- 1: Determine which of the following are groups, and which of the groups are abelian.
 - (a) \mathbb{R}^* under division.

Solution: \mathbb{R}^* is not a group under \div since \div is not associative; for example $(1 \div 2) \div 3 = \frac{1}{6}$ but $1 \div (2 \div 3) = \frac{3}{2}$.

(b) The set of all subsets of $\{1, 2, 3, 4\}$ under union.

Solution: The set of all subsets of $\{1, 2, 3, 4\}$ under \cup is not a group. To be a group, it must have an identity, say E, and since $A \cup E = A$ for all $A \subseteq \{1, 2, 3, 4\}$, we must have $E = \emptyset$ (the empty set). But then no non-empty set $A \subseteq \{1, 2, 3, 4\}$ can have an inverse B, since $\emptyset \neq A \subseteq A \cup B$.

(c) $\{x \in \mathbb{R} \mid x^2 \in \mathbb{Z}\}$ under addition.

Solution: $S = \{x \in \mathbb{R} | x^2 \in \mathbb{Z}\}$ is not a group under +, since + is not a well defined binary operation; for example, $1 \in S$ and $\sqrt{2} \in S$ but $1 + \sqrt{2} \notin S$, since $(1 + \sqrt{2})^2 = 3 + 2\sqrt{2} \notin \mathbb{Z}$ as $\sqrt{2}$ is irrational.

(d) $\{(a,b) \in \mathbb{R}^2 | b \neq 0\}$ under the operation * defined by (a,b) * (c,d) = (c+ad,bd).

Solution: $\{(a, b) \in \mathbb{R}^2 | b \neq 0\}$ is a group under the operation * defined by (a, b)*(c, d) = (c+ad, bd). First note that * is a well defined binary operation since $bd = 0 \implies b = 0$ or d = 0. Then note that * is associative, since ((a, b)*(c, d))*(f, g) = (c+ad, bd)*(f, g) = (f+cg+adg, bdg) = (a, b)*(f+cg, dg) = (a, b)*((c, d)*(f, g)). Next note that $(a, b)*(c, d) = (a, b) \iff (c+ad, bd) = (a, b) \iff c+ad = a$ and $bd = b \iff d = 1$ and $c = 0 \iff (c, d) = (0, 1)$ and also note that (0, 1)*(a, b) = (a, b) and so we see that (0, 1) is the identity. Finally note that $(a, b)*(c, d) = (0, 1) \iff c+ad = 0$ and $bd = 1 \iff d = 1/b$ and c = -a/b and also that (-a/b, 1/b)*(a, b) = (0, 1), so we see that $(a, b)^{-1} = (-a/b, 1/b)$. This group is not abelian since, for example, (1, 2)*(1, 1) = (2, 2), but (1, 1)*(1, 2) = (3, 2).

2: (a) Let G be a group. Suppose that for all $a, b, c, d, x \in G$, if axb = cxd then ab = cd. Show that G is abelian.

Solution: Let $u, v \in G$. Taking a = d = u, b = c = uvu and x = v, we have axb = (u)(v)(uvu) = (uvu)(v)(u) = cxd, and hence uuvu = ab = cd = uvuu. Multiplying on the left and on the right by u^{-1} gives uv = vu.

(b) Let G be a finite group. Show that there are an odd number of elements $x \in G$ with $x^3 = e$.

Solution: Let $S = \{x \in G | x^3 = e, x \neq e\}$. We must show that S has an even number of elements. To do this, we shall show that S can be partitioned into 2-element subsets of the form $\{x, x^2\}$. Note that for $x \in S$ we have $(x^2)^3 = e$ (since $(x^2)^3 = x^6 = (x^3)^2 = e^2 = e$) and we have $x^2 \neq e$ (since if $x^2 = e$ then multiplying both sides on the left by x gives $x^3 = x$, but then since $x^3 = e$ this would give e = x) and hence $x^2 \in S$. Also note that for $x \in S$ we have $x^2 \neq x$ (since if $x^2 = x$ then multiplying both sides on the left by x^{-1} gives x = e) and hence $\{x, x^2\}$ is a 2-element subset of S. Finally note that for $x, y \in S$, if $y \notin \{x, x^2\}$ then $y^2 \notin \{x, x^2\}$ (since if $y^2 = x$ then squaring both sides gives $y = y^4 = x^2$, and if $y^2 = x^2$ then squaring both sides gives $y = y^4 = x^4 = x$) and hence the distinct 2-element sets $\{x, x^2\}$ are disjoint. Thus S can be partitioned into 2-element subsets, hence S has an even number of elements.

