PMATH 347 Groups and Rings, Solutions to Assignment 1

1: Determine which of the following are groups, and which of the groups are abelian.
(a) \mathbb{R}^{*} under division.

Solution: \mathbb{R}^{*} is not a group under \div since \div is not associative; for example $(1 \div 2) \div 3=\frac{1}{6}$ but $1 \div(2 \div 3)=\frac{3}{2}$.
(b) The set of all subsets of $\{1,2,3,4\}$ under union.

Solution: The set of all subsets of $\{1,2,3,4\}$ under \cup is not a group. To be a group, it must have an identity, say E, and since $A \cup E=A$ for all $A \subseteq\{1,2,3,4\}$, we must have $E=\emptyset$ (the empty set). But then no non-empty set $A \subseteq\{1,2,3,4\}$ can have an inverse B, since $\emptyset \neq A \subseteq A \cup B$.
(c) $\left\{x \in \mathbb{R} \mid x^{2} \in \mathbb{Z}\right\}$ under addition.

Solution: $S=\left\{x \in \mathbb{R} \mid x^{2} \in \mathbb{Z}\right\}$ is not a group under + , since + is not a well defined binary operation; for example, $1 \in S$ and $\sqrt{2} \in S$ but $1+\sqrt{2} \notin S$, since $(1+\sqrt{2})^{2}=3+2 \sqrt{2} \notin \mathbb{Z}$ as $\sqrt{2}$ is irrational.
(d) $\left\{(a, b) \in \mathbb{R}^{2} \mid b \neq 0\right\}$ under the operation $*$ defined by $(a, b) *(c, d)=(c+a d, b d)$.

Solution: $\left\{(a, b) \in \mathbb{R}^{2} \mid b \neq 0\right\}$ is a group under the operation $*$ defined by $(a, b) *(c, d)=(c+a d, b d)$. First note that $*$ is a well defined binary operation since $b d=0 \Longrightarrow b=0$ or $d=0$. Then note that $*$ is associative, since $((a, b) *(c, d)) *(f, g)=(c+a d, b d) *(f, g)=(f+c g+a d g, b d g)=(a, b) *(f+c g, d g)=(a, b) *((c, d) *(f, g))$. Next note that $(a, b) *(c, d)=(a, b) \Longleftrightarrow(c+a d, b d)=(a, b) \Longleftrightarrow c+a d=a$ and $b d=b \Longleftrightarrow d=1$ and $c=0 \Longleftrightarrow(c, d)=(0,1)$ and also note that $(0,1) *(a, b)=(a, b)$ and so we see that $(0,1)$ is the identity. Finally note that $(a, b) *(c, d)=(0,1) \Longleftrightarrow c+a d=0$ and $b d=1 \Longleftrightarrow d=1 / b$ and $c=-a / b$ and also that $(-a / b, 1 / b) *(a, b)=(0,1)$, so we see that $(a, b)^{-1}=(-a / b, 1 / b)$. This group is not abelian since, for example, $(1,2) *(1,1)=(2,2)$, but $(1,1) *(1,2)=(3,2)$.

2: (a) Let G be a group. Suppose that for all $a, b, c, d, x \in G$, if $a x b=c x d$ then $a b=c d$. Show that G is abelian.

Solution: Let $u, v \in G$. Taking $a=d=u, b=c=u v u$ and $x=v$, we have $a x b=(u)(v)(u v u)=$ $(u v u)(v)(u)=c x d$, and hence $u u v u=a b=c d=u v u u$. Multiplying on the left and on the right by u^{-1} gives $u v=v u$.
(b) Let G be a finite group. Show that there are an odd number of elements $x \in G$ with $x^{3}=e$.

