1: (a) Define $\phi : \mathbb{Z}_{60} \to U_{45}$ by $\phi(k) = 2^k$. Show that ϕ is a group homomorphism, and find Ker(ϕ) and Im(ϕ). Solution: In U_{45} we have $\langle 2 \rangle = \{1, 2, 4, 8, 16, 32, 19, 38, 31, 17, 34, 23\}$. Since |2| = 12 and 12 is a factor of 60, ϕ is well defined (that is, $k = l \mod 60 \implies 2^k = 2^l \mod 45$). ϕ is a homomorphism since $\phi(k+l) = 2^{k+l} = 2^k 2^l = \phi(k)\phi(l)$. The image of ϕ is Im(ϕ) = $\langle 2 \rangle$. The kernel of ϕ is ker(ϕ) = $\langle 12 \rangle = \{0, 12, 24, 36, 48\}$.

(b) Define $\psi : SL(n, \mathbb{R}) \times \mathbb{R}^* \to GL(n, \mathbb{R})$ by $\psi(A, t) = tA$. Show that ψ is a group homomorphism and find $\operatorname{Ker}(\psi)$ and $\operatorname{Im}(\psi)$.

Solution: $\psi((A, s) \cdot (B, t)) = \psi(AB, st) = st AB = (sA)(tB) = \psi(A)\phi(B)$, so ψ is a homomorphism. Ker $(\psi) = \{(A, t) | tA = I\}$. If tA = I then $t^n \det A = \det I = 1$, so when $\det A = 1$ we have $t^n = 1$: when n is odd we have t = 1 and A = I, and when n is even we have $t = \pm 1$ and $A = \pm I$. Thus Ker $(\psi) = \{(I, 1), (-I, -1)\}$ when n is even. The image of ψ is Im $(\psi) = \{tA\}$. Again notice that det $tA = t^n$ det $A = t^n$, so when n is even we have det tA > 0. We can see that Im $(\psi) = GL_+(n,\mathbb{R})$ (the group of $n \times n$ matrices with positive determinant) when n is even and Im $(\psi) = GL(n,\mathbb{R})$ when n is odd, because given any matrix B in $GL_+(n,\mathbb{R})$ (when n is even) or in $GL(n,\mathbb{R})$ (when n is odd), we can let $t = \sqrt[n]{\det B}$ and then let $A = \frac{1}{t}B$ and then we will have $\psi(A, t) = B$.

2: Show that no two of the groups \mathbb{Z}_8 , U_{16} , D_4 and \mathbb{Z}_2^3 are isomorphic.

Solution: We list the orders of all the elements in each of these groups (and also the quaternionic group Q).

In \mathbb{Z}_8 :	x	0	1	2	3	4	5	6	7						
	x	1	8	4	8	2	8	4	8						
In U_{16} :	x	1	3	5	7	9	11	1	3 1	5					
	x	1	4	4	2	2	4	4	4	2					
In D_4 :	x	Ι	R_1	L -	R_2	R_3	F	0	F_1	F_2	F_3				
	x	1	4		2	4	2	2	2	2	2				
In \mathbb{Z}_2^3 :	x	(0	, 0, 0))	(0,	(0, 1)) (0, 1	1, 0)	(0,	1, 1)	(1, 0, 0)	(1, 0, 1)	(1, 1, 0)	(1, 1, 1)
	x		1			2		2	2		2	2	2	2	2
In Q :	x	1	i	j	k	-1		-i	-j	_/	k				
	x	1	4	4	4	2	4	4	4	4					

Since no two of these groups have the same number of elements of each order, no two of them are isomorphic.

3: Find the number of elements of each order in $U(55) \times A_4$.

Solution: We know that $U(55) \cong U(5) \times U(11) \cong \mathbb{Z}_4 \times \mathbb{Z}_{10}$, so we make a table to determine the number of elements of each order in U(55), then a similar table for $U(55) \times A_4$, and then a third table to summarize.

Z	4	\mathbb{Z}_{10}		U(55)		U(55)		A_4		U(55) >	$\times A_4$	U(55)		$\times A_4$	
a	#	b	#	(a,b)	#		a	#	b	#	(a,b)	#		a	#
1	1	1	1	1	1		1	1	1	1	1	1		1	1
		2	1	2	1				2	3	2	3		2	15
		5	4	5	4				3	8	3	8		3	8
		10	4	10	4		2	3	1	1	2	3		4	16
2	1	1	1	2	1				2	3	2	9		5	4
		2	1	2	1				3	8	6	24		6	24
		5	4	10	4		4	4	1	1	4	4		10	60
		10	4	10	4				2	3	4	12		12	32
4	2	1	1	4	2				3	8	12	32		15	32
		2	1	4	2		5	4	1	1	5	4		20	64
		5	4	20	8				2	3	10	12		30	96
		10	4	20	8				3	8	15	32		60	128
							10	12	1	1	10	12			
									2	3	10	36			
									3	8	30	96			
							20	16	1	1	20	16			
									2	3	20	48			
									3	8	60	128			

4: (a) Find the number of homomorphisms from \mathbb{Z}_{12} to D_9 .

Solution: There are 12 homomorphisms from \mathbb{Z}_{12} to D_9 because there are 12 elements a in D_9 with |a||12; the homomorphisms are the maps $\phi_a(k) = a^k$ where $a = I, R_3, R_6$ or $F_k, k = 0, 1, \dots 8$.

(b) Find the number of homomorphisms from D_9 to \mathbb{Z}_{12} .

