- 1: For $n \in \mathbb{Z}^+$, let $\mathbb{Z}_n[i] = \{a + ib \mid a, b \in \mathbb{Z}_n\}$, with addition and multiplication defined in the obvious way by (a + ib) + (c + id) = (a + c) + i(b + d) and (a + ib)(c + id) = (ac bd) + i(ad + bc). You may assume, without proof, that $\mathbb{Z}_n[i]$ is a ring.
 - (a) Find all the units and all the zero divisors in the ring $\mathbb{Z}_4[i]$.

Solution: Let $a, b \in \mathbb{Z}_4$ with $a + ib \neq 0 \in \mathbb{Z}_4[i]$. When $a = b = 0 \mod 2$ we have $(a + ib)(a - ib) = a^2 + b^2 = 0 + 0 = 0$, so a + ib is a zero divisor. When $a = b = 1 \mod 2$ we have $(a + ib)(a - ib) = a^2 + b^2 = 1 + 1 = 2$, so (a + ib)(2(a - ib)) = 0, and so again a + ib is a zero divisor. On the other hand, when $a \neq b \mod 2$ we have $a^2 + b^2 = 0 + 1 = 1$, so a + ib is a unit.

(b) Without proof, list all of the subrings of $\mathbb{Z}_4[i]$.

Solution: There are 9 subrings, namely $\{0\}$, $\{0,2\}$, $\{0,2i\}$, $\{0,2+2i\}$, $\{0,1,2,3\}$, $\{0,2,2i,2+2i\}$, $\{0,2,1+i,3+i,2i,2+2i,1+3i,3+3i\}$, $\{0,1,2,3,2i,1+2i,2+2i,3+2i\}$ and $\mathbb{Z}_4[i]$.

(c) Find all primes p with p < 12 such that $\mathbb{Z}_p[i]$ is a field.

Solution: Since $\mathbb{Z}_p[i]$ is a finite commutative ring with $1 \neq 0$, it is a field if and only if it has no zero divisors. Let $0 \neq a + ib \in \mathbb{Z}_p[i]$. Note that a + ib is a zero divisor in $\mathbb{Z}_p[i] \iff$ there exists $0 \neq x + iy \in \mathbb{Z}_p[i]$ such that $(a + ib)(x + iy) = 0 \in \mathbb{Z}_p[i] \iff$ there exists $0 \neq (x, y) \in \mathbb{Z}_p^2$ such that $ax - by = ay + bx = 0 \in \mathbb{Z}_p$ $\iff \det \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = 0 \in \mathbb{Z}_p \iff a^2 + b^2 = 0 \in \mathbb{Z}_p$. Thus we see that $\mathbb{Z}_p[i]$ has a zero divisor if and only if there exists $a, b \in \mathbb{Z}_p$ with $(a, b) \neq (0, 0)$ such that $a^2 + b^2 = 0 \in \mathbb{Z}_p$. For each prime p < 12, we list all of the possible values for x^2 and $-x^2$ and determine whether there exist $0 \neq a, b \in \mathbb{Z}_p$ with $a^2 + b^2 = 0$. Note that for p > 2 it suffices to consider $1 < x < \frac{p-1}{2}$ since $(p - x)^2 = (-x)^2 = x^2$ in \mathbb{Z}_p .

We see that in \mathbb{Z}_2 we have $1^2 + 1^2 = 0$ and in \mathbb{Z}_5 we have $1^2 + 2^2 = 0$, so $\mathbb{Z}_p[i]$ is not a field when $p \in \{2, 5\}$. On the other hand, when p = 3, 7 or 11, the above tables show that there is no solution to $a^2 + b^2 = 0$ with $0 \neq a, b \in \mathbb{Z}_p$, and so $\mathbb{Z}_p[i]$ is a field when $p \in \{3, 7, 11\}$.

Although question 1(c) only asks us to consider primes p < 12, it is interesting to consider the general case. In fact, for each prime p, there exists a solution to $a^2 + b^2 = 0$ with $a, b \neq 0$ if and only if for every $k \in \mathbb{Z}_p$ there exists $a \in \mathbb{Z}_p$ with $a^2 + k^2 = 0$, if and only if there exists $x \in \mathbb{Z}_p$ such that $x^2 + 1 = 0$. To prove this, suppose first that $a^2 + b^2 = 0$ with $0 \neq a, b \in \mathbb{Z}_p$. Then taking $x = ab^{-1}$, we have $x^2 = (ab^{-1})^2 = a^2(b^{-1})^2 = -b^2(b^{-1})^2 = -1$ so $x^2 + 1 = 0$. Conversely, suppose that $x^2 + 1 = 0$ in \mathbb{Z}_p . Then given any $k \in \mathbb{Z}^p$ we can take a = xk and then $a^2 = (xk)^2 = x^2k^2 = (-1)k^2 = -k^2$ so $a^2 + k^2 = 0$.

