PMATH 336 Introduction to Group Theory, Exercises for Chapter 7

1: Let $a=(2,6), b=(3,-1)$ and $c=(4,2)$. Find the image of triangle with vertices at a, b and c under the isometry $\mathrm{R}_{(4,6), \frac{\pi}{2}} \mathrm{G}_{(4,2), x-2 y+5=0}$.

2: Express the composite $\mathrm{R}_{(1,4), \frac{\pi}{2}} \mathrm{~F}_{x+3 y=3}$ as a single glide-reflection.
3: Find the symmetry group of each of the following subsets of \mathbb{R}^{2}.
(a) $X=\{(1,1),(5,3)\}$.
(b) $Y=L \cup M$ where L is the line $x+y=1$ and M is the line $x+y=3$.

4: Let X be the polyhedron whose 12 vertices are at $(\pm 2,0, \pm 2)$ and $(\pm 1, \pm \sqrt{3}, \pm 2)(X$ is a prism whose two ends are regular hexagons). Determine whether the rotation group of X is isomorphic to $\mathbb{Z}_{n}, D_{n}, A_{4}, S_{4}$ or to A_{5}.

5: (a) How many 8-bead necklaces can be made (up to D_{8} symmetry) using beads of 2 colours.
(b) How many ways (up to rotational symmetry) can the faces of a regular octahedron be coloured using 2 colours?