(c) Let G be a non-empty finite set with a binary operation $*: G \times G \to G$ with the following properties:

- (1) associativity: for all $a, b, c \in G$ we have (a * b) * c = a * (b * c),
- (2) right cancellation: for all $a, b, c \in G$, if a * c = b * c then a = b, and
- (3) left cancellation: for all $a, b, c \in G$, if c * a = c * b then a = b.

Show that G is group under *.

Solution: For $a, b \in G$, we write a * b as ab. Because we have right-cancellation, it follows that for all $c \in G$, the right-multiplication map $R_c : G \to G$ given by $R_c(a) = ac$ is injective. Since G is finite, R_c is bijective for all $c \in G$. Similarly, because we have left cancellation, it follows that L_c is bijective for all $c \in G$, where $L_c(a) = ca$.

Fix $u \in G$. Since L_u is bijective, we can choose $e \in G$ so that ue = u. We claim that ea = a for all $a \in G$. Let $a \in G$ and say ea = b. Then we have ua = (ue)a = u(ea) = ub and hence a = b by left-cancellation. Thus ea = a for all $a \in G$, as claimed. In particular, we have ee = e. We claim that ae = a for all $a \in G$. Let $a \in G$, and say ae = b. Then ae = a(ee) = (ae)e = be and so a = b by right-cancellation. Thus ae = a for all $a \in G$. a for all $a \in G$ as claimed. This shows that the element e acts as a (2-sided) identity element for G.

It remains to show that for every $a \in G$ there exists $b \in G$ such that ab = e = ba. Let $a \in G$. Since L_a is bijective we can choose $b \in G$ so that ab = e, and since R_a is bijective we can choose $c \in G$ so that ca = e. Then we have c = ce = c(ab) = (ca)b = eb = b.

3: Let R be a ring with 1.

(a) Let $a, b \in R$. Suppose that $a^3 = a$ and ab + ba = 1. Show that $a^2 = 1$. Solution: We have $a = a \cdot 1 = a(ab + ba) = a^2b + aba$, and we have $a = 1 \cdot a = (ab + ba)a = aba + ba^2$, and so $a^2b = a - aba = ba^2$. Since ab + ba = 1, and $a^3 = a$ and $a^2b = ba^2$, we have

 $a^{2} = a^{2} \cdot 1 = a^{2}(ab + ba) = a^{3}b + a^{2}ba = ab + ba^{2}a = ab + ba^{3} = ba + ab = 1.$

(b) Let $a, b \in R$. Suppose that a and b and a + b are units. Show that $a^{-1} + b^{-1}$ is a unit. Solution: We have

$$a(a^{-1} + b^{-1})b = a a^{-1}b + a b^{-1}b = b + a = a + b$$

It follows that

$$(a^{-1} + b^{-1})(b(a+b)^{-1}a) = a^{-1}a(a^{-1} + b^{-1})b(a+b)^{-1}a = a(a+b)(a+b)^{-1}a = 1 \text{ and } (b(a+b)^{-1}a)(a^{-1} + b^{-1}) = b(a+b)^{-1}a(a^{-1} + b^{-1})bb^{-1} = b(a+b)^{-1}(a+b)b^{-1} = 1$$

and so $a^{-1} + b^{-1}$ is invertible with two-sided inverse $b(a+b)^{-1}a$.

(c) Show that if $a^2 = a$ for all $a \in R$ then R is commutative.

Solution: Suppose that $a^2 = a$ for all $a \in R$. Let $a \in R$. Then

$$a + a = (a + a) \cdot (a + a) = a \cdot a + a \cdot a + a \cdot a + a \cdot a = a + a + a + a.$$

Subtracting a + a from both sides gives a + a = 0. This proves that a + a = 0 for all $a \in R$.

Now let $a, b \in R$. Then

$$a + b = (a + b) \cdot (a + b) = a \cdot a + a \cdot b + b \cdot a + b \cdot b = a + a \cdot b + b \cdot a + b = (a \cdot b + b \cdot a) + a + b \cdot a + b$$

Subtract a + b from both sides to get ab + ba = 0. Thus

$$ab = ab + 0 = ab + (ab + ba) = (ab + ab) + ba = 0 + ba = ba$$

4: (a) Find $|GL_2(\mathbb{Z}_4)|$.

Solution: Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in \mathbb{Z}^4$. We have $A \in GL_2(\mathbb{Z}_4)$ when det $A \in U(4)$, that is when ad - bc = 1 or 3. There are 16 possibilities for the first row (a, b) of A, since there are 4 choices for a and 4 for b. Fix the first row (a, b).

