1: For $n \in \mathbb{Z}^{+}$, let $\mathbb{Z}_{n}[i]=\left\{a+i b \mid a, b \in \mathbb{Z}_{n}\right\}$, with addition and multiplication defined in the obvious way by $(a+i b)+(c+i d)=(a+c)+i(b+d)$ and $(a+i b)(c+i d)=(a c-b d)+i(a d+b c)$. You may assume, without proof, that $\mathbb{Z}_{n}[i]$ is a ring.
(a) Find all the units and all the zero divisors in the ring $\mathbb{Z}_{4}[i]$.
(b) Without proof, list all of the subrings of $\mathbb{Z}_{4}[i]$.
(c) Find (with proof) all primes p with $p<12$ such that $\mathbb{Z}_{p}[i]$ is a field.

2: (a) Consider the ring $\mathcal{C}^{0}(\mathbb{R})$ of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ under addition and mutiplication. Prove that the units in $\mathcal{C}^{0}(\mathbb{R})$ are the nowhere zero functions, and the zero-divisors in $\mathcal{C}^{0}(\mathbb{R})$ are the functions which are not identically zero, but which are zero in some open interval.
(b) Let F be a field and consider the ring $F[[x]]$ of formal power series in x. Find all the units and all the zero divisors in $F[[x]]$.
(c) Consider the group $S_{\infty}=\operatorname{Perm}\left(\mathbb{Z}^{+}\right)$of bijective maps $\sigma: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$under composition. Let H be the set of all elements of finite order in S_{∞}. Determine whether $H \leq S_{\infty}$.

3: (a) In S_{9}, let $\alpha=(1548)(2936)$ and $\beta=(16574)(38)$. Find $(-1)^{\alpha \beta}$ and $|\alpha \beta|$.
(b) In S_{8}, let $\beta=(123)(456)$. Find every element $\alpha \in S_{8}$ such that $\alpha^{2}=\beta$.
(c) In S_{10}, let $\beta=(123)(456)(78)$. Find the number of elements $\alpha \in S_{10}$ such that $\alpha \beta=\beta \alpha$.

4: (a) Find the number of cyclic subgroups of A_{6}.
(b) For $n \in \mathbb{Z}^{+}$, let $P(n)$ be the probability that when one of the $(2 n)$! elements $\sigma \in S_{2 n}$ is selected at random and written using cycle notation, one of the cycles has length $\ell>n$. Find $\lim _{n \rightarrow \infty} P(n)$.
Hint: express $P(n)$ as a sum over $n<\ell \leq 2 n$, and interpret the sum as a Riemann sum.

