
PMATH 347 Groups and Rings, Solutions to Assignment 3

1: For n ∈ Z+, let Zn[ i ] =
{
a+ ib

∣∣ a, b ∈ Zn
}

, with addition and multiplication defined in the obvious way by
(a+ ib) + (c+ id) = (a+ c) + i(b+ d) and (a+ ib)(c+ id) = (ac− bd) + i(ad+ bc). You may assume, without
proof, that Zn[ i ] is a ring.

(a) Find all the units and all the zero divisors in the ring Z4[i].

Solution: Let a, b ∈ Z4 with a+ ib 6= 0 ∈ Z4[i]. When a = b = 0 mod 2 we have (a+ ib)(a− ib) = a2 + b2 =
0 + 0 = 0, so a+ ib is a zero divisor. When a = b = 1 mod 2 we have (a+ ib)(a− ib) = a2 + b2 = 1 + 1 = 2,
so (a+ ib)

(
2(a− ib)

)
= 0, and so again a+ ib is a zero divisor. On the other hand, when a 6= b mod 2 we

have a2 + b2 = 0 + 1 = 1, so a+ ib is a unit.

(b) Without proof, list all of the subrings of Z4[i].

Solution: There are 9 subrings, namely {0}, {0, 2}, {0, 2i}, {0, 2 + 2i}, {0, 1, 2, 3}, {0, 2, 2i, 2 + 2i},
{0, 2, 1 + i, 3 + i, 2i, 2 + 2i, 1 + 3i, 3 + 3i}, {0, 1, 2, 3, 2i, 1 + 2i, 2 + 2i, 3 + 2i} and Z4[i].

(c) Find all primes p with p < 12 such that Zp[i] is a field.

Solution: Since Zp[i] is a finite commutative ring with 1 6= 0, it is a field if and only if it has no zero divisors.
Let 0 6= a + ib ∈ Zp[i]. Note that a + ib is a zero divisor in Zp[i] ⇐⇒ there exists 0 6= x + iy ∈ Zp[i] such
that (a + ib)(x + iy) = 0 ∈ Zp[i] ⇐⇒ there exists 0 6= (x, y) ∈ Zp2such that ax − by = ay + bx = 0 ∈ Zp

⇐⇒ det

(
a −b
b a

)
= 0 ∈ Zp ⇐⇒ a2 + b2 = 0 ∈ Zp. Thus we see that Zp[i] has a zero divisor if and only

if there exists a, b ∈ Zp with (a, b) 6= (0, 0) such that a2 + b2 = 0 ∈ Zp. For each prime p < 12, we list all of
the possible values for x2 and −x2 and determine whether there exist 0 6= a, b ∈ Zp with a2 + b2 = 0. Note
that for p > 2 it suffices to consider 1 < x < p−1

2 since (p− x)2 = (−x)2 = x2 in Zp.

Z2 Z3 Z5 Z7 Z11

x 1
x2 1
−x2 1

x 1
x2 1
−x2 2

x 1 2
x2 1 4
−x2 4 1

x 1 2 3
x2 1 4 2
−x2 6 3 5

x 1 2 3 4 5
x2 1 4 9 5 3
−x2 10 7 2 6 8

We see that in Z2 we have 12 + 12 = 0 and in Z5 we have 12 + 22 = 0, so Zp[i] is not a field when p ∈ {2, 5}.
On the other hand, when p = 3, 7 or 11, the above tables show that there is no solution to a2 + b2 = 0 with
0 6= a, b ∈ Zp, and so Zp[i] is a field when p ∈ {3, 7, 11}.

Although question 1(c) only asks us to consider primes p < 12, it is interesting to consider the general
case. In fact, for each prime p, there exists a solution to a2 + b2 = 0 with a, b 6= 0 if and only if for every
k ∈ Zp there exists a ∈ Zp with a2 + k2 = 0, if and only if there exists x ∈ Zp such that x2 + 1 = 0. To
prove this, suppose first that a2 + b2 = 0 with 0 6= a, b ∈ Zp. Then taking x = ab−1, we have x2 = (ab−1)2 =
a2(b−1)2 = −b2(b−1)2 = −1 so x2 + 1 = 0. Conversely, suppose that x2 + 1 = 0 in Zp. Then given any
k ∈ Zp we can take a = xk and then a2 = (xk)2 = x2k2 = (−1)k2 = −k2 so a2 + k2 = 0.

Next we claim that for each prime p > 2, there exist x ∈ Zp such that x2 + 1 = 0 if and only if
p = 1 mod 4, that is if and only if p−1

2 is even. To prove this, let p > 2 and suppose first that x2 + 1 = 0.

Then by Fermat’s Little Theorem we have (−1)(p−1)/2 = (x2)(p−1)/2 = xp−1 = 1 and so p−1
2 is even.

