PMATH 347 Groups and Rings, Solutions to Assignment 2

1: (a) Find $Z\left(D_{n}\right)$.
Solution: We have $D_{1}=Z\left(D_{1}\right)=\{I\}$ and $D_{2}=Z\left(D_{2}\right)=\left\{I, R_{1}, F_{0}, F_{1}\right\}$. Let $n \geq 2$. We claim that $Z\left(D_{n}\right)=\{I\}$ if n is odd and $Z\left(D_{n}\right)=\left\{I, R_{n / 2}\right\}$ when n is even. Fix $k \in \mathbb{Z}_{n}$. Note that $F_{k} R_{1}=F_{k-1}$ and $R_{1} F_{k}=F_{k+1}$, but $F_{k-1} \neq F_{k+1}$ since $n \geq 2$ and so $F_{k} \notin Z\left(D_{n}\right)$. Let us determine whether $R_{k} \in D_{n}$. For $l \in \mathbb{Z}_{n}$, we have $R_{k} R_{l}=R_{k+l}=R_{l} R_{k}$, and we have $R_{k} F_{l}=F_{k+l}$ while $F_{l} R_{k}=F_{l-k}$ so that $R_{k} F_{l}=F_{l} R_{k} \Longleftrightarrow k+l=l-k \Longleftrightarrow 2 k=0$. Thus if n is odd then $R_{k} \in Z\left(D_{n}\right) \Longleftrightarrow k=0$ and if n is even then $R_{k} \in Z\left(D_{n}\right) \Longleftrightarrow k=0, \frac{n}{2}$.
(b) Find $Z\left(G L_{n}(\mathbb{R})\right)$.

Solution: We claim that $Z\left(G L_{n}(\mathbb{R})\right)=\left\{a I \mid a \in \mathbb{R}^{*}\right\}$. It is clear that for $a \in \mathbb{R}^{*}$ we have $a I \in Z\left(G L_{n}(\mathbb{R})\right)$ since $(a I) X=a X=X(a I)$ for all $X \in G L_{n}(\mathbb{R})$. Let $A \in Z\left(G L_{n}(\mathbb{R})\right)$. We must show that $A=a I$ for some $a \in \mathbb{R}^{*}$. For $1 \leq k, l \leq n$, let $E_{k l}$ be the $n \times n$ matrix with a 1 in position (k, l) and all other entries equal to 0 . Note that $I+E_{k l} \in G L_{n}(\mathbb{R})$. Since $A \in Z\left(G L_{n}(\mathbb{R})\right)$ we must have

$$
0=A\left(I+E_{k l}\right)-\left(I+E_{k l}\right) A=A E_{k l}-E_{k l} A
$$

Note that $A E_{k l}$ is the matrix whose columns are all equal to 0 except for the $l^{\text {th }}$ column which is equal to the $k^{\text {th }}$ column of A, and $E_{k l} A$ is the matrix whose rows are all zero except for the $k^{\text {th }}$ row which is equal to the $l^{\text {th }}$ row of A. Since $A E_{k l}-E_{k l} A=0$, it follows that all entries on the $k^{\text {th }}$ column of A, except for the entry $a_{k k}$, are equal to 0 , and all the entries on the $l^{\text {th }}$ row of A, except for $a_{l l}$, are equal to 0 , and we have $a_{k k}-a_{l l}=0$. Thus we have $A=a I$ where $a=a_{11}=a_{22}=\cdots=a_{n n}$.
(c) Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right) \in G L_{3}\left(\mathbb{Z}_{5}\right)$. Find the order of the centralizer of A in $G L_{3}\left(\mathbb{Z}_{5}\right)$.

