1: Determine which of the following are groups, and which of the groups are abelian.
(a) \mathbb{R}^{*} under division.
(b) The set of all subsets of $\{1,2,3,4\}$ under union.
(c) $\left\{x \in \mathbb{R} \mid x^{2} \in \mathbb{Z}\right\}$ under addition.
(d) $\left\{(a, b) \in \mathbb{R}^{2} \mid b \neq 0\right\}$ under the operation $*$ defined by $(a, b) *(c, d)=(c+a d, b d)$.

2: (a) Let G be a group. Suppose that for all $a, b, c, d, x \in G$, if $a x b=c x d$ then $a b=c d$. Show that G is abelian.
(b) Let G be a finite group. Show that there are an odd number of elements $x \in G$ with $x^{3}=e$.
(c) Let G be a non-empty finite set with a binary operation $*: G \times G \rightarrow G$ with the following properties:
(1) associativity: for all $a, b, c \in G$ we have $(a * b) * c=a *(b * c)$,
(2) right cancellation: for all $a, b, c \in G$, if $a * c=b * c$ then $a=b$, and
(3) left cancellation: for all $a, b, c \in G$, if $c * a=c * b$ then $a=b$.

Show that G is group under $*$.

3: Let R be a ring with 1 .
(a) Let $a, b \in R$. Suppose that $a^{3}=a$ and $a b+b a=1$. Show that $a^{2}=1$.
(b) Let $a, b \in R$. Suppose that a and b and $a+b$ are units. Show that $a^{-1}+b^{-1}$ is a unit.
(c) Show that if $a^{2}=a$ for all $a \in R$ then R is commutative.

4: (a) Find $\left|G L_{2}\left(\mathbb{Z}_{4}\right)\right|$.
(b) List every element in each conjugacy class in $G L_{2}\left(\mathbb{Z}_{2}\right)$.
(c) Find the number of elements in the conjugacy class of $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ in $G L_{2}\left(\mathbb{Z}_{3}\right)$.