Conversely suppose that there is no x ∈ Zp such that x2 + 1 = 0. Then we can group the non-zero elements
of Zp into pairs {ai, bi} with aibi = −1. By Wilson’s Theorem, we have −1 = (p− 1)! = 1 · 2 · . . . · (p− 1) =
(a1b1)(a2b2) · · ·

(
a p−1

2
b p−1

2

)
= (−1)(p−1)/2 and hence p−1

2 is odd. To prove Wilson’s Theorem (which states

that (p − 1)! = −1 in Zp) in the case p > 2, let f(x) = xp−1 − 1, note that f(x) = 0 for all 0 6= x ∈ Zp
(by Fermat’s Little Theorem) so we must have f(x) = (x − 1)(x − 2) · · · (x − (p − 1)), then note that
−1 = f(0) = (−1)(−2) · · · (−(p− 1)) = (−1)p−1(p− 1)! = (p− 1)!.

From these two claims it follows that Zp[i] is a field if and only if there do not exist 0 6= a, b ∈ Zp with
a2 + b2 = 0 if and only if there does not exist x ∈ Zp with x2 + 1 = 0 if and only if p = 3 mod 4.



2: (a) Consider the ring C0(R) of continuous functions f : R→ R under addition and mutiplication. Prove that
the units in C0(R) are the nowhere zero functions, and the zero-divisors in C0(R) are the functions which are
not identically zero, but which are zero in some open interval.

Solution: Note that in the ring C0(R), the identity element is the constant function 1 and the zero element
is the constant function 0. Let f ∈ C0(R). If f is nowhere zero, then the function g = 1

f is continuous, and

we have fg = 1, so f is a unit. If f is a unit with say fg = 1, then for all x ∈ R we have f(x)g(x) = 1 so
f(x) 6= 0, and so f is nowhere zero. Suppose that f 6= 0 but f(x) = 0 for all x ∈ (a, b) where a < b. Define

the function g by g(x) =

{
0 , if x /∈ (a, b)

(x− a)(b− x) , if x ∈ [a, b] .
Note that g 6= 0, g ∈ C0(R) and fg = 0. Thus f is

a zero-divisor. Conversely, suppose that f is a zero divisor, say fg = 0 with f, g 6= 0 and g ∈ C0(R). Since
g 6= 0 we can choose a ∈ R so that g(a) 6= 0. Since g is continuous, we can choose δ > 0 so that for all
x ∈ (a − δ, a + δ) we have

∣∣g(x) − g(a)
∣∣ < |g(a)| so that g(x) 6= 0. Then for all x ∈ (a − δ, a + δ) we have

f(x)g(x) = 0 and g(x) 6= 0, and so f(x) = 0.

(b) Let F be a field and consider the ring F
[
[x]
]

of formal power series in x. Find all the units and all the

zero divisors in F
[
[x]
]
.

Solution: Write u =
∑
i≥0 aix

i, v =
∑
j≥0 bjx

j . We have uv = 1 when

a0b0 = 1

a1b0 + a0b1 = 0

a2b0 + a1b1 + a0b2 = 0

...

anb0 + an−1b1 + · · ·+ a1bn−1 + a0bn = 0

...

To get a0b0 = 1 we must have a0 6= 0. Given that a0 6= 0 we can solve for b0, b1, b2, · · · by taking b0 = − 1
a1

,

b1 = − 1
a1

(a1b0), b2 = − 1
a1

(a2b0 +a1b1), · · · , bn = − 1
an

(anb0 +an−1b1 + · · ·+a1bn−1), · · · to get uv = 1. Thus

the units in F
[
[x]
]

are the elements u =
∑
i≥0 aix

i with a0 6= 0.

(c) Consider the group S∞ = Perm(Z+) of bijective maps σ : Z+ → Z+ under composition. Let H be the
set of all elements of finite order in S∞. Determine whether H ≤ G.

Solution: H is not a subgroup of S∞. For example, let α ∈ S∞ be the permutation which interchanges 2k−1
with 2k for all k ∈ Z+, and let β ∈ S∞ be the permutation which interchanges 2k with 2k+ 1 for all k ∈ Z+

(with β(1) = 1). Then |α| = |β| = 2, but for σ = βα we have σ(1) = 3, σ2(1) = σ(3) = 5, σ3(1) = σ(5) = 7,
and so on, so that in general σn(1) = 2n+ 1 so that σn 6= e for any n ∈ Z+ and hence |βα| = |σ| =∞.



3: (a) In S9, let α = (1548)(2936) and β = (16574)(38). Find (−1)αβ and |αβ|.
Solution: We have

αβ = (1548)(2936)(16574)(38) = (1293)(45786)

and so (−1)αβ = (−1)3+4 = −1 and |αβ| = lcm(4, 5) = 20.

(b) In S8, let β = (123)(456). Find every element α ∈ S8 such that α2 = β.

