
PMATH 347 Groups and Rings, Solutions to Assignment 1

1: Determine which of the following are groups, and which of the groups are abelian.

(a) R∗ under division.

Solution: R∗ is not a group under ÷ since ÷ is not associative; for example (1÷2)÷3 = 1
6 but 1÷(2÷3) = 3

2 .

(b) The set of all subsets of {1, 2, 3, 4} under union.

Solution: The set of all subsets of {1, 2, 3, 4} under ∪ is not a group. To be a group, it must have an identity,
say E, and since A ∪ E = A for all A ⊆ {1, 2, 3, 4}, we must have E = ∅ (the empty set). But then no
non-empty set A ⊆ {1, 2, 3, 4} can have an inverse B, since ∅ 6= A ⊆ A ∪B.

(c) {x ∈ R
∣∣x2 ∈ Z

}
under addition.

Solution: S = {x ∈ R|x2 ∈ Z} is not a group under +, since + is not a well defined binary operation; for
example, 1 ∈ S and

√
2 ∈ S but 1 +

√
2 /∈ S, since (1 +

√
2)2 = 3 + 2

√
2 /∈ Z as

√
2 is irrational.

(d)
{

(a, b) ∈ R2
∣∣ b 6= 0

}
under the operation ∗ defined by (a, b) ∗ (c, d) = (c+ ad, bd).

Solution: {(a, b) ∈ R2|b 6= 0} is a group under the operation ∗ defined by (a, b)∗(c, d) = (c+ad, bd). First note
that ∗ is a well defined binary operation since bd = 0 =⇒ b = 0 or d = 0. Then note that ∗ is associative, since
((a, b)∗ (c, d))∗ (f, g) = (c+ad, bd)∗ (f, g) = (f + cg+adg, bdg) = (a, b)∗ (f + cg, dg) = (a, b)∗ ((c, d)∗ (f, g)).
Next note that (a, b) ∗ (c, d) = (a, b) ⇐⇒ (c+ ad, bd) = (a, b) ⇐⇒ c+ ad = a and bd = b ⇐⇒ d = 1 and
c = 0 ⇐⇒ (c, d) = (0, 1) and also note that (0, 1) ∗ (a, b) = (a, b) and so we see that (0, 1) is the identity.
Finally note that (a, b) ∗ (c, d) = (0, 1) ⇐⇒ c + ad = 0 and bd = 1 ⇐⇒ d = 1/b and c = −a/b and also
that (−a/b, 1/b) ∗ (a, b) = (0, 1), so we see that (a, b)−1 = (−a/b, 1/b). This group is not abelian since, for
example, (1, 2) ∗ (1, 1) = (2, 2), but (1, 1) ∗ (1, 2) = (3, 2).



2: (a) Let G be a group. Suppose that for all a, b, c, d, x ∈ G, if axb = cxd then ab = cd. Show that G is
abelian.

Solution: Let u, v ∈ G. Taking a = d = u, b = c = uvu and x = v, we have axb = (u)(v)(uvu) =
(uvu)(v)(u) = cxd, and hence uuvu = ab = cd = uvuu. Multiplying on the left and on the right by u−1

gives uv = vu.

(b) Let G be a finite group. Show that there are an odd number of elements x ∈ G with x3 = e.

Solution: Let S =
{
x ∈ G

∣∣x3 = e, x 6= e
}

. We must show that S has an even number of elements. To do
this, we shall show that S can be partitioned into 2-element subsets of the form {x, x2}. Note that for x ∈ S
we have (x2)3 = e

(
since (x2)3 = x6 = (x3)2 = e2 = e

)
and we have x2 6= e (since if x2 = e then multiplying

both sides on the left by x gives x3 = x, but then since x3 = e this would give e = x) and hence x2 ∈ S.
Also note that for x ∈ S we have x2 6= x

(
since if x2 = x then multiplying both sides on the left by x−1

gives x = e
)

and hence {x, x2} is a 2-element subset of S. Finally note that for x, y ∈ S, if y /∈ {x, x2}
then y2 /∈ {x, x2}

(
since if y2 = x then squaring both sides gives y = y4 = x2, and if y2 = x2 then squaring

both sides gives y = y4 = x4 = x
)

and hence the distinct 2-element sets {x, x2} are disjoint. Thus S can be
partitioned into 2-element subsets, hence S has an even number of elements.

