PMATH 347 Groups and Rings, Solutions to Assignment 3

: Forn € Z7T, let Zy,[i] = {a+ib | a,b € Zy }, with addition and multiplication defined in the obvious way by
(a+ib)+ (c+id) = (a+¢) +i(b+d) and (a+ib)(c+id) = (ac—bd) +i(ad + be). You may assume, without
proof, that Z,[#] is a ring.

(a) Find all the units and all the zero divisors in the ring Z4[i].

Solution: Let a,b € Z4 with a +ib # 0 € Z4[i]. When a =b =0 mod 2 we have (a +1ib)(a — ib) = a®> +b* =
0+0 =0, so a+1bis a zero divisor. When a =b =1 mod 2 we have (a +1ib)(a —ib) =a®>+b*>=1+1=2,
so (a+1ib)(2(a — b)) = 0, and so again a + ib is a zero divisor. On the other hand, when a # b mod 2 we
have a? + b2 =0+ 1 =1, so a + ib is a unit.

(b) Without proof, list all of the subrings of Z4[i].

Solution: There are 9 subrings, namely {0}, {0,2}, {0,2:}, {0,2 + 23}, {0,1, 2,3}, {0,2,2i,2 + 2i},
0,2,1+4,344,2i,2+2i,1+ 30,3+ 3i}, {0,1,2,3,2i,1 + 20,2 + 20,3 + 2i} and Z]d].

(c) Find all primes p with p < 12 such that Z,[¢] is a field.

Solution: Since Z,[i] is a finite commutative ring with 1 # 0, it is a field if and only if it has no zero divisors.

Let 0 # a + ib € Z,[i]. Note that a + ib is a zero divisor in Z,[i] <= there exists 0 # x + iy € Z,[i] such

that (a + ib)(z +iy) = 0 € Z,[i] <= there exists 0 # (z,y) € Z,’such that ax — by = ay + bz = 0 € Z,
a

<= det(b

if there exists a,b € Z,, with (a,b) # (0,0) such that a* + b2 = 0 € Z,. For each prime p < 12, we list all of
the possible values for 2% and —2? and determine whether there exist 0 # a,b € Z, with a® + b* = 0. Note

ab> =0€Z, < a2+ =0¢ Z,. Thus we see that Zy[i] has a zero divisor if and only

that for p > 2 it suffices to consider 1 < z < % since (p — 2)? = (—2)? = 2% in Z,.
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z 1 z 1 z 1 2 z 1 2 3 T 1 2 3 45

2 1 2 1 22 1 4 2 1 4 2 2 1 4 9 5 3

-2 1 —z? 2 -2 4 1 -2 6 3 5 -2 10 7 2 6 8

We see that in Zs we have 12 + 12 = 0 and in Z5 we have 12 + 22 = 0, so Z,|i] is not a field when p € {2,5}.
On the other hand, when p = 3, 7 or 11, the above tables show that there is no solution to a? 4+ b?> = 0 with
0#a,beZ,, and so Z,[i] is a field when p € {3,7,11}.

Although question 1(c) only asks us to consider primes p < 12, it is interesting to consider the general
case. In fact, for each prime p, there exists a solution to a? + b? = 0 with a,b # 0 if and only if for every
k € Z, there exists a € Z, with a® + k% = 0, if and only if there exists € Z, such that 2 + 1 = 0. To
prove this, suppose first that a? 4+ b? = 0 with 0 # a,b € Z,. Then taking x = ab~', we have 2% = (ab™1)? =
a?(b=1)? = —v*(b=1)? = —1 so 22 + 1 = 0. Conversely, suppose that z2 + 1 = 0 in Z,. Then given any
k € ZP we can take a = xk and then a? = (vk)? = 22k? = (—1)k? = —k? so a® + k? = 0.