If a = 1 then ad - bc = d - bc, so $A \in GL_2(\mathbb{Z}_4)$ when d - bc = 1 or 3. For any choice of c, there two values of d for which $A \in GL_2(\mathbb{Z}_4)$, namely d = 1 + bc and d = 3 + bc. Thus when a = 1 there are $4 \cdot 2 = 8$ choices for (c, d) such that $A \in GL_2(\mathbb{Z}_4)$.

If a = 3 = -1, then ad - bc = -b - bc, so for every choice of c there are two choices of d for which $A \in GL_2(\mathbb{Z}_4)$, namely d = -1 - bc and d = -3 - bc. Thus when a = 3 there are again 8 choices of (c, d) for which $A \in GL_2(\mathbb{Z}_4)$.

We have shown that when a is odd there are 8 choices of (c, d) for which $A \in GL_2(\mathbb{Z}_4)$. Similarly, when b is odd, then there will be 8 choices of (c, d) for which $A \in GL_2(\mathbb{Z}_4)$.

On the other hand, when a and b are both even, the determinant det A = ad - bc will also be even, so $A \notin GL_2(\mathbb{Z}_4).$

Of the 16 possibilities for the first row (a, b), there are 4 for which a and b are both even, namely (a,b) = (0,0), (0,2), (2,0) and (2,2), and there are 12 for which either a or b is odd. Thus the total number of matrices in $GL_2(\mathbb{Z}_4)$ is equal to $12 \cdot 8 = 96$, that is $|GL_2(\mathbb{Z}_4)| = 96$.

(b) List every element in each conjugacy class in $GL_2(\mathbb{Z}_2)$.

Solution: Let $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, $D = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ and $E = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ so that $GL_2(\mathbb{Z}_2) = \{I, A, B, C, D, E\}.$

We make a multiplication table (showing the value of XY for each pair A, B) and then we use the multiplication table to help make a conjugation table (showing the value of XYX^{-1} for each pair X, Y).

$X \backslash Y$	Ι	A	B	C	D	E	$X \backslash Y$	Ι	A	В	C	D	E
Ι	Ι	A	B	C	D	E	Ι	Ι	A	В	C	D	E
A	A	Ι	C	B	E	D	A	Ι	A	E	D	C	B
B	B	D	Ι	E	A	C	B	Ι	E	B	D	C	A
C	C	E	A	D	Ι	B	C	Ι	B	E	C	D	A
D	D	B	E	Ι	C	A	D	Ι	E	A	C	D	B
E	E	C	D	A	B	Ι	E	Ι	B	A	D	C	E

The conjugacy classes are the sets of matrices of each column of the conjugation table, that is $Cl(I) = \{I\}$, $Cl(A) = \{A, B, E\}$ and $Cl(C) = \{C, D\}.$

(c) Find the number of elements in the conjugacy class of $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ in $GL_2(\mathbb{Z}_3)$.

Solution: Recall from linear algebra that for a field F, two matrices $A, B \in M_n(F)$ are similar when there exists a matrix $P \in GL_n(F)$ such that $B = PAP^{-1}$. For $A, B \in GL_n(F)$, we see that A and B are similar if and only if they are conjugate, in which case we write $A \sim B$. Also recall that when $A \sim B$ we have det A = det B and $f_A(x) = f_B(x)$ where $f_A(x)$ denotes the characteristic polynomial of A. Finally, recall that when $A \in M_n(F)$ has n distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, we have $A \sim D$ where D is the diagonal matrix with diagonal entries $\lambda_1, \lambda_2, \dots, \lambda_n$. For $D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $M_2(\mathbb{Z}_3)$, we have

$$A \sim D \iff f_A(x) = f_D(x)$$

$$\iff x^2 - (a+d)x + (ad-bc) = x^2 + 2$$

$$\iff a+d = 0 \text{ and } ad-bc = 2 = -1$$

$$\iff d = -a \text{ and } bc = 1 - a^2$$

When a = 0 we have $bc = 1 - a^2 \iff bc = 1 \iff (b, c) \in \{(1, 1), (2, 2)\}$ and when $a \in \{1, 2\}$ we have $bc = 1 - a^2 \iff bc = 0 \iff (b, c) \in \{(0, 0), (0, 1), (0, 2), (1, 0), (2, 0)\}$. Thus there are exactly 12 matrices $A \in M_2(\mathbb{Z}_3)$ which are similar to D, and for each of these we have det $A = \det D = 2$ so that $A \in GL_2(\mathbb{Z}_3)$. To be explicit, we have $Cl(D) = \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix} \right\}.$