Solution: Let $X=\left(\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right) \in G L_{3}\left(\mathbb{Z}_{5}\right)$. Then $A X=X A \Longleftrightarrow\left(\begin{array}{ccc}a & b & c \\ d & e & f \\ 2 g & 2 h & 2 i\end{array}\right)=\left(\begin{array}{ccc}a & b & 2 c \\ d & e & 2 f \\ g & h & 2 i\end{array}\right)$
$\Longleftrightarrow(2 c=c, 2 f=f, 2 g=g$ and $2 h=h) \Longleftrightarrow c=f=g=h=0$. Thus the elements in $C(A)$ are the matrices $X \in G L_{3}\left(\mathbb{Z}_{5}\right)$ of the form

$$
X=\left(\begin{array}{lll}
a & b & 0 \\
d & e & 0 \\
0 & 0 & i
\end{array}\right)
$$

For X of the above form we have $\operatorname{det}(X)=\operatorname{det}\left(\begin{array}{ll}a & b \\ d & e\end{array}\right) \cdot \operatorname{det}(i)$, so $X \in G L_{3}\left(\mathbb{Z}_{5}\right)$ when $\left(\begin{array}{ll}a & b \\ d & e\end{array}\right) \in G L_{2}\left(\mathbb{Z}_{5}\right)$ and $(i) \in G L_{1}\left(\mathbb{Z}_{5}\right)=\mathbb{Z}_{5}{ }^{*}$. Thus

$$
|C(A)|=\left|G L_{2}\left(\mathbb{Z}_{5}\right)\right| \cdot\left|G L_{1}\left(\mathbb{Z}_{5}\right)\right|=\left(5^{2}-1\right)\left(5^{2}-5\right)(5-1)=24 \cdot 20 \cdot 4=1920
$$

2: (a) Show that U_{22} is cyclic, U_{15} is not cyclic, and $U_{2^{n}}$ is not cyclic for $n \geq 3$.
Solution: Note that $U(22)=\{1,3,5,7,9,13,15,17,19,21\}$. We have

k	0	1	2	3	4	5	6	7	8	9	10
3^{k}	1	3	9	5	15	1					
7^{k}	1	7	5	13	3	21	15	17	9	19	1

and so $\langle 3\rangle \neq U(22)$ but $\langle 7\rangle=U(22)$. Thus $U(22)$ is cyclic and 7 is a generator.
Note that $U(15)=\{1,2,4,7,8,11,13,14\}$, and we have $\langle 1\rangle=\{1\},\langle 2\rangle=\{1,2,4,8\}=\langle 8\rangle,\langle 4\rangle=\{4\}$, $\langle 7\rangle=\{1,7,4,13\}=\langle 13\rangle$ and $\langle 11\rangle=\{1,11\}$. Since none of the elements generate $U(15)$, it is not cyclic.

Note that $U^{2^{n}}=\left\{1,3,5,7, \ldots 2^{n}-1\right\}$. Notice that $\left(2^{n-1} \pm 1\right)^{2}=2^{2 n-2} \pm 2^{n}+1=1$ so $U\left(2^{n}\right)$ has at least 2 elements of order 2. But a cyclic group can have only $\varphi(2)=1$ element of order 2 . So $U\left(2^{n}\right)$ is not cyclic.
(b) Find the number of cyclic subgroups of $\mathbb{Z}_{9} \times \mathbb{Z}_{15}$.

Solution: We make a table listing the orders of the elements $(a, b) \in \mathbb{Z}_{9} \times \mathbb{Z}_{15}$.

$\|a\|$	\# of such a	$\|b\|$	\# of such B	$\|(a, b)\|$	\# of such (a, b)
1	1	1	1	1	1
		3	2	3	2
		5	4	5	4
3	2	15	8	15	8
		3	1	3	2
		5	4	3	4
9		15	8	15	8
	6	1	1	15	16
		3	2	9	6
		5	4	9	12
		15	8	45	24
				45	48

Thus we find the following number of elements of each order n and hence, by dividing by $\varphi(n)$, we obtain the number of cyclic subgroups of order n, as follows.

$$
\begin{array}{ccccccc}
n & 1 & 3 & 5 & 9 & 15 & 45 \\
\text { \# of }(a, b) \text { of order } n & 1 & 8 & 4 & 18 & 32 & 72 \\
\text { \# of cyclic subgroups of order } n & 1 & 4 & 1 & 3 & 4 & 3
\end{array}
$$

(c) Find a non-cyclic proper subgroup of $\mathbb{Z}_{9} \times \mathbb{Z}_{15}$.