Next we claim that for each prime p > 2, there exist # € Z, such that 22 + 1 = 0 if and only if
p =1 mod 4, that is if and only if p—gl is even. To prove this, let p > 2 and suppose first that =2 +1 = 0.
Then by Fermat’s Little Theorem we have (—1)®~1/2 = (g2)®=1/2 = zp=1 — 1 and so %_1 is even.
Conversely suppose that there is no € Z, such that 22 + 1 = 0. Then we can group the non-zero elements
of Z, into pairs {a;, b;} with a;b; = —1. By Wilson’s Theorem, we have -1 =(p—1)l=1-2-...-(p—1) =
(a1b1)(agbs) - - - (a,p%l pra) = (=1)»=1/2 and hence % is odd. To prove Wilson’s Theorem (which states
that (p —1)! = —1 in Z,) in the case p > 2, let f(z) = 2P~! — 1, note that f(z) = 0 for all 0 # z € Z,
(by Fermat’s Little Theorem) so we must have f(x) = (x — 1)(z — 2)---(x — (p — 1)), then note that
—1= £(0) = (—1)(=2) -+ (—(p — 1)) = (=1~} (p— 1)! = (p— D)\

From these two claims it follows that Z,[i] is a field if and only if there do not exist 0 # a,b € Z,, with
a® 4+ b*> = 0 if and only if there does not exist = € Z, with 22 + 1 =0 if and only if p =3 mod 4.



2: (a) Consider the ring C°(R) of continuous functions f : R — R under addition and mutiplication. Prove that
the units in C°(R) are the nowhere zero functions, and the zero-divisors in C°(R) are the functions which are
not identically zero, but which are zero in some open interval.

Solution: Note that in the ring C°(R), the identity element is the constant function 1 and the zero element
is the constant function 0. Let f € C°(R). If f is nowhere zero, then the function g = ¥ is continuous, and
we have fg =1, so f is a unit. If f is a unit with say fg = 1, then for all z € R we have f(z)g(z) =1 so
f(z) # 0, and so f is nowhere zero. Suppose that f # 0 but f(z) = 0 for all z € (a,b) where a < b. Define

) 0 ,if z ¢ (a,b)
the function g by g(x) = { (r—a)b—2) ., ifz € [ab].

a zero-divisor. Conversely, suppose that f is a zero divisor, say fg = 0 with f,g # 0 and g € C°(R). Since

g # 0 we can choose a € R so that g(a) # 0. Since g is continuous, we can choose § > 0 so that for all

z € (a — 6,a+ 8) we have |g(z) — g(a)| < |g(a)| so that g(z) # 0. Then for all z € (a — &,a + &) we have

f(z)g(x) =0 and g(z) # 0, and so f(x) = 0.

(b) Let F be a field and consider the ring F'[[z]] of formal power series in z. Find all the units and all the
zero divisors in F[[z]].

Note that g # 0, g € C°(R) and fg = 0. Thus f is

Solution: Write u = Y_,5aix", v = 22i>0 bjz?. We have uv = 1 when

aobo =1
aibg + agby =0
asbg + a1by + agby =0

anbo + Gn—1b1 + -+ aibp—1 + aob, =0

To get agby = 1 we must have ag # 0. Given that ag # 0 we can solve for by, by, b, - - - by taking by = —i,
by = —i(albo), by = —afll(agbo +a1b1), ceeb, = —ai(anbo +ap_1b1+--- —l—albn,l), -+ to get uv = 1. Thus
the units in F[[z]] are the elements u = D iz @i’ with ag # 0.

(c) Consider the group So, = Perm(Z") of bijective maps o : ZT — Z* under composition. Let H be the
set of all elements of finite order in S,,. Determine whether H < G.

Solution: H is not a subgroup of S,. For example, let o € S, be the permutation which interchanges 2k —1
with 2k for all k € ZT, and let 8 € S, be the permutation which interchanges 2k with 2k + 1 for all k € Z*
(with B(1) = 1). Then |a| = |B| = 2, but for ¢ = Ba we have o(1) = 3, 02(1) = 0(3) = 5, 03(1) = 0(5) = 7,
and so on, so that in general 0" (1) = 2n + 1 so that 0™ # e for any n € ZT and hence |a| = |o| = .



3: (a) In Sy, let o = (1548)(2936) and B = (16574)(38). Find (—1)*? and |ag3|.

Solution: We have
aff = (1548)(2936)(16574)(38) = (1293)(45786)

and so (—1)* = (=1)3** = —1 and |af| = lem(4,5) = 20.

(b) In Sg, let 8 = (123)(456). Find every element a € Sg such that o = 3.