(c) Let G be a non-empty finite set with a binary operation ∗ : G×G→ G with the following properties:

(1) associativity: for all a, b, c ∈ G we have (a ∗ b) ∗ c = a ∗ (b ∗ c),
(2) right cancellation: for all a, b, c ∈ G, if a ∗ c = b ∗ c then a = b, and
(3) left cancellation: for all a, b, c ∈ G, if c ∗ a = c ∗ b then a = b.

Show that G is group under ∗.
Solution: For a, b ∈ G, we write a ∗ b as ab. Because we have right-cancellation, it follows that for all c ∈ G,
the right-multiplication map Rc : G → G given by Rc(a) = ac is injective. Since G is finite, Rc is bijective
for all c ∈ G. Similarly, because we have left cancellation, it follows that Lc is bijective for all c ∈ G, where
Lc(a) = ca.

Fix u ∈ G. Since Lu is bijective, we can choose e ∈ G so that ue = u. We claim that ea = a for all a ∈ G.
Let a ∈ G and say ea = b. Then we have ua = (ue)a = u(ea) = ub and hence a = b by left-cancellation.
Thus ea = a for all a ∈ G, as claimed. In particular, we have ee = e. We claim that ae = a for all a ∈ G.
Let a ∈ G, and say ae = b. Then ae = a(ee) = (ae)e = be and so a = b by right-cancellation. Thus ae = a
for all a ∈ G as claimed. This shows that the element e acts as a (2-sided) identity element for G.

It remains to show that for every a ∈ G there exists b ∈ G such that ab = e = ba. Let a ∈ G. Since
La is bijective we can choose b ∈ G so that ab = e, and since Ra is bijective we can choose c ∈ G so that
ca = e. Then we have c = ce = c(ab) = (ca)b = eb = b.



3: Let R be a ring with 1.

(a) Let a, b ∈ R. Suppose that a3 = a and ab+ ba = 1. Show that a2 = 1.

Solution: We have a = a · 1 = a(ab+ ba) = a2b+ aba, and we have a = 1 · a = (ab+ ba)a = aba+ ba2, and
so a2b = a− aba = ba2. Since ab+ ba = 1, and a3 = a and a2b = ba2, we have

a2 = a2 · 1 = a2(ab+ ba) = a3b+ a2ba = ab+ ba2a = ab+ ba3 = ba+ ab = 1.

(b) Let a, b ∈ R. Suppose that a and b and a+ b are units. Show that a−1 + b−1 is a unit.

Solution: We have
a(a−1 + b−1)b = a a−1b+ a b−1b = b+ a = a+ b.

It follows that

(a−1 + b−1)
(
b(a+ b)−1a

)
= a−1a(a−1 + b−1)b (a+ b)−1a = a(a+ b)(a+ b)−1a = 1 and(

b(a+ b)−1a
)
(a−1 + b−1) = b(a+ b)−1a(a−1 + b−1)b b−1 = b(a+ b)−1(a+ b)b−1 = 1

and so a−1 + b−1 is invertible with two-sided inverse b(a+ b)−1a.

(c) Show that if a2 = a for all a ∈ R then R is commutative.

Solution: Suppose that a2 = a for all a ∈ R. Let a ∈ R. Then

a+ a = (a+ a) · (a+ a) = a · a+ a · a+ a · a+ a · a = a+ a+ a+ a.

Subtracting a+ a from both sides gives a+ a = 0. This proves that a+ a = 0 for all a ∈ R.
Now let a, b ∈ R. Then

a+ b = (a+ b) · (a+ b) = a · a+ a · b+ b · a+ b · b = a+ a · b+ b · a+ b = (a · b+ b · a) + a+ b.

Subtract a+ b from both sides to get ab+ ba = 0. Thus

ab = ab+ 0 = ab+ (ab+ ba) = (ab+ ab) + ba = 0 + ba = ba.



4: (a) Find
∣∣GL2(Z4)

∣∣.
Solution: Let A =

(
a b
c d

)
with a, b, c, d ∈ Z4. We have A ∈ GL2(Z4) when detA ∈ U(4), that is when

ad− bc = 1 or 3. There are 16 possibilities for the first row (a, b) of A, since there are 4 choices for a and 4
for b. Fix the first row (a, b).

