
PMATH 347 Groups and Rings, Solutions to Assignment 2

1: (a) Find Z(Dn).

Solution: We have D1 = Z(D1) = {I} and D2 = Z(D2) = {I,R1, F0, F1}. Let n ≥ 2. We claim that
Z(Dn) = {I} if n is odd and Z(Dn) = {I,Rn/2} when n is even. Fix k ∈ Zn. Note that FkR1 = Fk−1

and R1Fk = Fk+1, but Fk−1 6= Fk+1 since n ≥ 2 and so Fk /∈ Z(Dn). Let us determine whether Rk ∈ Dn.
For l ∈ Zn, we have RkRl = Rk+l = RlRk, and we have RkFl = Fk+l while FlRk = Fl−k so that
RkFl = FlRk ⇐⇒ k + l = l − k ⇐⇒ 2k = 0. Thus if n is odd then Rk ∈ Z(Dn) ⇐⇒ k = 0 and if n is
even then Rk ∈ Z(Dn) ⇐⇒ k = 0, n2 .

(b) Find Z
(
GLn(R)

)
.

Solution: We claim that Z
(
GLn(R)

)
=
{
aI
∣∣a ∈ R∗}. It is clear that for a ∈ R∗ we have aI ∈ Z

(
GLn(R)

)
since (aI)X = aX = X(aI) for all X ∈ GLn(R). Let A ∈ Z

(
GLn(R)

)
. We must show that A = aI for some

a ∈ R∗. For 1 ≤ k, l ≤ n, let Ekl be the n × n matrix with a 1 in position (k, l) and all other entries equal
to 0. Note that I + Ekl ∈ GLn(R). Since A ∈ Z

(
GLn(R)

)
we must have

0 = A(I + Ekl)− (I + Ekl)A = AEkl − EklA.

Note that AEkl is the matrix whose columns are all equal to 0 except for the lth column which is equal to
the kth column of A, and EklA is the matrix whose rows are all zero except for the kth row which is equal
to the lth row of A. Since AEkl−EklA = 0, it follows that all entries on the kth column of A, except for the
entry akk, are equal to 0, and all the entries on the lth row of A, except for all, are equal to 0, and we have
akk − all = 0. Thus we have A = aI where a = a11 = a22 = · · · = ann.

(c) Let A =

 1 0 0
0 1 0
0 0 2

 ∈ GL3(Z5). Find the order of the centralizer of A in GL3(Z5).

Solution: Let X =

 a b c
d e f
g h i

 ∈ GL3(Z5). Then AX = XA ⇐⇒

 a b c
d e f
2g 2h 2i

 =

 a b 2c
d e 2f
g h 2i


⇐⇒

(
2c = c , 2f = f , 2g = g and 2h = h

)
⇐⇒ c = f = g = h = 0. Thus the elements in C(A) are the

matrices X ∈ GL3(Z5) of the form

X =

 a b 0
d e 0
0 0 i

 .

For X of the above form we have det(X) = det

(
a b
d e

)
·det(i) , so X ∈ GL3(Z5) when

(
a b
d e

)
∈ GL2(Z5)

and (i) ∈ GL1(Z5) = Z5
∗. Thus∣∣C(A)

∣∣ =
∣∣GL2(Z5)

∣∣ · ∣∣GL1(Z5)
∣∣ = (52 − 1)(52 − 5)(5− 1) = 24 · 20 · 4 = 1920.



2: (a) Show that U22 is cyclic, U15 is not cyclic, and U2n is not cyclic for n ≥ 3.

Solution: Note that U(22) = {1, 3, 5, 7, 9, 13, 15, 17, 19, 21}. We have

k 0 1 2 3 4 5 6 7 8 9 10

3k 1 3 9 5 15 1
7k 1 7 5 13 3 21 15 17 9 19 1

and so 〈3〉 6= U(22) but 〈7〉 = U(22). Thus U(22) is cyclic and 7 is a generator.
Note that U(15) = {1, 2, 4, 7, 8, 11, 13, 14}, and we have 〈1〉 = {1}, 〈2〉 = {1, 2, 4, 8} = 〈8〉, 〈4〉 = {4},

〈7〉 = {1, 7, 4, 13} = 〈13〉 and 〈11〉 = {1, 11}. Since none of the elements generate U(15), it is not cyclic.
Note that U2n = {1, 3, 5, 7, . . . 2n − 1}. Notice that (2n−1 ± 1)2 = 22n−2 ± 2n + 1 = 1 so U(2n) has at

least 2 elements of order 2. But a cyclic group can have only ϕ(2) = 1 element of order 2. So U(2n) is not
cyclic.

(b) Find the number of cyclic subgroups of Z9 × Z15.