Next we claim that for each prime p > 2, there exist $x \in \mathbb{Z}_p$ such that $x^2 + 1 = 0$ if and only if $p = 1 \mod 4$, that is if and only if $\frac{p-1}{2}$ is even. To prove this, let p > 2 and suppose first that $x^2 + 1 = 0$. Then by Fermat's Little Theorem we have $(-1)^{(p-1)/2} = (x^2)^{(p-1)/2} = x^{p-1} = 1$ and so $\frac{p-1}{2}$ is even. Conversely suppose that there is no $x \in \mathbb{Z}_p$ such that $x^2 + 1 = 0$. Then we can group the non-zero elements of \mathbb{Z}_p into pairs $\{a_i, b_i\}$ with $a_i b_i = -1$. By Wilson's Theorem, we have $-1 = (p-1)! = 1 \cdot 2 \cdot \ldots \cdot (p-1) = (a_1 b_1)(a_2 b_2) \cdots (a_{\frac{p-1}{2}} b_{\frac{p-1}{2}}) = (-1)^{(p-1)/2}$ and hence $\frac{p-1}{2}$ is odd. To prove Wilson's Theorem (which states that (p-1)! = -1 in \mathbb{Z}_p) in the case p > 2, let $f(x) = x^{p-1} - 1$, note that f(x) = 0 for all $0 \neq x \in \mathbb{Z}_p$ (by Fermat's Little Theorem) so we must have $f(x) = (x-1)(x-2) \cdots (x-(p-1))$, then note that $-1 = f(0) = (-1)(-2) \cdots (-(p-1)) = (-1)^{p-1}(p-1)! = (p-1)!$.

From these two claims it follows that $\mathbb{Z}_p[i]$ is a field if and only if there do not exist $0 \neq a, b \in \mathbb{Z}_p$ with $a^2 + b^2 = 0$ if and only if there does not exist $x \in \mathbb{Z}_p$ with $x^2 + 1 = 0$ if and only if $p = 3 \mod 4$.

2: (a) Consider the ring $\mathcal{C}^0(\mathbb{R})$ of continuous functions $f : \mathbb{R} \to \mathbb{R}$ under addition and mutiplication. Prove that the units in $\mathcal{C}^0(\mathbb{R})$ are the nowhere zero functions, and the zero-divisors in $\mathcal{C}^0(\mathbb{R})$ are the functions which are not identically zero, but which are zero in some open interval.

Solution: Note that in the ring $\mathcal{C}^0(\mathbb{R})$, the identity element is the constant function 1 and the zero element is the constant function 0. Let $f \in \mathcal{C}^0(\mathbb{R})$. If f is nowhere zero, then the function $g = \frac{1}{f}$ is continuous, and we have fg = 1, so f is a unit. If f is a unit with say fg = 1, then for all $x \in \mathbb{R}$ we have f(x)g(x) = 1 so $f(x) \neq 0$, and so f is nowhere zero. Suppose that $f \neq 0$ but f(x) = 0 for all $x \in (a, b)$ where a < b. Define

 $f(x) \neq 0, \text{ and so } f \text{ is nowner constraints and } x \notin (a, b)$ the function g by $g(x) = \begin{cases} 0 & \text{, if } x \notin (a, b) \\ (x-a)(b-x) & \text{, if } x \in [a, b]. \end{cases}$ Note that $g \neq 0, g \in \mathcal{C}^0(\mathbb{R})$ and fg = 0. Thus f is

a zero-divisor. Conversely, suppose that f is a zero divisor, say fg = 0 with $f, g \neq 0$ and $g \in C^0(\mathbb{R})$. Since $g \neq 0$ we can choose $a \in \mathbb{R}$ so that $g(a) \neq 0$. Since g is continuous, we can choose $\delta > 0$ so that for all $x \in (a - \delta, a + \delta)$ we have |g(x) - g(a)| < |g(a)| so that $g(x) \neq 0$. Then for all $x \in (a - \delta, a + \delta)$ we have f(x)g(x) = 0 and $g(x) \neq 0$, and so f(x) = 0.

(b) Let F be a field and consider the ring F[[x]] of formal power series in x. Find all the units and all the zero divisors in F[[x]].