Solution: The subgroup $\langle 3\rangle \times\langle 5\rangle$ is not cyclic. Indeed in $\langle 3\rangle=\{0,3,6\} \leq \mathbb{Z}_{9}$ we have $|3|=|6|=3$ and in $\langle 5\rangle=\{0,5,10\} \leq \mathbb{Z}_{15}$ we have $|5|=|10|=3$, and so every non-identity element of $\langle 3\rangle \times\langle 5\rangle$ has order 3 (but if the group $\langle 3\rangle \times\langle 5\rangle$ was cyclic then it would have an element of order 9).

3: (a) Let G be a group and let $a, b \in G$. Show that $\left\langle a b, a^{2} b\right\rangle=\langle a, b\rangle$.
Solution: First we observe that for any subset $S \subseteq G$, since $\langle S\rangle$ is the intersection of all subgroups $H \leq G$ with $S \subseteq H$, it follows that if $S \subseteq H \leq G$ then $\langle S\rangle \leq H$. Since $a b \in\langle a, b\rangle$ and $a^{2} b=\langle a, b\rangle$ we have $\left\{a b, a^{2} b\right\} \subseteq\langle a, b\rangle \leq G$ and hence, by the above observation, we have $\left\langle a b, a^{2} b\right\rangle \leq\langle a, b\rangle$. Note that

$$
(a b)\left(a^{2} b\right)^{-1}(a b)=a b b^{-1} a^{-2} a b=a a^{-1} b=b
$$

so that we have $b=(a b)\left(a^{2} b\right)^{-1}(a b) \in\left\langle a b, a^{2} b\right\rangle$. It follows that we also have $b^{-1} \in\left\langle a b, a^{2} b\right\rangle$ so that $a=(a b) b^{-1} \in\left\langle a b, a^{2} b\right\rangle$. Since $a \in\left\langle a b, a^{2} b\right\rangle$ and $b \in\left\langle a b, a^{b}\right\rangle$ we have $\{a, b\} \subseteq\left\langle a b, a^{2} b\right\rangle$ hence $\langle a, b\rangle \leq\left\langle a b, a^{2} b\right\rangle$.
(b) Let $a, b \in \mathbb{Z}$ and let $d=\operatorname{gcd}(a, b)$. Show that in the group \mathbb{Z} we have $\langle a, b\rangle=\langle d\rangle$.

Solution: Since $d \mid a$ we have $a \in\langle d\rangle$ and since $d \mid b$ we have $b \in\langle d\rangle$. Since $\{a, b\} \subseteq\langle d\rangle \leq \mathbb{Z}$, it follows, as observed in Part (a), that $\langle a, b\rangle \leq\langle d\rangle$. On the other hand, by Bézout's Identity, we can choose $s, t \in \mathbb{Z}$ such that $a s+b t=d$ so we have $d \in\langle a, b\rangle$, so $\{d\} \subseteq\langle a, b\rangle$, hence $\langle d\rangle \leq\langle a, b\rangle$.
(c) Show that every finitely generated subgroup of \mathbb{Q} is cyclic.

Solution: First we show that every subgroup of \mathbb{Q} which is generated by two elements is cyclic. Let $a, b \in \mathbb{Q}$. Write $a=\frac{k}{n}$ and $b=\frac{l}{n}$ where $k, l, n \in \mathbb{Z}$ with $n \neq 0$ (we are using a common denominator for a and b). We claim that $\langle a, b\rangle=\left\langle\frac{d}{n}\right\rangle$ where $d=\operatorname{gcd}(k, l)$. Writing $k=d s$ and $l=d t$, we have $a=\frac{k}{n}=\frac{d s}{n} \in\left\langle\frac{d}{n}\right\rangle$ and $b=\frac{l}{n}=\frac{d t}{n} \in\left\langle\frac{d}{n}\right\rangle$ and so $\{a, b\} \subseteq\left\langle\frac{d}{n}\right\rangle \leq \mathbb{Z}$ and hence $\langle a, b\rangle \leq\left\langle\frac{d}{n}\right\rangle$. Conversely, choosing $s, t \in \mathbb{Z}$ so that $k s+l t=d$ we obtain $\frac{d}{n}=\frac{k s+l t}{n}=a s+b t \in\langle a, b\rangle$ and so $\left\langle\frac{d}{n}\right\rangle \leq\langle a, b\rangle$.