Solution: We make a table listing the orders of the elements (a, b) ∈ Z9 × Z15.

|a| # of such a |b| # of such B |(a, b)| # of such (a, b)

1 1 1 1 1 1
3 2 3 2
5 4 5 4
15 8 15 8

3 2 1 1 3 2
3 2 3 4
5 4 15 8
15 8 15 16

9 6 1 1 9 6
3 2 9 12
5 4 45 24
15 8 45 48

Thus we find the following number of elements of each order n and hence, by dividing by ϕ(n), we obtain
the number of cyclic subgroups of order n, as follows.

n 1 3 5 9 15 45
# of (a, b) of order n 1 8 4 18 32 72

# of cyclic subgroups of order n 1 4 1 3 4 3

(c) Find a non-cyclic proper subgroup of Z9 × Z15.

Solution: The subgroup 〈3〉 × 〈5〉 is not cyclic. Indeed in 〈3〉 = {0, 3, 6} ≤ Z9 we have |3| = |6| = 3 and in
〈5〉 = {0, 5, 10} ≤ Z15 we have |5| = |10| = 3, and so every non-identity element of 〈3〉 × 〈5〉 has order 3 (but
if the group 〈3〉 × 〈5〉 was cyclic then it would have an element of order 9).



3: (a) Let G be a group and let a, b ∈ G. Show that 〈ab, a2b〉 = 〈a, b〉.
Solution: First we observe that for any subset S ⊆ G, since 〈S〉 is the intersection of all subgroups H ≤ G
with S ⊆ H, it follows that if S ⊆ H ≤ G then 〈S〉 ≤ H. Since ab ∈ 〈a, b〉 and a2b = 〈a, b〉 we have
{ab, a2b} ⊆ 〈a, b〉 ≤ G and hence, by the above observation, we have 〈ab, a2b〉 ≤ 〈a, b〉. Note that

(ab)(a2b)−1(ab) = ab b−1a−2ab = a a−1b = b

so that we have b = (ab)(a2b)−1(ab) ∈ 〈ab, a2b〉. It follows that we also have b−1 ∈ 〈ab, a2b〉 so that
a = (ab)b−1 ∈ 〈ab, a2b〉. Since a ∈ 〈ab, a2b〉 and b ∈ 〈ab, ab〉 we have {a, b} ⊆ 〈ab, a2b〉 hence 〈a, b〉 ≤ 〈ab, a2b〉.

(b) Let a, b ∈ Z and let d = gcd(a, b). Show that in the group Z we have 〈a, b〉 = 〈d〉.
Solution: Since d|a we have a ∈ 〈d〉 and since d|b we have b ∈ 〈d〉. Since {a, b} ⊆ 〈d〉 ≤ Z, it follows, as
observed in Part (a), that 〈a, b〉 ≤ 〈d〉. On the other hand, by Bézout’s Identity, we can choose s, t ∈ Z such
that as+ bt = d so we have d ∈ 〈a, b〉, so {d} ⊆ 〈a, b〉, hence 〈d〉 ≤ 〈a, b〉.

(c) Show that every finitely generated subgroup of Q is cyclic.

Solution: First we show that every subgroup of Q which is generated by two elements is cyclic. Let a, b ∈ Q.
Write a = k

n and b = l
n where k, l, n ∈ Z with n 6= 0 (we are using a common denominator for a and b). We

claim that 〈a, b〉 =
〈
d
n

〉
where d = gcd(k, l). Writing k = ds and l = dt, we have a = k

n = ds
n ∈

〈
d
n

〉
and

b = l
n = dt

n ∈
〈
d
n

〉
and so {a, b} ⊆

〈
d
n

〉
≤ Z and hence 〈a, b〉 ≤

〈
d
n

〉
. Conversely, choosing s, t ∈ Z so that

ks+ lt = d we obtain d
n = ks+lt

n = as+ bt ∈ 〈a, b〉 and so
〈
d
n

〉
≤ 〈a, b〉.

Now let n ≥ 3 and suppose, inductively, that every subgroup of Q which is generated by n− 1 elements
is cyclic. Let a1, a2, · · · , an ∈ Q. Choose c ∈ Q so that 〈a1, a2, · · · , an−1〉 = 〈c〉. We have c ∈ 〈a1, · · · , an−1〉 ≤
〈a1, a2, · · · , an〉 and we have an ∈ 〈a1, a2, · · · , an〉 and so 〈c, an〉 ≤ 〈a1, a2, · · · , an〉. We have an ∈ 〈c, an〉 and
for each i = 1, 2, · · · , n− 1 we have ai ∈ 〈a1, · · · , an−1〉 = 〈c〉 ≤ 〈c, an〉 and so 〈a1, a2, · · · , an〉 ≤ 〈c, an〉. Thus
〈a1, a2, · · · , an〉 = 〈c, an〉, which is cyclic, as shown above.