Solution: We have o® = 32 = (1), so |a| = 1,2,3 or 6. We cannot have |a| = 1 since a # (1) (otherwise
a? = (1) # B), and we cannot have |a| = 2 since a? = 8 # (1). Thus || = 3 or 6. Case 1: if |a| = 3 then
« is of the form (abe) or the form (abc)(def). If a = (abe) then a® = (ach) # B. If a = (abc)(def) then
a? = (acb)(dfe), and so a® = 8 <= «a = (132)(465). Case 2: if |a| = 6 then « is of one of the following
5 forms: (abc)(de), (abe)(de)(fg), (abc)(def)(gh), (abedef) or (abedef)(gh). If a = (abe)(de) or (abe)(de)(fg)
then a? = (acb) # B. If a = (abc)(def)(gh) then o? = (acb)(dfe) and so a? = B <= a = (132)(465)(78).
If a = (abedef) or (abedef)(gh) then o? = (ace)(bdf), so we have o? = 8 <= «a = (142536), (152634)
or (162435), or a = (142536)(78), (152634)(78) or (162435)(78). Thus there are 8 elements o € S with
a? = 3, namely

a € {(132)(465), (132)(465)(78), (142536), (152634), (162435), (142536)(78), (152634)(78), (162435)(78) }..

(c) In Sy, let 5=(123)(456)(78). Find the number of elements a € Sy such that af = Sa.

Solution: For a € S19, we have a8 = Ba when afa~! = 3, and we know that, in cycle notation, we have
aBa™t = (a(l), @(2), «(3)) ((4), a(5), (6)) ((7), (8)).

In order to have afa~! = f, either (a(1),(2),x(3)) = (1,2,3) and (a(4),(5),x(6)) = (4,5,6), or vice
versa, and (a(7),(8)) = (7,8). There are 3 ways to choose a(1),a(2),(3) so that (a(1),a(2),(3)) =
(1,2,3), and 3 ways to choose a(4),a(5),a(6) so that (a(4),a(5),(6)) = (4,5,6), giving 9 ways to
a(1),--+,a(6) to have both. There are another 9 ways to choose a(1),- -+, a(6) so that (a(1),a(2),x(3)) =
(4,5,6) and (a(1),(2),(3)) = (4,5,6), giving a total of 18 ways to select a(1),-- -, (6). There are 2 ways
to choose «(7) and a(8) to get (a(7),a(8)) = (7,8). There are also 2! = 2 ways to choose «(9) and «(10).
Altogether, there are 18 - 2 - 2 = 72 ways to choose a so that afa~! = f.



4: (a) Find the number of cyclic subgroups of Ag.

Solution: We make a table showing the possible forms for « € Sg and determine which forms lie in Ag:

formof @ (=1)* |a] # of such «

(abcdef) -1
(abede) 1 5 (9)-4r=144
(abed)(ef) 1 4 (9)-31=90
(abed) -1
(abe)(def) 1 3 5-4-2=40
(abc)(de) -1
(abc) 1 3 (9)-21=40
(ab)(cd)(ef) -1
(a?)ggd) 11 2 (%)-3=45
a _
(a) 11 1
Thus the number of cyclic subgroups is % + % + 43(?30 + % + ﬁ = 1% + % + 8—20 + % + % = 167.

(b) For n € ZT, let P(n) be the probability that when one of the (2n)! elements o € Ss, is selected at
random and written using cycle notation, one of the cycles has length £ > n. Find lim P(n).
n— oo

Solution: First we note that when ¢ > n, when a permutation o € S5, is written in cycle notation, it has
at most one ¢-cycle. The number of o € Sy, which, when written in cycle notation, contain one (hence only
one) (-cycle, is equal to (%) (¢ — 1)!- (n — {)! = @ The total number of elements o € S, is equal to
(2n)!, so we have

(2n)! (2n)! (2n)!
n+1 n+2 2n 1 1 1 1
P(n) = (2] SaataE Tt e = X e

Let f :[1,2] — R be given by f(z) = 1. Let X = {@o,21,---,%,} be the partition of [1,2] into n-equal
sub-intervals, so x = 1+ % and A =2 —2p_1 = %L for all k. Taking the sample points ¢ to be the right
endpoints of the sub-intervals, that is letting ¢ =z =1+ %, the resulting Riemann sum for f on X is

n

flte)Apr = 7 1j§ i = kzl =% = P(n).

1 k=1

M=

Sp =

k

1
Since f is continuous, hence Riemann integrable, on [1, 2], we have lim S, = fo f(z) dx and so
n— oo

2 2
lim P(n) = lim Sn:/ Ly = [lnfc} =1In2.
1

n—o00 n— o0 T 1