Solution: Let $S=\left\{x \in G \mid x^{3}=e, x \neq e\right\}$. We must show that S has an even number of elements. To do this, we shall show that S can be partitioned into 2-element subsets of the form $\left\{x, x^{2}\right\}$. Note that for $x \in S$ we have $\left(x^{2}\right)^{3}=e\left(\right.$ since $\left(x^{2}\right)^{3}=x^{6}=\left(x^{3}\right)^{2}=e^{2}=e$) and we have $x^{2} \neq e$ (since if $x^{2}=e$ then multiplying both sides on the left by x gives $x^{3}=x$, but then since $x^{3}=e$ this would give $e=x$) and hence $x^{2} \in S$. Also note that for $x \in S$ we have $x^{2} \neq x$ (since if $x^{2}=x$ then multiplying both sides on the left by x^{-1} gives $x=e$) and hence $\left\{x, x^{2}\right\}$ is a 2-element subset of S. Finally note that for $x, y \in S$, if $y \notin\left\{x, x^{2}\right\}$ then $y^{2} \notin\left\{x, x^{2}\right\}$ (since if $y^{2}=x$ then squaring both sides gives $y=y^{4}=x^{2}$, and if $y^{2}=x^{2}$ then squaring both sides gives $y=y^{4}=x^{4}=x$) and hence the distinct 2-element sets $\left\{x, x^{2}\right\}$ are disjoint. Thus S can be partitioned into 2 -element subsets, hence S has an even number of elements.
(c) Let G be a non-empty finite set with a binary operation $*: G \times G \rightarrow G$ with the following properties:
(1) associativity: for all $a, b, c \in G$ we have $(a * b) * c=a *(b * c)$,
(2) right cancellation: for all $a, b, c \in G$, if $a * c=b * c$ then $a=b$, and
(3) left cancellation: for all $a, b, c \in G$, if $c * a=c * b$ then $a=b$.

Show that G is group under *.
Solution: For $a, b \in G$, we write $a * b$ as $a b$. Because we have right-cancellation, it follows that for all $c \in G$, the right-multiplication map $R_{c}: G \rightarrow G$ given by $R_{c}(a)=a c$ is injective. Since G is finite, R_{c} is bijective for all $c \in G$. Similarly, because we have left cancellation, it follows that L_{c} is bijective for all $c \in G$, where $L_{c}(a)=c a$.

Fix $u \in G$. Since L_{u} is bijective, we can choose $e \in G$ so that $u e=u$. We claim that $e a=a$ for all $a \in G$. Let $a \in G$ and say $e a=b$. Then we have $u a=(u e) a=u(e a)=u b$ and hence $a=b$ by left-cancellation. Thus $e a=a$ for all $a \in G$, as claimed. In particular, we have $e e=e$. We claim that $a e=a$ for all $a \in G$. Let $a \in G$, and say $a e=b$. Then $a e=a(e e)=(a e) e=b e$ and so $a=b$ by right-cancellation. Thus $a e=a$ for all $a \in G$ as claimed. This shows that the element e acts as a (2-sided) identity element for G.

It remains to show that for every $a \in G$ there exists $b \in G$ such that $a b=e=b a$. Let $a \in G$. Since L_{a} is bijective we can choose $b \in G$ so that $a b=e$, and since R_{a} is bijective we can choose $c \in G$ so that $c a=e$. Then we have $c=c e=c(a b)=(c a) b=e b=b$.

3: Let R be a ring with 1 .
(a) Let $a, b \in R$. Suppose that $a^{3}=a$ and $a b+b a=1$. Show that $a^{2}=1$.

Solution: We have $a=a \cdot 1=a(a b+b a)=a^{2} b+a b a$, and we have $a=1 \cdot a=(a b+b a) a=a b a+b a^{2}$, and so $a^{2} b=a-a b a=b a^{2}$. Since $a b+b a=1$, and $a^{3}=a$ and $a^{2} b=b a^{2}$, we have

$$
a^{2}=a^{2} \cdot 1=a^{2}(a b+b a)=a^{3} b+a^{2} b a=a b+b a^{2} a=a b+b a^{3}=b a+a b=1 .
$$

(b) Let $a, b \in R$. Suppose that a and b and $a+b$ are units. Show that $a^{-1}+b^{-1}$ is a unit.

