PMATH 336 Introduction to Group Theory, Solutions to the Exercises for Chapter 4

1: (a) Define $\phi: \mathbb{Z}_{60} \rightarrow U_{45}$ by $\phi(k)=2^{k}$. Show that ϕ is a group homomorphism, and find $\operatorname{Ker}(\phi)$ and $\operatorname{Im}(\phi)$. Solution: In U_{45} we have $\langle 2\rangle=\{1,2,4,8,16,32,19,38,31,17,34,23\}$. Since $|2|=12$ and 12 is a factor of 60 , ϕ is well defined (that is, $k=l \bmod 60 \Longrightarrow 2^{k}=2^{l} \bmod 45$). ϕ is a homomorphism since $\phi(k+l)=2^{k+l}=$ $2^{k} 2^{l}=\phi(k) \phi(l)$. The image of ϕ is $\operatorname{Im}(\phi)=\langle 2\rangle$. The kernel of ϕ is $\operatorname{ker}(\phi)=\langle 12\rangle=\{0,12,24,36,48\}$.
(b) Define $\psi: S L(n, \mathbb{R}) \times \mathbb{R}^{*} \rightarrow G L(n, \mathbb{R})$ by $\psi(A, t)=t A$. Show that ψ is a group homomorphism and find $\operatorname{Ker}(\psi)$ and $\operatorname{Im}(\psi)$.
Solution: $\psi((A, s) \cdot(B, t))=\psi(A B, s t)=s t A B=(s A)(t B)=\psi(A) \phi(B)$, so ψ is a homomorphism. $\operatorname{Ker}(\psi)=\{(A, t) \mid t A=I\}$. If $t A=I$ then $t^{n} \operatorname{det} A=\operatorname{det} I=1$, so when $\operatorname{det} A=1$ we have $t^{n}=1$: when n is odd we have $t=1$ and $A=I$, and when n is even we have $t= \pm 1$ and $A= \pm I$. $\operatorname{Thus} \operatorname{Ker}(\psi)=\{(I, 1)\}$ when n is odd, and $\operatorname{Ker}(\psi)=\{(I, 1),(-I,-1)\}$ when n is even. The image of ψ is $\operatorname{Im}(\psi)=\{t A\}$. Again notice that $\operatorname{det} t A=t^{n} \operatorname{det} A=t^{n}$, so when n is even we have $\operatorname{det} t A>0$. We can see that $\operatorname{Im}(\psi)=G L_{+}(n, \mathbb{R})$ (the group of $n \times n$ matrices with positive determinant) when n is even and $\operatorname{Im}(\psi)=G L(n, \mathbb{R})$ when n is odd, because given any matrix B in $G L_{+}(n, \mathbb{R})$ (when n is even) or in $G L(n, \mathbb{R})$ (when n is odd), we can let $t=\sqrt[n]{\operatorname{det} B}$ and then let $A=\frac{1}{t} B$ and then we will have $\psi(A, t)=B$.

2: Show that no two of the groups $\mathbb{Z}_{8}, U_{16}, D_{4}$ and $\mathbb{Z}_{2}{ }^{3}$ are isomorphic.
Solution: We list the orders of all the elements in each of these groups (and also the quaternionic group Q).

In $\mathbb{Z}_{8}:$	x	0	1	2	3	4	5	6	7				
	$\|x\|$	1	8	4	8	2	8	4	8				
In $U_{16}:$	x	1	3	5	7	9	11	13	15				
	$\|x\|$	1	4	4	2	2	4	4	2				
In $D_{4}:$	x	I	R_{1}	R_{2}	R_{3}	F_{0}	F_{1}	F_{2}	F_{3}				
	$\|x\|$	1	4	2	4	2	2	2	2				
In $\mathbb{Z}_{2}{ }^{3}:$	x	$(0,0,0)$	$(0,0,1)$	$(0,1,0)$	$(0,1,1)$	$(1,0,0)$	$(1,0,1)$	$(1,1,0)$	$(1,1,1)$				
	$\|x\|$		1		2		2	2	2	2	2	2	
In $Q:$	x	1	i	j	k	-1	$-i$	$-j$	$-k$				
	$\|x\|$	1	4	4	4	2	4	4	4				

Since no two of these groups have the same number of elements of each order, no two of them are isomorphic.