Solution: Let $\phi: D_9 \to \mathbb{Z}_{12}$ be a homomorphism. Note that ϕ is completely determined by the values $\phi(R_1)$ and $\phi(F_0)$, since $\phi(R_k) = \phi(R_1^k) = k\phi(R_1)$ and $\phi(F_k) = \phi(R_1^k F_0) = k\phi(R_1) + \phi(F_0)$. Since $|F_0| = 2$, $|\phi(F_0)|$ must be a factor of 2 and so $\phi(F_0) = 0$ or 6. Also, $F_1 = R_1 F_0 = F_0 R_8 \Longrightarrow \phi(R_1 F_0) = \phi(F_0 R_1^8) \Longrightarrow \phi(R_1) + \phi(F_0) = \phi(F_0) + 8\phi(R_1) \Longrightarrow 7\phi(R_1) = 0 \Longrightarrow \phi(R_1) = 0$. Thus there are only two homomorphisms, namely the identity and the homomorphism ϕ given by $\phi(R_k) = 0$ and $\phi(F_k) = 6$ for all k.

5: (a) Find the number of homomorphisms from $\mathbb{Z}_4 \times \mathbb{Z}_6$ to itself.

Solution: First we count the number of elements of each order in $\mathbb{Z}_4 \times \mathbb{Z}_6$.

\mathbb{Z}_4		Z	, 46	$\mathbb{Z}_4 \times$	\mathbb{Z}_6	$\mathbb{Z}_4 \times$	\mathbb{Z}_6
a	#	b	#	(a,b)	#	order	#
1	1	1	1	1	1	1	1
		2	1	2	1	2	3
		3	2	3	2	3	2
		6	2	6	2	4	4
2	1	1	1	2	1	6	6
		2	1	2	1	12	8
		3	2	6	2		
		6	2	6	2		
4	2	1	1	4	2		
		2	1	4	2		
		3	2	12	4		
		6	2	12	4		

Since |(1,0)| = 4, $|\phi(1,0)| = 0$, 1, 2 or 4, so there are 1+3+4=8 possibilities for $\phi(1,0)$. Since |(0,1)| = 6, $|\phi(0,1)| = 1$, 2, 3 or 6, so there are 1+3+2+6=12 possibilities for $\phi(0,1)$. Thus there are $8 \cdot 12 = 96$ homomorphisms from $\mathbb{Z}_4 \times \mathbb{Z}_6$ to itself.

(b) Find the number of homomorphisms from $\mathbb{Z}_4 \times \mathbb{Z}_6$ to D_{12} .

Solution: The homomorphisms from $\mathbb{Z}_4 \times \mathbb{Z}_6$ to D_{12} are the maps ϕ_{ab} given by $\phi_{ab}(k,l) = ka + lb$ where $a, b \in D_{12}$ with $a^4 = I$, $b^6 = I$ and ab = ba. We have $a^4 = I$ when a = I, R_3 , R_6 , R_9 or F_k for some k (there are 16 possibilities). We have $b^6 = I$ when b = I, R_2 , R_4 , R_6 , R_8 , R_{10} or F_k for some k (there are 18 possibilities). When a = I or R_6 , all 18 possibilities for b give ab = ba. When $a = R_3$ or R_9 , then we have ab = ba when b = I, R_2 , R_4 , R_6 , R_8 or R_{10} , so there are 6 possibilities for b. When $a = F_k$ we have ab = ba when b = I, R_6 , F_k or F_{k+6} , so there are 4 possibilities for b. Thus there are $2 \cdot 18 + 2 \cdot 6 + 12 \cdot 4 = 96$ homomorphisms from $\mathbb{Z}_4 \times \mathbb{Z}_6$ to D_{12} .

6: Let $f: S_3 \to \{1, 2, 3, 4, 5, 6\}$ be the bijection given by the table of values

and let $\phi: S_3 \to S_6$ be the isomorphism given by $\phi(\alpha) = f \circ L_\alpha \circ f^{-1}$, where $L_\alpha(\beta) = \alpha\beta$ for all $\beta \in S_3$. List all the elements in $\phi(S_3)$

Solution: Each row of the multiplication table of S_3 is a permutation of the elements of S_3 , which corresponds, under f, to a permutation of $\{1, 2, 3, 4, 5, 6\}$. We list these permutations, and write them in cycle notation.

	(1)	(12)	(13)	(23)	(123)	(132)	1	2	3	4	5	6	
(1)	(1)	(12)	(13)	(23)	(123)	(132)	1	2	3	4	5	6	(1)
(12)	(12)	(1)	(132)	(123)	(23)	(13)	2	1	6	5	4	3	(12)(36)(45)
(13)	(13)	(123)	(1)	(132)	(12)	(23)	3	5	1	6	2	4	(13)(25)(46)
(23)	(23)	(132)	(123)	(1)	(13)	(12)	4	6	5	1	3	2	(14)(26)(35)
(123)	(123)	(13)	(23)	(12)	(132)	(1)	5	3	4	2	6	1	(156)(234)
(132)	(132)	(23)	(12)	(13)	(1)	(123)	6	4	2	3	1	5	(165)(243)

Thus $\phi(S_3) = \{(1), (12)(36)(45), (13)(25)(46), (14)(26)(35), (156)(234), (165)(243)\}.$

7: Find |Inn(Q)|, where $Q = \{1, i, j, k, -1, -i, -j, -k\}$ is the **quaternionic** group, which has the following multiplication table (Q is not isomorphic to any group from Exercise 2).

Solution: We make the conjugation table for Q, which lists the value of aba^{-1} for each pair $a, b \in Q$.

The first four rows are distinct, so the inner automorphisms C_1 , C_i , C_j and C_k are distinct, but each of the bottom four rows is the same as the row 4 rows above it, so $\text{Inn}(Q) = \{I, C_i, C_j, C_k\}$ and |Inn(Q)| = 4.