PMATH 336 Introduction to Group Theory, Solutions to the Exercises for Chapter 7

1: Let $a=(2,6), b=(3,-1)$ and $c=(4,2)$. Find the image of triangle with vertices at a, b and c under the isometry $\mathrm{R}_{(4,6), \frac{\pi}{2}} \mathrm{G}_{(4,2), x-2 y+5=0}$.
Solution: $\mathrm{R}_{(4,6), \frac{\pi}{2}} \mathrm{G}_{(4,2), x-2 y+5=0}(2,6)=\mathrm{R}_{(4,6), \frac{\pi}{2}} \mathrm{~F}_{x-2 y+5=0}(6,8)=\mathrm{R}_{(4,6), \frac{\pi}{2}}(8,4)=(6,10)$

$$
\begin{aligned}
& \mathrm{R}_{(4,6), \frac{\pi}{2}} \mathrm{G}_{(4,2), x-2 y+5=0}(3,-1)=\mathrm{R}_{(4,6), \frac{\pi}{2}} \mathrm{~F}_{x-2 y+5=0}(7,1)=\mathrm{R}_{(4,6), \frac{\pi}{2}}(3,9)=(1,5) \\
& \mathrm{R}_{(4,6), \frac{\pi}{2}} \mathrm{G}_{(4,2), x-2 y+5=0}(4,2)=\mathrm{R}_{(4,6), \frac{\pi}{2}} \mathrm{~F}_{x-2 y+5=0}(8,4)=\mathrm{R}_{(4,6), \frac{\pi}{2}}(6,8)=(2,8)
\end{aligned}
$$

So the image of triangle $a b c$ is the triangle with vertices at $(6,10),(1,5)$ and $(2,8)$.
2: Express the composite $\mathrm{R}_{(1,4), \frac{\pi}{2}} \mathrm{~F}_{x+3 y=3}$ as a single glide-reflection.
Solution: We choose two points, say $(0,1)$ and $(3,0)$, and find the images:

$$
\begin{aligned}
& \mathrm{R}_{(1,4), \frac{\pi}{2}} \mathrm{~F}_{x+3 y=3}(0,1)=\mathrm{R}_{(1,4), \frac{\pi}{2}}(0,1)=(4,3) \\
& \mathrm{R}_{(1,4), \frac{\pi}{2}} \mathrm{~F}_{x+3 y=3}(3,0)=\mathrm{R}_{(1,4), \frac{\pi}{2}}(3,0)=(5,6)
\end{aligned}
$$

The line of the glide reflection must pass through the midpoint of $(1,0)$ and $(4,3)$, which is $(2,2)$, and through the midpoint of $(3,0)$ and $(5,6)$, which is $(4,3)$, and so the glide reflection line is the line $x-2 y+2=0$. The translation vector of the glide reflection is the vector $\mathrm{F}_{x-2 y+2=0}(5,6)-(3,0)=(7,2)-(3,0)=(4,2)$. Thus we have $\mathrm{R}_{(1,4), \frac{\pi}{2}} \mathrm{~F}_{x+3 y=3}=\mathrm{G}_{(4,2), x-2 y+2=0}$

3: Find the symmetry group of each of the following subsets of \mathbb{R}^{2}.
(a) $X=\{(1,1),(5,3)\}$.

Solution: The symmetry group of X is $\operatorname{Sym}(X)=\left\{I, \mathrm{R}_{(3,2), \pi}, \mathrm{F}_{x-2 y+1=0}, \mathrm{~F}_{2 x+y=8}\right\} \cong D_{2}$.
(b) $Y=L \cup M$ where L is the line $x+y=1$ and M is the line $x+y=3$.

Solution: This symmetry group is infinite. If we let N be the line $x+y=2$ and let V be the vector space $x+y=0$, then $\operatorname{Sym}(Y)=\left\{\mathrm{T}_{u} \mid u \in V\right\} \cup\left\{\mathrm{R}_{p, \pi} \mid p \in N\right\} \cup\left\{\mathrm{F}_{K} \mid K \perp V\right\} \cup\left\{\mathrm{G}_{u, N} \mid u \in V\right\}$.