Solution: We have

$$
a\left(a^{-1}+b^{-1}\right) b=a a^{-1} b+a b^{-1} b=b+a=a+b
$$

It follows that

$$
\begin{aligned}
& \left(a^{-1}+b^{-1}\right)\left(b(a+b)^{-1} a\right)=a^{-1} a\left(a^{-1}+b^{-1}\right) b(a+b)^{-1} a=a(a+b)(a+b)^{-1} a=1 \text { and } \\
& \left(b(a+b)^{-1} a\right)\left(a^{-1}+b^{-1}\right)=b(a+b)^{-1} a\left(a^{-1}+b^{-1}\right) b b^{-1}=b(a+b)^{-1}(a+b) b^{-1}=1
\end{aligned}
$$

and so $a^{-1}+b^{-1}$ is invertible with two-sided inverse $b(a+b)^{-1} a$.
(c) Show that if $a^{2}=a$ for all $a \in R$ then R is commutative.

Solution: Suppose that $a^{2}=a$ for all $a \in R$. Let $a \in R$. Then

$$
a+a=(a+a) \cdot(a+a)=a \cdot a+a \cdot a+a \cdot a+a \cdot a=a+a+a+a
$$

Subtracting $a+a$ from both sides gives $a+a=0$. This proves that $a+a=0$ for all $a \in R$.
Now let $a, b \in R$. Then

$$
a+b=(a+b) \cdot(a+b)=a \cdot a+a \cdot b+b \cdot a+b \cdot b=a+a \cdot b+b \cdot a+b=(a \cdot b+b \cdot a)+a+b
$$

Subtract $a+b$ from both sides to get $a b+b a=0$. Thus

$$
a b=a b+0=a b+(a b+b a)=(a b+a b)+b a=0+b a=b a .
$$

4: (a) Find $\left|G L_{2}\left(\mathbb{Z}_{4}\right)\right|$.
Solution: Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a, b, c, d \in \mathbb{Z}^{4}$. We have $A \in G L_{2}\left(\mathbb{Z}_{4}\right)$ when $\operatorname{det} A \in U(4)$, that is when $a d-b c=1$ or 3 . There are 16 possibilities for the first row (a, b) of A, since there are 4 choices for a and 4 for b. Fix the first row (a, b).

If $a=1$ then $a d-b c=d-b c$, so $A \in G L_{2}\left(\mathbb{Z}_{4}\right)$ when $d-b c=1$ or 3 . For any choice of c, there two values of d for which $A \in G L_{2}\left(\mathbb{Z}_{4}\right)$, namely $d=1+b c$ and $d=3+b c$. Thus when $a=1$ there are $4 \cdot 2=8$ choices for (c, d) such that $A \in G L_{2}\left(\mathbb{Z}_{4}\right)$.

If $a=3=-1$, then $a d-b c=-b-b c$, so for every choice of c there are two choices of d for which $A \in G L_{2}\left(\mathbb{Z}_{4}\right)$, namely $d=-1-b c$ and $d=-3-b c$. Thus when $a=3$ there are again 8 choices of (c, d) for which $A \in G L_{2}\left(\mathbb{Z}_{4}\right)$.

We have shown that when a is odd there are 8 choices of (c, d) for which $A \in G L_{2}\left(\mathbb{Z}_{4}\right)$. Similarly, when b is odd, then there will be 8 choices of (c, d) for which $A \in G L_{2}\left(\mathbb{Z}_{4}\right)$.

On the other hand, when a and b are both even, the determinant $\operatorname{det} A=a d-b c$ will also be even, so $A \notin G L_{2}\left(\mathbb{Z}_{4}\right)$.