(d) Find a non-cyclic proper subgroup of Q.

Solution: Let H =
{

k
2n

∣∣k ∈ Z, n ∈ N
}

. Then H ≤ Q since 0 = 0
20 ∈ H and for k

2n ∈ H and l
2m ∈ H we have

k
2n + l

2m = k·2m+l·2n
2n+m ∈ H and we have − k

2n = −k
2n ∈ H. But H cannot be cyclic since the denominators of

the elements in a cyclic group (when written in reduced form) are bounded: in the cyclic group
〈
a
b

〉
, the

denominator of each element ka
b is at most b.



4: (a) List all of the elements X ∈ D28 such that F5X
3 = X9F13.

Solution: In D28 we have

F5(Fk)3 = (Fk)9F13 ⇐⇒ F5Fk = FkF13 ⇐⇒ R5−k = Rk−13

⇐⇒ 5− k = k − 13 mod 28 ⇐⇒ 2k = 18 mod 28 ⇐⇒ k = 9 mod 14

and

F5(Rk)3 = (Rk)9F13 ⇐⇒ F5R3k = R9kF13 ⇐⇒ F5−3k = F9k+13

⇐⇒ 5− 3k = 9k + 13 mod 28 ⇐⇒ 12k = 20 mod 28

⇐⇒ 3k = 5 mod 7 ⇐⇒ k = 4 mod 7.

Thus the solutions X are given by X = F9, F23, R4, R11.R18, R25.

(b) Find all subgroups of Dn.

Solution: We claim that the distinct subgroups of Dn are the groups

〈Rd〉 =
{
I,Rd, R2d, · · · , Rn−d

}
where d

∣∣n , and

〈Rd, Fr〉 =
{
I,Rd, R2d · · · , Rn−d, Fr, Fr+d, · · · , Fn+r−d

}
where d

∣∣n and 0 ≤ r < d.

In particular, we remark that the number of distinct subgroups of Dn is equal to τ(n) + σ(n) where τ(n) is
the number of divisors of n and σ(n) is the sum of the divisors of n.

First we show that the group 〈Rd, Fr〉, where d
∣∣n and 0 ≤ r < d, is equal to the set

S =
{
I,Rd, · · · , Rn−d, Fr, Fr+d, · · · , Fn+r−d

}
.

For t ∈ Z, we have Rtd = Rd
t ∈ 〈Rd, Fr〉 and Fr+td = RtdFr = Rd

tFr ∈ 〈Rd, Fr〉 and so S ⊆ 〈Rd, Fr〉.
Also, S is group since it contains I and it is closed under the operation and under inversion, since for
s, t ∈ Z we have RsdRtd = R(s+t)d, RsdFr+td = Fr+(s+t)d, Fr+sdRtd = Fr+(s−t)d, Fr+sdFr+td = R(s−t)d,
(Rtd)−1 = R−td and (Fr+td)−1 = Fr+td. Since S is a group which contains Rd and Fr we have 〈Rd, Fr〉 ⊆ S.

Next we show that the above groups 〈Rd〉 and 〈Rd, Fr〉 are the only subgroups of Dn. Let H ≤ Dn.
If H contains no reflections, then H ≤ Cn =

{
I,R1, R2, · · · , Rn−1

}
= 〈R1〉 and so, by the classification of

subgroups of a cyclic group, we know that H = 〈Rd〉 =
{
I,Rd, · · · , Rn−d

}
for some positive divisor d

∣∣n.
Suppose that H contains at least one reflection, say Fk ∈ H. Note that H ∩ Cn ≤ Cn = 〈R1〉 and so we
have H ∩ Cn = 〈Rd〉 for some d

∣∣n. Write k = qd + r with 0 ≤ r < d. Then Fk = Fqd+r = RqdFr and so
Fr = FkR−qd ∈ H. Since Rd ∈ H and Fr ∈ H we have 〈Rd, Fr〉 ⊆ H. It remains to show that H ⊆ 〈Rd, Fr〉.
We know that every rotation in H lies in 〈Rd, Fr〉 since H ∩ Cn = 〈Rd〉. It remains to show that every
reflection in H lies in 〈Rd, Fr〉. And indeed, we have

Fl ∈ H =⇒ Rl−r = FlFr ∈ H =⇒ Rl−r ∈ H ∩ Cn = 〈Rd〉
=⇒ d

∣∣(l − r) =⇒ l = r mod d =⇒ Fl ∈ S = 〈Rd, Fr〉 .