Solution: Write $u = \sum_{i \ge 0} a_i x^i$, $v = \sum_{j \ge 0} b_j x^j$. We have uv = 1 when

$$a_{0}b_{0} = 1$$

$$a_{1}b_{0} + a_{0}b_{1} = 0$$

$$a_{2}b_{0} + a_{1}b_{1} + a_{0}b_{2} = 0$$

$$\vdots$$

$$a_{n}b_{0} + a_{n-1}b_{1} + \dots + a_{1}b_{n-1} + a_{0}b_{n} = 0$$

$$\vdots$$

To get $a_0b_0 = 1$ we must have $a_0 \neq 0$. Given that $a_0 \neq 0$ we can solve for b_0, b_1, b_2, \cdots by taking $b_0 = -\frac{1}{a_1}$, $b_1 = -\frac{1}{a_1}(a_1b_0), b_2 = -\frac{1}{a_1}(a_2b_0 + a_1b_1), \cdots, b_n = -\frac{1}{a_n}(a_nb_0 + a_{n-1}b_1 + \cdots + a_1b_{n-1}), \cdots$ to get uv = 1. Thus the units in F[[x]] are the elements $u = \sum_{i\geq 0} a_i x^i$ with $a_0 \neq 0$.

(c) Consider the group $S_{\infty} = \operatorname{Perm}(\mathbb{Z}^+)$ of bijective maps $\sigma : \mathbb{Z}^+ \to \mathbb{Z}^+$ under composition. Let H be the set of all elements of finite order in S_{∞} . Determine whether $H \leq G$.

Solution: *H* is not a subgroup of S_{∞} . For example, let $\alpha \in S_{\infty}$ be the permutation which interchanges 2k-1 with 2k for all $k \in \mathbb{Z}^+$, and let $\beta \in S_{\infty}$ be the permutation which interchanges 2k with 2k+1 for all $k \in \mathbb{Z}^+$ (with $\beta(1) = 1$). Then $|\alpha| = |\beta| = 2$, but for $\sigma = \beta \alpha$ we have $\sigma(1) = 3$, $\sigma^2(1) = \sigma(3) = 5$, $\sigma^3(1) = \sigma(5) = 7$, and so on, so that in general $\sigma^n(1) = 2n+1$ so that $\sigma^n \neq e$ for any $n \in \mathbb{Z}^+$ and hence $|\beta \alpha| = |\sigma| = \infty$.

3: (a) In S_9 , let $\alpha = (1548)(2936)$ and $\beta = (16574)(38)$. Find $(-1)^{\alpha\beta}$ and $|\alpha\beta|$.

Solution: We have

$$\alpha\beta = (1548)(2936)(16574)(38) = (1293)(45786)$$

and so $(-1)^{\alpha\beta} = (-1)^{3+4} = -1$ and $|\alpha\beta| = \text{lcm}(4,5) = 20$.

(b) In S_8 , let $\beta = (123)(456)$. Find every element $\alpha \in S_8$ such that $\alpha^2 = \beta$.

Solution: We have $\alpha^6 = \beta^3 = (1)$, so $|\alpha| = 1, 2, 3$ or 6. We cannot have $|\alpha| = 1$ since $\alpha \neq (1)$ (otherwise $\alpha^2 = (1) \neq \beta$), and we cannot have $|\alpha| = 2$ since $\alpha^2 = \beta \neq (1)$. Thus $|\alpha| = 3$ or 6. Case 1: if $|\alpha| = 3$ then α is of the form (abc) or the form (abc)(def). If $\alpha = (abc)$ then $\alpha^2 = (acb) \neq \beta$. If $\alpha = (abc)(def)$ then $\alpha^2 = (acb)(dfe)$, and so $\alpha^2 = \beta \iff \alpha = (132)(465)$. Case 2: if $|\alpha| = 6$ then α is of one of the following 5 forms: (abc)(de), (abc)(de)(fg), (abc)(def)(gh), (abcdef) or (abcdef)(gh). If $\alpha = (abc)(de)$ or (abc)(de)(fg) then $\alpha^2 = (acb)(dfe)$ and so $\alpha^2 = \beta \iff \alpha = (132)(465)(78)$. If $\alpha = (abc)(de)$ or (abcdef)(gh) then $\alpha^2 = (acb)(dfe)$ and so $\alpha^2 = \beta \iff \alpha = (132)(465)(78)$. If $\alpha = (abcdef)$ or (abcdef)(gh) then $\alpha^2 = (ace)(bdf)$, so we have $\alpha^2 = \beta \iff \alpha = (142536), (152634)$ or $(162435), \text{ or } \alpha = (142536)(78), (152634)(78)$ or (162435)(78). Thus there are 8 elements $\alpha \in S_8$ with $\alpha^2 = \beta$, namely

 $\alpha \in \{(132)(465), (132)(465)(78), (142536), (152634), (162435), (142536)(78), (152634)(78), (162435)(78)\}.$

(c) In S_{10} , let $\beta = (123)(456)(78)$. Find the number of elements $\alpha \in S_{10}$ such that $\alpha \beta = \beta \alpha$.

