PMATH 347 Groups and Rings, Solutions to Assignment 1

: Determine which of the following are groups, and which of the groups are abelian.
(a) R* under division.
Solution: R* is not a group under + since -+ is not associative; for example (1+2)+3 = % but 1+(2+3) =2

(b) The set of all subsets of {1,2,3,4} under union.

Solution: The set of all subsets of {1,2,3,4} under U is not a group. To be a group, it must have an identity,
say F, and since AUE = A for all A C {1,2,3,4}, we must have E = ) (the empty set). But then no
non-empty set A C {1,2,3,4} can have an inverse B, since ) # A C AU B.

() {zeR ’ 2? € Z} under addition.

Solution: S = {x € R|z? € Z} is not a group under +, since + is not a well defined binary operation; for
example, 1 € S and v/2 € S but 1+ /2 ¢ S, since (1 + \/5)2 =3+2V2 ¢ 7 as V2 is irrational.

(d) {(a,b) € Rz‘ b# 0} under the operation * defined by (a,b) * (c,d) = (c + ad, bd).

Solution: {(a,b) € R?|b # 0} is a group under the operation * defined by (a, b)*(c, d) = (c+ad, bd). First note
that = is a well defined binary operation since bd = 0 = b = 0 or d = 0. Then note that * is associative, since
(a,5) (e, d)) * (f,g) = (c+ad, bd) s (f, ) = (f +cg + adg, bdg) = (a,b) = (f +cg,dg) = (a,b) (¢, d) = (£,9)).
Next note that (a,b) * (¢,d) = (a,b) <= (c+ad,bd) = (a,b) <= c+ad=aand bd=b <= d =1 and
¢c=0 < (¢,d) =(0,1) and also note that (0,1) x (a,b) = (a,b) and so we see that (0,1) is the identity.
Finally note that (a,b) % (¢,d) = (0,1) <= c¢+ad=0and bd =1 < d =1/b and ¢ = —a/b and also
that (—a/b,1/b) * (a,b) = (0,1), so we see that (a,b)™! = (—a/b,1/b). This group is not abelian since, for
example, (1,2) * (1, 1) (2,2), but (1,1) % (1,2) = (3,2).



2: (a) Let G be a group. Suppose that for all a,b,¢,d,x € G, if axb = cxd then ab = c¢d. Show that G is
abelian.

Solution: Let w,v € G. Taking a = d = u, b = ¢ = wvu and x = v, we have azb = (u)(v)(uvu)
(uvw)(v)(u) = cxd, and hence wuvu = ab = ¢d = wvuu. Multiplying on the left and on the right by u
gives uv = vu.
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(b) Let G be a finite group. Show that there are an odd number of elements z € G with 2® = e.

Solution: Let S = {:c € G’zS =e,x # e}. We must show that S has an even number of elements. To do
this, we shall show that S can be partitioned into 2-element subsets of the form {x,z%}. Note that for z € S
we have (22)% = e (since (2%)% = 2% = (2%)% = €? = ¢) and we have 2% # e (since if 2 = e then multiplying
both sides on the left by x gives 22 = x, but then since 2® = e this would give e = x) and hence 2? € S.
Also note that for « € S we have 2% # z (since if 22 = z then multiplying both sides on the left by z~!
gives © = e) and hence {z,2?} is a 2-element subset of S. Finally note that for z,y € S, if y ¢ {z,z?}
then y? ¢ {z,2?} (since if y? = = then squaring both sides gives y = y* = 22, and if y? = z? then squaring
both sides gives y = y* = 2% = x) and hence the distinct 2-element sets {x, 22} are disjoint. Thus S can be
partitioned into 2-element subsets, hence S has an even number of elements.

(c) Let G be a non-empty finite set with a binary operation % : G x G — G with the following properties:
(1) associativity: for all a,b,c € G we have (a*b) *x c = a* (b*c),
(2) right cancellation: for all a,b,c € G, if a x ¢ = b * ¢ then a = b, and
(3) left cancellation: for all a,b,c € G, if cxa = c*b then a =b.

Show that G is group under .

Solution: For a,b € G, we write a x b as ab. Because we have right-cancellation, it follows that for all ¢ € G,
the right-multiplication map R, : G — G given by R.(a) = ac is injective. Since G is finite, R, is bijective
for all ¢ € G. Similarly, because we have left cancellation, it follows that L. is bijective for all ¢ € G, where
L.(a) = ca.

Fix u € G. Since L, is bijective, we can choose e € G so that ue = u. We claim that ea = a for all a € G.
Let a € G and say ea = b. Then we have ua = (ue)a = u(ea) = ub and hence a = b by left-cancellation.
Thus ea = a for all a € G, as claimed. In particular, we have ee = e. We claim that ae = a for all a € G.
Let a € G, and say ae = b. Then ae = a(ee) = (ae)e = be and so a = b by right-cancellation. Thus ae = a
for all a € G as claimed. This shows that the element e acts as a (2-sided) identity element for G.

It remains to show that for every a € G there exists b € G such that ab = ¢ = ba. Let a € G. Since
L, is bijective we can choose b € G so that ab = e, and since R, is bijective we can choose ¢ € G so that
ca = e. Then we have ¢ = ce = ¢(ab) = (ca)b = eb =b.



3: Let R be a ring with 1.

(a) Let a,b € R. Suppose that a® = a and ab + ba = 1. Show that a? = 1.

