- 1: Determine which of the following are groups, and which of the groups are abelian.
 - (a) \mathbb{R}^* under division.
 - (b) The set of all subsets of $\{1, 2, 3, 4\}$ under union.
 - (c) $\{x \in \mathbb{R} \mid x^2 \in \mathbb{Z}\}$ under addition.
 - (d) $\{(a,b) \in \mathbb{R}^2 | b \neq 0\}$ under the operation * defined by (a,b) * (c,d) = (c+ad,bd).
- **2:** (a) Let G be a group. Suppose that for all $a, b, c, d, x \in G$, if axb = cxd then ab = cd. Show that G is abelian.
 - (b) Let G be a finite group. Show that there are an odd number of elements $x \in G$ with $x^3 = e$.
 - (c) Let G be a non-empty finite set with a binary operation $*: G \times G \to G$ with the following properties:
 - (1) associativity: for all $a, b, c \in G$ we have (a * b) * c = a * (b * c),
 - (2) right cancellation: for all $a, b, c \in G$, if a * c = b * c then a = b, and
 - (3) left cancellation: for all $a, b, c \in G$, if c * a = c * b then a = b.

Show that G is group under *.

3: Let R be a ring with 1.

- (a) Let $a, b \in R$. Suppose that $a^3 = a$ and ab + ba = 1. Show that $a^2 = 1$.
- (b) Let $a, b \in R$. Suppose that a and b and a + b are units. Show that $a^{-1} + b^{-1}$ is a unit.
- (c) Show that if $a^2 = a$ for all $a \in R$ then R is commutative.

4: (a) Find $|GL_2(\mathbb{Z}_4)|$.

- (b) List every element in each conjugacy class in $GL_2(\mathbb{Z}_2)$.
- (c) Find the number of elements in the conjugacy class of $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ in $GL_2(\mathbb{Z}_3)$.