PMATH 336 Introduction to Group Theory, Solutions to the Exercises for Chapter 3

1: In S_{8}, let $\alpha=(1632)(27)(3748)$ and let $\beta=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 7 & 2 & 8 & 4 & 1 & 6\end{array}\right)$.
(a) Find $|\alpha|$ and find $(-1)^{\beta}$.

Solution: First we express α and β as products of disjoint cycles. We find that $\alpha=(163)(2748)$ and $\beta=(137)(25864)$. So $|\alpha|=\operatorname{lcm}(3,4)=12$ and $(-1)^{\beta}=(-1)^{4+6}=1$.
(b) Express each of the permutations α^{110} and $\alpha \beta \alpha^{-1}$ as products of disjoint cycles.

Solution: We have $\alpha^{110}=\alpha^{9 \cdot 12+8}=\left(\alpha^{12}\right)^{9} \alpha^{2}=\alpha^{2}=(163)^{2}(2748)^{2}=(136)(24)(78)$, and we have $\alpha \beta \alpha^{-1}=$ $(163)(2748)(137)(25864)(136)(2847)=(146)(23875)$.

2: (a) Find the number of elements of each order in S_{7} and in A_{7}.
Solution: We find the number of permutations of each form, them we list the number of each order.

form of α	$\|\alpha\|$	$(-1)^{\alpha}$	$\#$ of such α				
(a)	1	+	1				
(ab)	2	-	$\binom{7}{2}=21$	In S_{7} :			
$(a b)(c d)$	2	+	$\binom{7}{4} \cdot 3=105$			In A_{7} :	
$(a b)(c d)(e f)$	2	-	$\binom{7}{6} \cdot 5 \cdot 3=105$	order	\#	order	\#
(abc)	3	+	$\binom{7}{3} \cdot 2=70$	order	\#	order	\#
$(a b c)(d e)$	6	-	$\binom{7}{3} \cdot 2 \cdot\binom{4}{2}=420$	1	1	1	1
$(a b c)(d e)(f g)$	6	+	$\binom{7}{3} \cdot 2 \cdot 3=210$	2	231	2	105
$(a b c)(d e f)$	3	+	$\binom{7}{6} \cdot 5 \cdot 4 \cdot 2=280$	4	350 840	3	630
(abcd)	4	-	$\binom{7}{4} \cdot 3 \cdot 2=210$	5	504	5	504
$(a b c d)(e f)$	4	+	$\binom{7}{4} \cdot 3 \cdot 2 \cdot\binom{3}{2}=630$	6	1470	6	210
$(a b c d)(e f g)$	12	-	$\binom{7}{4} \cdot 3 \cdot 2 \cdot 2=420$	7	720	7	720
(abcde)	5	+	$\binom{7}{5} \cdot 4!=504$	10	504		
$(a b c d e)(f g)$	10	-	$\binom{7}{5} \cdot 4!=504$	12	420		
(abcdef)	6	-	$\binom{7}{6} \cdot 5!=840$				
(abcdefg)	7	+	$6!=720$				

(b) Find the number of cyclic subgroups of A_{7}.

Solution: Recall that the number of cyclic subgroups of order k is equal to the number of elements of order k divided by $\phi(k)$. So from the third of the tables in part (a), we see that the total number of cyclic subgroups is $\frac{1}{\phi(1)}+\frac{105}{\phi(2)}+\frac{350}{\phi(3)}+\frac{630}{\phi(4)}+\frac{504}{\phi(5)}+\frac{210}{\phi(6)}+\frac{720}{\phi(7)}=1+105+175+315+126+105+120=947$.

3: Let $n \geq 3$.
(a) Show that $Z\left(S_{n}\right)=\{e\}$.

Solution: Suppose that $\alpha \neq e$, and say the permutation α sends k to l, where $k \neq l$. Choose $m \notin\{k, l\}$. Then $(l m) \alpha$ sends k to m, but $\alpha(l m)$ sends k to l, so $(l m) \alpha \neq \alpha(l m)$, and therefore $\alpha \notin Z\left(S_{n}\right)$.
(b) Show that every element in A_{n} is equal to a product of 3-cycles.

Solution: We already know that every permutation in A_{n} is equal to a product of an even number of 2-cycles, so it suffices to show that every product of a pair of 2 -cycles is equal to a product of 3 -cycles. Every product of a pair of 2-cycles is of one of the following three forms, where a, b, c and d are distinct: $(a b)(a b),(a b)(a c)$ or $(a b)(c d)$, and indeed, each of these can be written as a product of 3-cycles:

$$
\begin{aligned}
(a b)(a b) & =(a b c)(a c b) \\
(a b)(a c) & =(a c b) \\
(a b)(c d) & =(a d c)(a b c)
\end{aligned}
$$