If a = 1 then ad − bc = d − bc, so A ∈ GL2(Z4) when d − bc = 1 or 3. For any choice of c, there two
values of d for which A ∈ GL2(Z4), namely d = 1 + bc and d = 3 + bc. Thus when a = 1 there are 4 · 2 = 8
choices for (c, d) such that A ∈ GL2(Z4).

If a = 3 = −1, then ad − bc = −b − bc, so for every choice of c there are two choices of d for which
A ∈ GL2(Z4), namely d = −1− bc and d = −3− bc. Thus when a = 3 there are again 8 choices of (c, d) for
which A ∈ GL2(Z4).

We have shown that when a is odd there are 8 choices of (c, d) for which A ∈ GL2(Z4). Similarly, when
b is odd, then there will be 8 choices of (c, d) for which A ∈ GL2(Z4).

On the other hand, when a and b are both even, the determinant detA = ad− bc will also be even, so
A /∈ GL2(Z4).

Of the 16 possibilities for the first row (a, b), there are 4 for which a and b are both even, namely
(a, b) = (0, 0), (0, 2), (2, 0) and (2, 2), and there are 12 for which either a or b is odd. Thus the total number
of matrices in GL2(Z4) is equal to 12 · 8 = 96, that is

∣∣GL2(Z4)
∣∣ = 96.

(b) List every element in each conjugacy class in GL2(Z2).

Solution: Let I =
(
1 0
0 1

)
, A =

(
1 0
1 1

)
, B =

(
0 1
1 0

)
, C =

(
0 1
1 1

)
, D =

(
1 1
1 0

)
and E =

(
1 1
0 1

)
so that

GL2(Z2) =
{
I, A,B,C,D,E

}
.

We make a multiplication table (showing the value of XY for each pair A,B) and then we use the multipli-
cation table to help make a conjugation table (showing the value of XYX−1 for each pair X,Y ).

X\Y I A B C D E

I I A B C D E
A A I C B E D
B B D I E A C
C C E A D I B
D D B E I C A
E E C D A B I

X\Y I A B C D E

I I A B C D E
A I A E D C B
B I E B D C A
C I B E C D A
D I E A C D B
E I B A D C E

The conjugacy classes are the sets of matrices of each column of the conjugation table, that is Cl(I) = {I},
Cl(A) = {A,B,E} and Cl(C) = {C,D}.

(c) Find the number of elements in the conjugacy class of
(
1 0
0 2

)
in GL2(Z3).

Solution: Recall from linear algebra that for a field F , two matrices A,B ∈ Mn(F ) are similar when there
exists a matrix P ∈ GLn(F ) such that B = PAP−1. For A,B ∈ GLn(F ), we see that A and B are similar
if and only if they are conjugate, in which case we write A ∼ B. Also recall that when A ∼ B we have
detA = detB and fA(x) = fB(x) where fA(x) denotes the characteristic polynomial of A. Finally, recall
that when A ∈ Mn(F ) has n distinct eigenvalues λ1, λ2, · · · , λn, we have A ∼ D where D is the diagonal
matrix with diagonal entries λ1, λ2, · · · , λn.

For D =
(
1 0
0 2

)
and A =

(
a b
c d

)
in M2(Z3), we have

A ∼ D ⇐⇒ fA(x) = fD(x)

⇐⇒ x2 − (a+ d)x+ (ad− bc) = x2 + 2

⇐⇒ a+ d = 0 and ad− bc = 2 = −1

⇐⇒ d = −a and bc = 1− a2

When a = 0 we have bc = 1 − a2 ⇐⇒ bc = 1 ⇐⇒ (b, c) ∈ {(1, 1), (2, 2)} and when a ∈ {1, 2} we have
bc = 1− a2 ⇐⇒ bc = 0 ⇐⇒ (b, c) ∈ {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0)}. Thus there are exactly 12 matrices
A ∈M2(Z3) which are similar to D, and for each of these we have detA = detD = 2 so that A ∈ GL2(Z3). To

be explicit, we have Cl(D) =
{(

0 1
1 0

)
,
(
0 2
2 0

)
,
(
1 0
0 2

)
,
(
1 0
1 2

)
,
(
1 0
2 2

)
,
(
1 1
0 2

)
,
(
1 2
0 2

)
,
(
2 0
0 1

)
,
(
2 0
1 1

)
,
(
2 0
2 1

)
,
(
2 1
0 1

)
,
(
2 2
0 1

)}
.