Now let $n \geq 3$ and suppose, inductively, that every subgroup of \mathbb{Q} which is generated by $n-1$ elements is cyclic. Let $a_{1}, a_{2}, \cdots, a_{n} \in \mathbb{Q}$. Choose $c \in \mathbb{Q}$ so that $\left\langle a_{1}, a_{2}, \cdots, a_{n-1}\right\rangle=\langle c\rangle$. We have $c \in\left\langle a_{1}, \cdots, a_{n-1}\right\rangle \leq$ $\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle$ and we have $a_{n} \in\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle$ and so $\left\langle c, a_{n}\right\rangle \leq\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle$. We have $a_{n} \in\left\langle c, a_{n}\right\rangle$ and for each $i=1,2, \cdots, n-1$ we have $a_{i} \in\left\langle a_{1}, \cdots, a_{n-1}\right\rangle=\langle c\rangle \leq\left\langle c, a_{n}\right\rangle$ and so $\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle \leq\left\langle c, a_{n}\right\rangle$. Thus $\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle=\left\langle c, a_{n}\right\rangle$, which is cyclic, as shown above.
(d) Find a non-cyclic proper subgroup of \mathbb{Q}.

Solution: Let $H=\left\{\left.\frac{k}{2^{n}} \right\rvert\, k \in \mathbb{Z}, n \in \mathrm{~N}\right\}$. Then $H \leq \mathbb{Q}$ since $0=\frac{0}{2^{0}} \in H$ and for $\frac{k}{2^{n}} \in H$ and $\frac{l}{2^{m}} \in H$ we have $\frac{k}{2^{n}}+\frac{l}{2^{m}}=\frac{k \cdot 2^{m}+l \cdot 2^{n}}{2^{n+m}} \in H$ and we have $-\frac{k}{2^{n}}=\frac{-k}{2^{n}} \in H$. But H cannot be cyclic since the denominators of the elements in a cyclic group (when written in reduced form) are bounded: in the cyclic group $\left\langle\frac{a}{b}\right\rangle$, the denominator of each element $\frac{k a}{b}$ is at most b.

4: (a) List all of the elements $X \in D_{28}$ such that $F_{5} X^{3}=X^{9} F_{13}$.
Solution: In D_{28} we have

$$
\begin{aligned}
& F_{5}\left(F_{k}\right)^{3}=\left(F_{k}\right)^{9} F_{13} \Longleftrightarrow F_{5} F_{k}=F_{k} F_{13} \Longleftrightarrow R_{5-k}=R_{k-13} \\
\Longleftrightarrow & 5-k=k-13 \bmod 28 \Longleftrightarrow 2 k=18 \bmod 28 \Longleftrightarrow k=9 \bmod 14
\end{aligned}
$$

and

$$
\begin{gathered}
F_{5}\left(R_{k}\right)^{3}=\left(R_{k}\right)^{9} F_{13} \Longleftrightarrow F_{5} R_{3 k}=R_{9 k} F_{13} \Longleftrightarrow F_{5-3 k}=F_{9 k+13} \\
\Longleftrightarrow 5-3 k=9 k+13 \bmod 28 \Longleftrightarrow 12 k=20 \bmod 28 \\
\Longleftrightarrow 3 k=5 \bmod 7 \Longleftrightarrow k=4 \bmod 7 .
\end{gathered}
$$

Thus the solutions X are given by $X=F_{9}, F_{23}, R_{4}, R_{11} \cdot R_{18}, R_{25}$.
(b) Find all subgroups of D_{n}.

