u,θ .

Proof: We omit the proof.

7.18 Theorem: (The Classification of Finite Rotation Groups in R3) Every finite rotation
group is isomorphic to one of the groups

Cn , Dn , A4 , S4 , A5 .

Proof: We omit the proof.

7.19 Definition: Let X be a set and let G ≤ Perm(X). For f ∈ G, the fixed point set
of f is the set

Fix(f) =
{
x ∈ X

∣∣f(x) = x
}
⊆ X.

For a ∈ X, the orbit of a under G is the set

Orb(a) =
{
f(a)

∣∣f ∈ G} ⊆ X.
Note that the distinct orbits are disjoint since for a, b ∈ X, if b ∈ Orb(a) with say b = f(a)
then we have a ∈ Orb(b) since a = f−1(b). The set of distinct orbits is denoted by X/G
so we have

X/G =
{

Orb(a)
∣∣a ∈ X}.

For a ∈ X, the stabilizer of a in G is the subgroup

Stab(a) =
{
f ∈ G

∣∣f(a) = a
}
≤ G.

Note that Stab(a) is a subgroup of G because I(a) = a so that I ∈ Stab(a), if f, g ∈ Stab(a)
then (fg)(a) = f(g(a)) = f(a) = a so that fg ∈ Stab(a), and if f ∈ Stab(a) then
f−1(a) = f−1(f(a)) = a so that f−1 ∈ Stab(a).
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7.20 Theorem: (The Orbit/Stabilizer Theorem) Let X be a set and let G be a finite
subgroup of Perm(X). Then for all a ∈ X we have

|G| =
∣∣Orb(a)

∣∣∣∣Stab(a)
∣∣.

Proof: Let a ∈ X. Let H = Stab(a) ≤ G. Define Φ : G/H → Orb(a) by Φ(fH) = f(a).
Note that Φ is well defined because for f, g ∈ G we have

fH = gH =⇒ g−1f ∈ H =⇒ g−1f(a) = a =⇒ f(a) = g(a) =⇒ Φ(fH) = Φ(gH) .

Note that Φ is injective because for f, g ∈ G we have

Φ(fH) = Φ(gH) =⇒ f(a) = g(a) =⇒ g−1f(a) = a =⇒ g−1f ∈ H =⇒ fH = gH .

Finally, note that Φ is clearly surjective.

7.21 Theorem: (The Burnside-Cauchy-Frobenius Lemma) Let X be a set and let G be
a finite subgroup of Perm(X). Then

|G|
∣∣X/G∣∣ =

∑
a∈G

∣∣Fix(a)
∣∣ .

Proof: Let T =
{

(f, a)
∣∣f ∈ G, a ∈ X, f(a) = a

}
. Then we have

|T | =
∑
f∈G

∣∣{a ∈ X|f(a) = a}
∣∣ =

∑
f∈G

∣∣Fix(f)
∣∣

and we have

|T | =
∑
a∈X

∣∣{f ∈ G∣∣f(a) = a}
∣∣ =

∑
a∈X

∣∣Stab(a)
∣∣ =

∑
a∈X

|G|
|Orb(a)|

= |G|
∑
a∈X

1

|Orb(a)|
= |G|

∑
A∈X/G

∑
a∈A

1

|A|
= |G|

∑
A∈X/G

1 = |G|
∣∣X/G∣∣ .

7.22 Example: In how many ways (up to symmetry under the symmetry group D6) can
we colour the vertices of the regular hexagon C6 using 3 colours?

Solution: Let X be the set of possible colourings without considering symmetry under
D6, and note that |X| = 36. Each element of D6 permutes the vertices of C6 and hence
permutes the elements of X, and in this way we identify D6 with a subgroup of Perm(X).
We make a table showing

∣∣Fix(A)
∣∣ for each A ∈ D6 ≤ Perm(X).

A # of such A
∣∣Fix(A)

∣∣
I 1 36

R3 1 33

R2, R4 2 32

R1, R5 2 31

F0, F2, F4 3 34

F1, F3, F5 3 33

The number of colourings up to D6 symmetry is equal to the number of orbits, which is∣∣X/D6

∣∣ =
1

|D6|
∑
A∈D6

∣∣Fix(A)
∣∣ = 1

12

(
36 + 33 + 2 · 32 + 2 · 31 + 3 · 34 + 3 · 32

)
= 92 .

7.23 Example: Let G be the rotation group of a cube Q. In how many ways (up to
symmetry under G) can we colour the 8 vertices of Q using 2 colours?

7


