PMATH 336 Introduction to Group Theory, Exercises for Chapter 4

1: (a) Define $\phi : \mathbb{Z}_{60} \to U_{45}$ by $\phi(k) = 2^k$. Show that ϕ is a group homomorphism, and find $\operatorname{Ker}(\phi)$ and $\operatorname{Im}(\phi)$.

(b) Define $\psi : SL(n, \mathbb{R}) \times \mathbb{R}^* \to GL(n, \mathbb{R})$ by $\psi(A, t) = tA$. Show that ψ is a group homomorphism and find $\operatorname{Ker}(\psi)$ and $\operatorname{Im}(\psi)$.

- **2:** Show that no two of the groups \mathbb{Z}_8 , U_{16} , D_4 and \mathbb{Z}_2^3 are isomorphic.
- **3:** Find the number of elements of each order in $U_{55} \times A_4$.
- **4:** (a) Find the number of homomorphisms from \mathbb{Z}_{12} to D_9 .
 - (b) Find the number of homomorphisms from D_9 to \mathbb{Z}_{12} .
- **5:** (a) Find the number of homomorphisms from $\mathbb{Z}_4 \times \mathbb{Z}_6$ to itself.
 - (b) Find the number of homomorphisms from $\mathbb{Z}_4 \times \mathbb{Z}_6$ to D_{12} .
- **6:** Let $f: S_3 \to \{1, 2, 3, 4, 5, 6\}$ be the bijection given by the table of values

and let $\phi: S_3 \to S_6$ be the isomorphism given by $\phi(\alpha) = f \circ L_\alpha \circ f^{-1}$, where $L_\alpha(\beta) = \alpha\beta$ for all $\beta \in S_3$. List all the elements in $\phi(S_3)$

7: Find |Inn(Q)|, where $Q = \{1, i, j, k, -1, -i, -j, -k\}$ is the **quaternionic** group, which has the following multiplication table (Q is not isomorphic to any group from Exercise 2).