Solution: We claim that the distinct subgroups of D_{n} are the groups

$$
\begin{aligned}
\left\langle R_{d}\right\rangle & =\left\{I, R_{d}, R_{2 d}, \cdots, R_{n-d}\right\} \text { where } d \mid n, \text { and } \\
\left\langle R_{d}, F_{r}\right\rangle & =\left\{I, R_{d}, R_{2 d} \cdots, R_{n-d}, F_{r}, F_{r+d}, \cdots, F_{n+r-d}\right\} \text { where } d \mid n \text { and } 0 \leq r<d
\end{aligned}
$$

In particular, we remark that the number of distinct subgroups of D_{n} is equal to $\tau(n)+\sigma(n)$ where $\tau(n)$ is the number of divisors of n and $\sigma(n)$ is the sum of the divisors of n.

First we show that the group $\left\langle R_{d}, F_{r}\right\rangle$, where $d \mid n$ and $0 \leq r<d$, is equal to the set

$$
S=\left\{I, R_{d}, \cdots, R_{n-d}, F_{r}, F_{r+d}, \cdots, F_{n+r-d}\right\}
$$

For $t \in \mathbb{Z}$, we have $R_{t d}=R_{d}{ }^{t} \in\left\langle R_{d}, F_{r}\right\rangle$ and $F_{r+t d}=R_{t d} F_{r}=R_{d}{ }^{t} F_{r} \in\left\langle R_{d}, F_{r}\right\rangle$ and so $S \subseteq\left\langle R_{d}, F_{r}\right\rangle$. Also, S is group since it contains I and it is closed under the operation and under inversion, since for $s, t \in \mathbb{Z}$ we have $R_{s d} R_{t d}=R_{(s+t) d}, R_{s d} F_{r+t d}=F_{r+(s+t) d}, F_{r+s d} R_{t d}=F_{r+(s-t) d}, F_{r+s d} F_{r+t d}=R_{(s-t) d}$, $\left(R_{t d}\right)^{-1}=R_{-t d}$ and $\left(F_{r+t d}\right)^{-1}=F_{r+t d}$. Since S is a group which contains R_{d} and F_{r} we have $\left\langle R_{d}, F_{r}\right\rangle \subseteq S$.

Next we show that the above groups $\left\langle R_{d}\right\rangle$ and $\left\langle R_{d}, F_{r}\right\rangle$ are the only subgroups of D_{n}. Let $H \leq D_{n}$. If H contains no reflections, then $H \leq C_{n}=\left\{I, R_{1}, R_{2}, \cdots, R_{n-1}\right\}=\left\langle R_{1}\right\rangle$ and so, by the classification of subgroups of a cyclic group, we know that $H=\left\langle R_{d}\right\rangle=\left\{I, R_{d}, \cdots, R_{n-d}\right\}$ for some positive divisor $d \mid n$. Suppose that H contains at least one reflection, say $F_{k} \in H$. Note that $H \cap C_{n} \leq C_{n}=\left\langle R_{1}\right\rangle$ and so we have $H \cap C_{n}=\left\langle R_{d}\right\rangle$ for some $d \mid n$. Write $k=q d+r$ with $0 \leq r<d$. Then $F_{k}=F_{q d+r}=R_{q d} F_{r}$ and so $F_{r}=F_{k} R_{-q d} \in H$. Since $R_{d} \in H$ and $F_{r} \in H$ we have $\left\langle R_{d}, F_{r}\right\rangle \subseteq H$. It remains to show that $H \subseteq\left\langle R_{d}, F_{r}\right\rangle$. We know that every rotation in H lies in $\left\langle R_{d}, F_{r}\right\rangle$ since $H \cap C_{n}=\left\langle R_{d}\right\rangle$. It remains to show that every reflection in H lies in $\left\langle R_{d}, F_{r}\right\rangle$. And indeed, we have

$$
\begin{aligned}
F_{l} \in H & \Longrightarrow R_{l-r}=F_{l} F_{r} \in H \Longrightarrow R_{l-r} \in H \cap C_{n}=\left\langle R_{d}\right\rangle \\
& \Longrightarrow d \mid(l-r) \Longrightarrow l=r \bmod d \Longrightarrow F_{l} \in S=\left\langle R_{d}, F_{r}\right\rangle
\end{aligned}
$$