Solution: We have a = a - 1 = a(ab + ba) = a?b + aba, and we have a = 1 -a = (ab + ba)a = aba + ba?, and
so a’b = a — aba = ba®. Since ab+ ba = 1, and a® = a and a?b = ba?, we have

a®> = a1 =a’*(ab+ ba) = a®b + a*ba = ab + ba*a = ab + ba® = ba + ab = 1.

(b) Let a,b € R. Suppose that a and b and a + b are units. Show that a=! 4+ b1 is a unit.

Solution: We have
ala ' +b b =aab+ablb=b+a=a+b.

It follows that
(@' +b07 ") (bla+b)ra) =aala™ + b Nb(a+b) ra=ala+b)(a+b) 'a=1and
(bla+b)'a)(at +b7 ) =bla+b) al@ + bbb =bla+b) Ha+b)b T =1
and so a~! + b1 is invertible with two-sided inverse b(a + b)~la.
(c) Show that if a® = a for all a € R then R is commutative.
Solution: Suppose that a® = a for all @ € R. Let a € R. Then
a+a=(a+a) - (a+a)=a-at+a-a+a-a+a-a=a+a+a+a.

Subtracting a 4+ a from both sides gives a + a = 0. This proves that a + a = 0 for all a € R.
Now let a,b € R. Then

a+b=(a+b)-(a+b)=a-at+a-b+b-a+b-b=a+a-b+b-a+b=(a-b+b-a)+a+b.
Subtract a + b from both sides to get ab + ba = 0. Thus
ab=ab+0=ab+ (ab+ ba) = (ab+ ab) + ba = 0 + ba = ba.



4: (a) Find |GLa(Z4)|.

Solution: Let A = (Z 3) with a,b,c,d € Z*. We have A € GLy(Z4) when det A € U(4), that is when
ad —bc =1 or 3. There are 16 possibilities for the first row (a, b) of A, since there are 4 choices for a and 4
for b. Fix the first row (a,b).

If a =1 then ad — bc = d — be, so A € GLy(Z4) when d —be = 1 or 3. For any choice of ¢, there two
values of d for which A € GL2(Z,), namely d =1+ bc and d = 3 + be. Thus when a = 1 there are 4-2 =8
choices for (¢, d) such that A € GLy(Zy).

If a = 3 = —1, then ad — bc = —b — be, so for every choice of ¢ there are two choices of d for which
A € GLy(Z4), namely d = —1 — be and d = —3 — be. Thus when a = 3 there are again 8 choices of (¢, d) for
which A € GLo (Z4)

We have shown that when a is odd there are 8 choices of (¢, d) for which A € GLy(Z4). Similarly, when
b is odd, then there will be 8 choices of (¢, d) for which A € GLy(Zy4).

On the other hand, when a and b are both even, the determinant det A = ad — be will also be even, so
A ¢ GLy(Za).

Of the 16 possibilities for the first row (a,b), there are 4 for which a and b are both even, namely
(a,b) = (0,0), (0,2), (2,0) and (2, 2), and there are 12 for which either a or b is odd. Thus the total number
of matrices in GLy(Z4) is equal to 12 - 8 = 96, that is |GL2(Z4)| = 96.

(b) List every element in each conjugacy class in GLy(Zs).
Solution: Let I = (} %), A=(79),B= (%), C=(]),D=(},) and E=(} }) so that
GLy(Zs) = {I, A, B,C,D,E}.

We make a multiplication table (showing the value of XY for each pair A, B) and then we use the multipli-
cation table to help make a conjugation table (showing the value of XY X ~! for each pair X,Y).

X\Y I A B C D E X\Y I A B C D E
1 I A B C D E 1 I A B C D FE
A A I C B E D A I A E D C B
B B D I E A C B I E B D C A
c ¢ E A D I B C I B E C D A
D D B E I C A D I E A C D B
E E C D A B I E I B A D C FE

The conjugacy classes are the sets of matrices of each column of the conjugation table, that is CI(I) = {I},

Cl(A) ={A,B,E} and CI(C) = {C, D}.
(¢) Find the number of elements in the conjugacy class of (é g) in GLy(Zs3).

Solution: Recall from linear algebra that for a field F', two matrices A, B € M, (F') are similar when there
exists a matrix P € GL,(F) such that B= PAP~!. For A, B € GL,(F), we see that A and B are similar
if and only if they are conjugate, in which case we write A ~ B. Also recall that when A ~ B we have
det A = det B and fa(x) = fp(x) where fa(x) denotes the characteristic polynomial of A. Finally, recall
that when A € M, (F) has n distinct eigenvalues A1, Ao, -+, Ay, we have A ~ D where D is the diagonal
matrix with diagonal entries A1, Ao, -+, Ap.

For D = ((1) 9) and A = (?s) in My(Zs), we have
A~D <= fa(z)= fp(z)
— 22— (a+d)x+ (ad — bc) = 2° +2
< a+d=0and ad—bc=2= -1
< d=—aand bc =1 — a*
When a = 0 we have bce = 1 —a? <= bc=1 <= (b,c) € {(1,1),(2,2)} and when a € {1,2} we have

be=1-a? < bc=0 < (b,c) € {(0,0),(0,1),(0,2),(1,0),(2,0)}. Thus there are exactly 12 matrices
A € My(Zs) which are similar to D, and for each of these we have det A = det D = 2 so that A € GL2(Z3). To

be explicit, we have CU(D) = {(13). (53) (69)- (19). (39, (04 (2 G DG G DG DG -