Of the 16 possibilities for the first row (a, b), there are 4 for which a and b are both even, namely $(a, b)=(0,0),(0,2),(2,0)$ and $(2,2)$, and there are 12 for which either a or b is odd. Thus the total number of matrices in $G L_{2}\left(\mathbb{Z}_{4}\right)$ is equal to $12 \cdot 8=96$, that is $\left|G L_{2}\left(\mathbb{Z}_{4}\right)\right|=96$.
(b) List every element in each conjugacy class in $G L_{2}\left(\mathbb{Z}_{2}\right)$.

Solution: Let $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), C=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right), D=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and $E=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ so that

$$
G L_{2}\left(\mathbb{Z}_{2}\right)=\{I, A, B, C, D, E\}
$$

We make a multiplication table (showing the value of $X Y$ for each pair A, B) and then we use the multiplication table to help make a conjugation table (showing the value of $X Y X^{-1}$ for each pair X, Y).

$X \backslash Y$	I	A	B	C	D	E
I	I	A	B	C	D	E
A	A	I	C	B	E	D
B	B	D	I	E	A	C
C	C	E	A	D	I	B
D	D	B	E	I	C	A
E	E	C	D	A	B	I

$X \backslash Y$	I	A	B	C	D	E
I	I	A	B	C	D	E
A	I	A	E	D	C	B
B	I	E	B	D	C	A
C	I	B	E	C	D	A
D	I	E	A	C	D	B
E	I	B	A	D	C	E

The conjugacy classes are the sets of matrices of each column of the conjugation table, that is $C l(I)=\{I\}$, $C l(A)=\{A, B, E\}$ and $C l(C)=\{C, D\}$.
(c) Find the number of elements in the conjugacy class of $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ in $G L_{2}\left(\mathbb{Z}_{3}\right)$.

Solution: Recall from linear algebra that for a field F, two matrices $A, B \in M_{n}(F)$ are similar when there exists a matrix $P \in G L_{n}(F)$ such that $B=P A P^{-1}$. For $A, B \in G L_{n}(F)$, we see that A and B are similar if and only if they are conjugate, in which case we write $A \sim B$. Also recall that when $A \sim B$ we have $\operatorname{det} A=\operatorname{det} B$ and $f_{A}(x)=f_{B}(x)$ where $f_{A}(x)$ denotes the characteristic polynomial of A. Finally, recall that when $A \in M_{n}(F)$ has n distinct eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$, we have $A \sim D$ where D is the diagonal matrix with diagonal entries $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$.

For $D=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in $M_{2}\left(\mathbb{Z}_{3}\right)$, we have

$$
\begin{aligned}
A \sim D & \Longleftrightarrow f_{A}(x)=f_{D}(x) \\
& \Longleftrightarrow x^{2}-(a+d) x+(a d-b c)=x^{2}+2 \\
& \Longleftrightarrow a+d=0 \text { and } a d-b c=2=-1 \\
& \Longleftrightarrow d=-a \text { and } b c=1-a^{2}
\end{aligned}
$$

When $a=0$ we have $b c=1-a^{2} \Longleftrightarrow b c=1 \Longleftrightarrow(b, c) \in\{(1,1),(2,2)\}$ and when $a \in\{1,2\}$ we have $b c=1-a^{2} \Longleftrightarrow b c=0 \Longleftrightarrow(b, c) \in\{(0,0),(0,1),(0,2),(1,0),(2,0)\}$. Thus there are exactly 12 matrices $A \in M_{2}\left(\mathbb{Z}_{3}\right)$ which are similar to D, and for each of these we have $\operatorname{det} A=\operatorname{det} D=2$ so that $A \in G L_{2}\left(\mathbb{Z}_{3}\right)$. To be explicit, we have $C l(D)=\left\{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 2 & 2\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right),\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}2 & 0 \\ 2 & 1\end{array}\right),\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}2 & 2 \\ 0 & 1\end{array}\right)\right\}$.