3: Find the number of elements of each order in $U(55) \times A_{4}$.
Solution: We know that $U(55) \cong U(5) \times U(11) \cong \mathbb{Z}_{4} \times \mathbb{Z}_{10}$, so we make a table to determine the number of elements of each order in $U(55)$, then a similar table for $U(55) \times A_{4}$, and then a third table to summarize.

\mathbb{Z}_{4}		\mathbb{Z}_{10}		$U(55)$	
$\|a\|$	\#	$\|b\|$	\#	$\|(a, b)\|$	\#
1	1	1	1	1	1
		2	1	2	1
		5	4	5	4
		10	4	10	4
2	1	1	1	2	1
		2	1	2	1
		5	4	10	4
		10	4	10	4
4	2	1	1	4	2
		2	1	4	2
		5	4	20	8
		10	4	20	8

$U(55)$		A_{4}		$U(55) \times A_{4}$	
$\|a\|$	$\#$	$\|b\|$	$\#$	$\|(a, b)\|$	$\#$
1	1	1	1	1	1
		2	3	2	3
		3	8	3	8
2	3	1	1	2	3
		2	3	2	9
		3	8	6	24
4	4	1	1	4	4
		2	3	4	12
		3	8	12	32
5	4	1	1	5	4
		2	3	10	12
		3	8	15	32
10	12	1	1	10	12
		2	3	10	36
		3	8	30	96
20	16	1	1	20	16
		2	3	20	48
		3	8	60	128

$U(55) \times A_{4}$	
$\|a\|$	$\#$
1	1
2	15
3	8
4	16
5	4
6	24
10	60
12	32
15	32
20	64
30	96
60	128

4: (a) Find the number of homomorphisms from \mathbb{Z}_{12} to D_{9}.
Solution: There are 12 homomorphisms from \mathbb{Z}_{12} to D_{9} because there are 12 elements a in D_{9} with $|a| \| 12$; the homomorphisms are the maps $\phi_{a}(k)=a^{k}$ where $a=I, R_{3}, R_{6}$ or $F_{k}, k=0,1, \cdots 8$.
(b) Find the number of homomorphisms from D_{9} to \mathbb{Z}_{12}.

Solution: Let $\phi: D_{9} \rightarrow \mathbb{Z}_{12}$ be a homomorphism. Note that ϕ is completely determined by the values $\phi\left(R_{1}\right)$ and $\phi\left(F_{0}\right)$, since $\phi\left(R_{k}\right)=\phi\left(R_{1}{ }^{k}\right)=k \phi\left(R_{1}\right)$ and $\phi\left(F_{k}\right)=\phi\left(R_{1}{ }^{k} F_{0}\right)=k \phi\left(R_{1}\right)+\phi\left(F_{0}\right)$. Since $\left|F_{0}\right|=2$, $\left|\phi\left(F_{0}\right)\right|$ must be a factor of 2 and so $\phi\left(F_{0}\right)=0$ or 6 . Also, $F_{1}=R_{1} F_{0}=F_{0} R_{8} \Longrightarrow \phi\left(R_{1} F_{0}\right)=\phi\left(F_{0} R_{1}^{8}\right) \Longrightarrow$ $\phi\left(R_{1}\right)+\phi\left(F_{0}\right)=\phi\left(F_{0}\right)+8 \phi\left(R_{1}\right) \Longrightarrow 7 \phi\left(R_{1}\right)=0 \Longrightarrow \phi\left(R_{1}\right)=0$. Thus there are only two homomorphisms, namely the identity and the homomorphism ϕ given by $\phi\left(R_{k}\right)=0$ and $\phi\left(F_{k}\right)=6$ for all k.

5: (a) Find the number of homomorphisms from $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ to itself.
Solution: First we count the number of elements of each order in $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$.

Since $|(1,0)|=4,|\phi(1,0)|=0,1,2$ or 4 , so there are $1+3+4=8$ possibilities for $\phi(1,0)$. Since $|(0,1)|=6$, $|\phi(0,1)|=1,2,3$ or 6 , so there are $1+3+2+6=12$ possibilities for $\phi(0,1)$. Thus there are $8 \cdot 12=96$ homomorphisms from $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ to itself.
(b) Find the number of homomorphisms from $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ to D_{12}.

