PMATH 336 Introduction to Group Theory, Exercises for Chapter 7

- 1: Let a = (2, 6), b = (3, -1) and c = (4, 2). Find the image of triangle with vertices at a, b and c under the isometry $\mathbb{R}_{(4,6),\frac{\pi}{2}} \mathbb{G}_{(4,2),x-2y+5=0}$.
- **2:** Express the composite $R_{(1,4),\frac{\pi}{2}}F_{x+3y=3}$ as a single glide-reflection.
- **3:** Find the symmetry group of each of the following subsets of \mathbb{R}^2 .
 - (a) $X = \{(1,1), (5,3)\}.$
 - (b) $Y = L \cup M$ where L is the line x + y = 1 and M is the line x + y = 3.
- 4: Let X be the polyhedron whose 12 vertices are at $(\pm 2, 0, \pm 2)$ and $(\pm 1, \pm \sqrt{3}, \pm 2)$ (X is a prism whose two ends are regular hexagons). Determine whether the rotation group of X is isomorphic to \mathbb{Z}_n , D_n , A_4 , S_4 or to A_5 .
- **5:** (a) How many 8-bead necklaces can be made (up to D_8 symmetry) using beads of 2 colours.

(b) How many ways (up to rotational symmetry) can the faces of a regular octahedron be coloured using 2 colours?