Solution: We have α6 = β3 = (1), so |α| = 1, 2, 3 or 6. We cannot have |α| = 1 since α 6= (1) (otherwise
α2 = (1) 6= β), and we cannot have |α| = 2 since α2 = β 6= (1). Thus |α| = 3 or 6. Case 1: if |α| = 3 then
α is of the form (abc) or the form (abc)(def). If α = (abc) then α2 = (acb) 6= β. If α = (abc)(def) then
α2 = (acb)(dfe), and so α2 = β ⇐⇒ α = (132)(465). Case 2: if |α| = 6 then α is of one of the following
5 forms: (abc)(de), (abc)(de)(fg), (abc)(def)(gh), (abcdef) or (abcdef)(gh). If α = (abc)(de) or (abc)(de)(fg)
then α2 = (acb) 6= β. If α = (abc)(def)(gh) then α2 = (acb)(dfe) and so α2 = β ⇐⇒ α = (132)(465)(78).
If α = (abcdef) or (abcdef)(gh) then α2 = (ace)(bdf), so we have α2 = β ⇐⇒ α = (142536), (152634)
or (162435), or α = (142536)(78), (152634)(78) or (162435)(78). Thus there are 8 elements α ∈ S8 with
α2 = β, namely

α ∈
{

(132)(465), (132)(465)(78), (142536), (152634), (162435), (142536)(78), (152634)(78), (162435)(78)
}
.

(c) In S10, let β=(123)(456)(78). Find the number of elements α ∈ S10 such that αβ = βα.

Solution: For α ∈ S10, we have αβ = βα when αβα−1 = β, and we know that, in cycle notation, we have

αβα−1 =
(
α(1), α(2), α(3)

)(
α(4), α(5), α(6)

)(
α(7), α(8)

)
.

In order to have αβα−1 = β, either
(
α(1), α(2), α(3)

)
= (1, 2, 3) and

(
α(4), α(5), α(6)

)
= (4, 5, 6), or vice

versa, and
(
α(7), α(8)

)
= (7, 8). There are 3 ways to choose α(1), α(2), α(3) so that

(
α(1), α(2), α(3)

)
=

(1, 2, 3), and 3 ways to choose α(4), α(5), α(6) so that
(
α(4), α(5), α(6)

)
= (4, 5, 6), giving 9 ways to

α(1), · · · , α(6) to have both. There are another 9 ways to choose α(1), · · · , α(6) so that
(
α(1), α(2), α(3)

)
=

(4, 5, 6) and
(
α(1), α(2), α(3)

)
= (4, 5, 6), giving a total of 18 ways to select α(1), · · · , α(6). There are 2 ways

to choose α(7) and α(8) to get
(
α(7), α(8)

)
= (7, 8). There are also 2! = 2 ways to choose α(9) and α(10).

Altogether, there are 18 · 2 · 2 = 72 ways to choose α so that αβα−1 = β.



4: (a) Find the number of cyclic subgroups of A6.

Solution: We make a table showing the possible forms for α ∈ S6 and determine which forms lie in A6:

form of α (−1)α |α| # of such α

(abcdef) −1
(abcde) 1 5

(
6
1

)
· 4! = 144

(abcd)(ef) 1 4
(
6
4

)
· 3! = 90

(abcd) −1
(abc)(def) 1 3 5 · 4 · 2 = 40
(abc)(de) −1

(abc) 1 3
(
6
3

)
· 2! = 40

(ab)(cd)(ef) −1
(ab)(cd) 1 2

(
6
4

)
· 3 = 45

(ab) −1
(a) 1 1 1

Thus the number of cyclic subgroups is 144
ϕ(5) + 90

ϕ(4) + 40+40
ϕ(3) + 45

ϕ(2) + 1
ϕ(1) = 144

4 + 90
2 + 80

2 + 45
1 + 1

1 = 167.

(b) For n ∈ Z+, let P (n) be the probability that when one of the (2n)! elements σ ∈ S2n is selected at
random and written using cycle notation, one of the cycles has length ` > n. Find lim

n→∞
P (n).

Solution: First we note that when ` > n, when a permutation σ ∈ S2n is written in cycle notation, it has
at most one `-cycle. The number of σ ∈ S2n which, when written in cycle notation, contain one (hence only

one) `-cycle, is equal to
(
2n
`

)
(` − 1)! · (n − `)! = (2n)!

` . The total number of elements σ ∈ S2n is equal to
(2n)!, so we have

P (n) =

(2n)!
n+1 + (2n)!

n+2 + · · ·+ (2n)!
2n

(2n)!
= 1

n+1 + 1
n+2 + · · ·+ 1

2n =
n∑
k=1

1
n+k .

Let f : [1, 2] → R be given by f(x) = 1
x . Let X = {x0, x1, · · · , xn} be the partition of [1, 2] into n-equal

sub-intervals, so xk = 1 + k
n and ∆k = xk−xk−1 = 1

n for all k. Taking the sample points tk to be the right

endpoints of the sub-intervals, that is letting tk = xk = 1 + k
n , the resulting Riemann sum for f on X is

Sn =
n∑
k=1

f(tk)∆kx =
n∑
k=1

1
1+ k

n

· 1n =
n∑
k=1

1
n+k = P (n).

Since f is continuous, hence Riemann integrable, on [1, 2], we have lim
n→∞

Sn =
∫ 1

0
f(x) dx and so

lim
n→∞

P (n) = lim
n→∞

Sn =

∫ 2

1

1
x dx =

[
lnx
]2
1

= ln 2.