Solution: The homomorphisms from $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ to D_{12} are the maps $\phi_{a b}$ given by $\phi_{a b}(k, l)=k a+l b$ where $a, b \in D_{12}$ with $a^{4}=I, b^{6}=I$ and $a b=b a$. We have $a^{4}=I$ when $a=I, R_{3}, R_{6}, R_{9}$ or F_{k} for some k (there are 16 possibilities). We have $b^{6}=I$ when $b=I, R_{2}, R_{4}, R_{6}, R_{8}, R_{10}$ or F_{k} for some k (there are 18 possibilities). When $a=I$ or R_{6}, all 18 possibilities for b give $a b=b a$. When $a=R_{3}$ or R_{9}, then we have $a b=b a$ when $b=I, R_{2}, R_{4}, R_{6}, R_{8}$ or R_{10}, so there are 6 possibilities for b. When $a=F_{k}$ we have $a b=b a$ when $b=I, R_{6}, F_{k}$ or F_{k+6}, so there are 4 possibilities for b. Thus there are $2 \cdot 18+2 \cdot 6+12 \cdot 4=96$ homomorphisms from $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ to D_{12}.

6: Let $f: S_{3} \rightarrow\{1,2,3,4,5,6\}$ be the bijection given by the table of values

α	(1)	(12)	(13)	(23)	(123)	(132)
$f(\alpha)$	1	2	3	4	5	6

and let $\phi: S_{3} \rightarrow S_{6}$ be the isomorphism given by $\phi(\alpha)=f \circ L_{\alpha} \circ f^{-1}$, where $L_{\alpha}(\beta)=\alpha \beta$ for all $\beta \in S_{3}$. List all the elements in $\phi\left(S_{3}\right)$

Solution: Each row of the multiplication table of S_{3} is a permutation of the elements of S_{3}, which corresponds, under f, to a permutation of $\{1,2,3,4,5,6\}$. We list these permutations, and write them in cycle notation.

	(1)	(12)	(13)	(23)	(123)	(132)	1	2	3	4	5	6	
(1)	(1)	(12)	(13)	(23)	(123)	(132)	1	2	3	4	5	6	(1)
(12)	(12)	(1)	(132)	(123)	(23)	(13)	2	1	6	5	4	3	$(12)(36)(45)$
(13)	(13)	(123)	(1)	(132)	(12)	(23)	3	5	1	6	2	4	$(13)(25)(46)$
(23)	(23)	(132)	(123)	(1)	(13)	(12)	4	6	5	1	3	2	$(14)(26)(35)$
(123)	(123)	(13)	(23)	(12)	(132)	(1)	5	3	4	2	6	1	$(156)(234)$
(132)	(132)	(23)	(12)	(13)	(1)	(123)	6	4	2	3	1	5	$(165)(243)$

Thus $\phi\left(S_{3}\right)=\{(1),(12)(36)(45),(13)(25)(46),(14)(26)(35),(156)(234),(165)(243)\}$.
7: Find $|\operatorname{Inn}(Q)|$, where $Q=\{1, i, j, k,-1,-i,-j,-k\}$ is the quaternionic group, which has the following multiplication table (Q is not isomorphic to any group from Exercise 2).

$$
\begin{array}{rrrrrrrr}
& 1 & i & j & k & -1 & -i & -j \\
& -k \\
1 & 1 & i & j & k & -1 & -i & -j \\
i & i & -1 & k & -j & -i & 1 & k \\
j & j \\
j & j & -k & -1 & i & -j & k & 1
\end{array}-i
$$

Solution: We make the conjugation table for Q, which lists the value of $a b a^{-1}$ for each pair $a, b \in Q$.

$$
\begin{aligned}
& a \backslash b \quad 1 \quad i \quad j \quad k-1-i-j-k \\
& 1 \quad 1 \quad i \quad j k-1-i-j-k \\
& { }^{i} \quad 1 \quad i-j-k-1-i \quad j \quad k \\
& { }_{j} \quad 1-i \quad j-k-1 \quad i-j \quad k \\
& \begin{array}{llll}
k & 1-i-j & k-1 & i
\end{array} j-k \\
& -1 \quad 1 \quad i \quad j \quad k-1-i-j-k \\
& -i \quad 1 \quad i-j-k-1-i \quad j \quad k \\
& -j \quad 1-i \quad j-k-1 \quad i-j \quad k \\
& -k \quad 1-i-j \quad k-1 \quad i \quad j-k
\end{aligned}
$$

The first four rows are distinct, so the inner automorphisms C_{1}, C_{i}, C_{j} and C_{k} are distinct, but each of the bottom four rows is the same as the row 4 rows above it, so $\operatorname{Inn}(Q)=\left\{I, C_{i}, C_{j}, C_{k}\right\}$ and $|\operatorname{Inn}(Q)|=4$.