4: Let X be the polyhedron whose 12 vertices are at $(\pm 2,0, \pm 2)$ and $(\pm 1, \pm \sqrt{3}, \pm 2)$ (X is a prism whose two ends are regular hexagons). Determine whether the rotation group of X is isomorphic to $\mathbb{Z}_{n}, D_{n}, A_{4}, S_{4}$ or to A_{5}.
Solution: Let G be the rotation group of X. Label the faces $1,2, \cdots, 8$ with the top and bottom faces labeled by 1 and 2 . Then $\operatorname{orb}(1)=\{1,2\}$ so $|\operatorname{orb}(1)|=2$ and $\operatorname{stab}(1)$ consists of the rotations about the z-axis by multiples of $\frac{\pi}{6}$ so $|\operatorname{stab}(1)|=6$, and so we have $|G|=12$. Thus $G \cong \mathbb{Z}_{12}, D_{6}$ or A_{4}. Now, \mathbb{Z}_{12} only has 1 element of order 2 and A_{4} only has 3 elements of order 2 , but G has at least 7 elements of order 2 , namely the rotations by π about each of the axes $(1,0,0),(\pm \sqrt{3}, 1,0),(\pm 1, \sqrt{3}, 0),(0,1,0)$ and $(0,0,1)$. Thus $G \cong D_{6}$.

5: (a) How many 8-bead necklaces can be made (up to D_{8} symmetry) using beads of 2 colours.
Solution: Let X be the set of all possible colourings, without considering the D_{8} symmetry, so $|X|=2^{8}$. Consider D_{8} as a subgroup of $\operatorname{Perm}(X)$. We make a table showing the value of \mid fix $(\alpha) \mid$ for each $\alpha \in D_{8}$.

α	$\#$	$\|\operatorname{fix}(\alpha)\|$
I	1	2^{8}
R_{4}	1	2^{4}
R_{2}, R_{6}	2	2^{2}
$R_{1}, R_{3}, R_{5} \cdot R_{7}$	4	2^{1}
$F_{0}, F_{2}, F_{4}, F_{6}$	4	2^{5}
$F_{1}, F_{3}, F_{5}, F_{7}$	4	2^{4}

So the number of colourings, up to the D_{8} symmetry, is equal to the number of orbits which is equal to $\frac{1}{16}\left(1 \cdot 2^{8}+1 \cdot 2^{4}+2 \cdot 2^{2}+4 \cdot 2^{1}+4 \cdot 2^{5}+4 \cdot 2^{4}\right)=30$.
(b) How many ways (up to rotational symmetry) can the faces of a regular octahedron be coloured using 2 colours?

Solution: Let G be the rotation group of the regular octahedron. If we consider G as a subgroup of the permutations of the faces, which we label by $1,2, \cdots 8$, then $|\operatorname{orb}(1)|=8$ and $|\operatorname{stab}(1)|=3$ and so we have $|G|=24$. Now, let X be the set of all colourings, without considering the symmetry, so that $|X|=2^{8}$, and consider G as a subgroup of $\operatorname{Perm}(X)$. We make a table showing \mid fix $(\alpha) \mid$ for each $\alpha \in G$.

α	$\#$	\mid fix $(\alpha) \mid$	
the identity	1	2^{8}	
rotation by $\pm 120^{\circ}$ about an axis through a pair of opposite faces	8	2^{4}	$(2$ groups of 3, 2 groups of 1)
rotation by 180° about an axis through a pair of opposite edges	6	2^{4}	$(4$ groups of 2$)$
rotation by $\pm 90^{\circ}$ about an axis through a pair of opposite vertices	6	2^{2}	$(2$ groups of 4)
rotation by 180° about an axis through a pair of opposite vertices	3	2^{4}	$(4$ groups of 4$)$

So the number of colourings, up to the rotational symmetry, is equal to the number of orbits which is equal to $\frac{1}{24}\left(1 \cdot 2^{8}+8 \cdot 2^{4}+6 \cdot 2^{4}+6 \cdot 2^{2}+3 \cdot 2^{4}\right)=23$.

