PMATH 336 Introduction to Group Theory, Exercises for Chapter 2

1: In D_{n}, for $k \in \mathbb{Z}_{n}$, we write R_{k} for the rotation in about the point $(0,0)$ by the angle $\frac{2 \pi k}{n}$, and we write F_{k} for the reflection in the line through $(0,0)$ and $\left(\cos \frac{\pi k}{n}, \sin \frac{\pi k}{n}\right)$.
(a) Find all values of $k \in \mathbb{Z}_{6}$ such that $F_{3} R_{k} F_{1}=R_{k}$ in D_{6}.
(b) Find the centralizer of F_{1} in D_{6}.

2: (a) Find $\left|G L\left(3, \mathbb{Z}_{2}\right)\right|$
(b) List all the elements in $S O\left(3, \mathbb{Z}_{2}\right)$.

3: (a) Show that U_{26} is cyclic.
(b) List all the elements and all the generators in every subgroup of U_{26}.

4: (a) Determine the number of subgroups of $\mathbb{Z}_{12,000}$.
(b) Find the number of elements of even order in $\mathbb{Z}_{12,000}$.

5: (a) Find the number of elements of each order in $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$.
(b) List all the elements in every cyclic subgroup of $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$.
(c) List all the elements in every non-cyclic subgroup of $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$. Explain why your list is complete.

