1: (a) Write down the multiplication table for U_{18} .

Solution:		1	5	$\overline{7}$	11	13	17
	1	1	5	7	11	13	17
	5	5	7	17	1	11	13
	7	7	17	13	5	1	11
	11	11	1	5	13	17	7
	13	13	11	1	17	$\overline{7}$	5
	17	17	13	11	7	5	1

(b) Find the order of each element in U_{18} .

Solution: We tabulate powers of each element a until we reach n such that $a^n = 1$.

 a^3 a^4 a^2 $a^5 a^6$ a1 17 13 11 1 57 7 131 11 13177 51 1371 171

The table shows that |1| = 1, |5| = |11| = 6, |7| = |13| = 3 and |17| = 2.

2: Determine which of the following are groups.

(a) $X = \{(x, y) \in \mathbb{R}^2 | x^2 = y^2 \}$ under vector adition.

Solution: This is not a group because vector addition is not an operation on X (X is not closed under +), for example $(1,1) \in X$ and $(1,-1) \in X$ but $(1,1) + (1,-1) = (1,0) \notin X$.

(b) $G = \{1, 3, 5, 7, 9\}$ under multiplication modulo 10.

Solution: This is not a group. If it were, then the identity would have to be 1, but then 5 has no inverse.

(c) \mathbb{R} under the operation * given by x * y = x + y + 1.

Solution: This is a group. The operation * is associative since (x * y) * z = (x + y + 1) * z = x + y + z + 2 and x * (y * z) = x * (y + z + 1) = x + y + z + 2. To find the identity e, we solve x * e = x, that is x + e + 1 = x to get e = -1. To find the inverse of $x \in \mathbb{R}$, we solve x * y = e, that is x + y + 1 = -1, to get y = -x - 2.

(d) $H = \{1, 2, 4, 8, 16\}$ under the operation * given by $a * b = \gcd(a, b)$.

Solution: This is not a group. If it were, then the identity would have to be 16, since gcd(a, 16) = a for all $a \in H$. But then 16 is the only element in H with an inverse, since for $a, b \in H$, $gcd(a, b) = 16 \implies a = b = 16$.

3: Let G be a group with identity e. Prove each of the following statements.

(a) If $(\forall a, b, c \in G \ ab = ca \Rightarrow b = c)$ then G is abelian.

Solution: Suppose that for all $a, b, c \in G$ we have $ab = ca \Longrightarrow b = c$ (so we can cancel an a on the left with an a on the right). Then since aba = aba, we can cancel the a on the left with the a on the right to get ba = ab.

(b) If $(\forall a, b \in G \ (ab)^2 = a^2b^2)$ then G is abelian.

Solution: Suppose that for all $a, b \in G$ we have $(ab)^2 = a^2b^2$. Then from abab = aabb, cancel the *a* on the left to get bab = abb, and then cancel the *b* on the right to get ba = ab.

(c) If $(\forall a \in G \ a^2 = e)$ then G is abelian.

Solution: Suppose that for all $a \in G$ we have $a^2 = e$. Then in particular, given $a, b \in G$ we have aa = e, bb = e and abab = e. Multiply the equation abab = e on the left by a to get aabab = a, use the fact that aa = e to get bab = a, then multiply on the right by b to get babb = ab and use bb = e to get ba = ab.