1: For each of the following groups G, find a group of the form $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_l}$ with $n_i | n_{i+1}$ for all i, which is isomorphic to G.

(a) $G = \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_5 \times \mathbb{Z}_6 \times \mathbb{Z}_8 \times \mathbb{Z}_9 \times \mathbb{Z}_{12} \times \mathbb{Z}_{18} \times \mathbb{Z}_{25}.$ Solution: $G \cong \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_5 \times (\mathbb{Z}_2 \times \mathbb{Z}_3) \times \mathbb{Z}_8 \times \mathbb{Z}_9 \times (\mathbb{Z}_4 \times \mathbb{Z}_3) \times (\mathbb{Z}_2 \times \mathbb{Z}_9) \times \mathbb{Z}_{25}$ $\cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times (\mathbb{Z}_2 \times \mathbb{Z}_3) \times (\mathbb{Z}_4 \times \mathbb{Z}_3) \times (\mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_5) \times (\mathbb{Z}_8 \times \mathbb{Z}_9 \times \mathbb{Z}_{25})$ $\cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_6 \times \mathbb{Z}_{12} \times \mathbb{Z}_{180} \times \mathbb{Z}_{1800}$ (b) $G = U_{180}$ Solution: $G = U_{4 \cdot 5 \cdot 9}$ $\cong U_4 \times U_5 \times U_9$ $\cong \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_6$ $\cong \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_6$

$$\cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{12}$$

(c) $G = U(60)/\langle 29 \rangle$.

Solution: In U(60) we have $\langle 29 \rangle = \{1, 29\}$ and also $\langle 7 \rangle = \{1, 7, 49, 43 \rangle$ and $\langle 59 \rangle = \{1, 59\}$. Now |U(60)| = 16, so $|G| = |U(60)/\langle 29 \rangle| = 16/2 = 8$, and so G is isomorphic to \mathbb{Z}_8 , $\mathbb{Z}_2 \times \mathbb{Z}_4$ or to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. Looking at the powers of 7 in U(60), we see that $7\langle 29 \rangle$ has order 4 in G, so G is not isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. Also, note that $49\langle 29 \rangle$ and $59\langle 29 \rangle$ both have order 2 in G, so G cannot be isomorphic to \mathbb{Z}_8 . Thus $G \cong \mathbb{Z}_2 \times \mathbb{Z}_4$.

2: (a) List all of the abelian groups of order 1,500.

Solution: We have $1500 = 2^2 3^1 5^3$, and there are 2 ways to partition 2 (namely (2) and (1,1)), 1way to partition 1, 3 ways to partition 3 (namely (3) and (1,2) and (1,1,1)), so there are $2 \cdot 1 \cdot 3 = 6$ abelian groups of order 1500. They are $\mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_{125}$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_{125}$, $\mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_{125}$, $\mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_5$, $\mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_5$.

(b) Determine the number of abelian groups of order 160,000.

Solution: We have $160,000 = 2^{8}5^{4}$. There are 22 ways to partition 8, that is to find $(k_{1},k_{2},\dots,k_{l})$ with $1 \leq k_{1} \leq k_{2} \leq \dots \leq k_{l}$ and $\sum k_{i} = 8$, namely (1,1,1,1,1,1,1,1), (1,1,1,1,1,1,2), (1,1,1,1,2,2), (1,1,2,2,2), (2,2,2,2,2), (1,1,1,1,1,3), (1,1,1,2,3), (1,2,2,3), (1,1,3,3), (2,3,3), (1,1,1,1,4), (1,1,2,4), (2,2,4), (1,3,4), (4,4), (1,1,1,5), (1,2,5), (3,5), (1,1,6), (2,6), (1,7) and (8). There are 5 ways to partition 4, namely (1,1,1,1), (1,1,2), (2,2), (1,3), (4). So there are $22 \cdot 5 = 110$ abelian groups of order 160,000.