Solution: For $\alpha \in S_{10}$, we have $\alpha\beta = \beta\alpha$ when $\alpha\beta\alpha^{-1} = \beta$, and we know that, in cycle notation, we have

$$\alpha\beta\alpha^{-1} = (\alpha(1), \alpha(2), \alpha(3))(\alpha(4), \alpha(5), \alpha(6))(\alpha(7), \alpha(8)).$$

In order to have $\alpha\beta\alpha^{-1} = \beta$, either $(\alpha(1), \alpha(2), \alpha(3)) = (1, 2, 3)$ and $(\alpha(4), \alpha(5), \alpha(6)) = (4, 5, 6)$, or vice versa, and $(\alpha(7), \alpha(8)) = (7, 8)$. There are 3 ways to choose $\alpha(1), \alpha(2), \alpha(3)$ so that $(\alpha(1), \alpha(2), \alpha(3)) = (1, 2, 3)$, and 3 ways to choose $\alpha(4), \alpha(5), \alpha(6)$ so that $(\alpha(4), \alpha(5), \alpha(6)) = (4, 5, 6)$, giving 9 ways to $\alpha(1), \dots, \alpha(6)$ to have both. There are another 9 ways to choose $\alpha(1), \dots, \alpha(6)$ so that $(\alpha(1), \alpha(2), \alpha(3)) = (4, 5, 6)$, giving a total of 18 ways to select $\alpha(1), \dots, \alpha(6)$. There are 2 ways to choose $\alpha(7)$ and $\alpha(8)$ to get $(\alpha(7), \alpha(8)) = (7, 8)$. There are also 2! = 2 ways to choose $\alpha(9)$ and $\alpha(10)$. Altogether, there are $18 \cdot 2 \cdot 2 = 72$ ways to choose α so that $\alpha\beta\alpha^{-1} = \beta$.

4: (a) Find the number of cyclic subgroups of A_6 .

Solution: We make a table showing the possible forms for $\alpha \in S_6$ and determine which forms lie in A_6 :

Thus the number of cyclic subgroups is $\frac{144}{\varphi(5)} + \frac{90}{\varphi(4)} + \frac{40+40}{\varphi(3)} + \frac{45}{\varphi(2)} + \frac{1}{\varphi(1)} = \frac{144}{4} + \frac{90}{2} + \frac{80}{2} + \frac{45}{1} + \frac{1}{1} = 167.$

(b) For $n \in \mathbb{Z}^+$, let P(n) be the probability that when one of the (2n)! elements $\sigma \in S_{2n}$ is selected at random and written using cycle notation, one of the cycles has length $\ell > n$. Find $\lim_{n \to \infty} P(n)$.

Solution: First we note that when $\ell > n$, when a permutation $\sigma \in S_{2n}$ is written in cycle notation, it has at most one ℓ -cycle. The number of $\sigma \in S_{2n}$ which, when written in cycle notation, contain one (hence only one) ℓ -cycle, is equal to $\binom{2n}{\ell}(\ell-1)! \cdot (n-\ell)! = \frac{(2n)!}{\ell}$. The total number of elements $\sigma \in S_{2n}$ is equal to (2n)!, so we have

$$P(n) = \frac{\frac{(2n)!}{n+1} + \frac{(2n)!}{n+2} + \dots + \frac{(2n)!}{2n}}{(2n)!} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} = \sum_{k=1}^{n} \frac{1}{n+k}.$$

Let $f: [1,2] \to \mathbb{R}$ be given by $f(x) = \frac{1}{x}$. Let $X = \{x_0, x_1, \dots, x_n\}$ be the partition of [1,2] into *n*-equal sub-intervals, so $x_k = 1 + \frac{k}{n}$ and $\Delta_k = x_k - x_{k-1} = \frac{1}{n}$ for all k. Taking the sample points t_k to be the right endpoints of the sub-intervals, that is letting $t_k = x_k = 1 + \frac{k}{n}$, the resulting Riemann sum for f on X is

$$S_n = \sum_{k=1}^n f(t_k) \Delta_k x = \sum_{k=1}^n \frac{1}{1 + \frac{k}{n}} \cdot \frac{1}{n} = \sum_{k=1}^n \frac{1}{n+k} = P(n)$$

Since f is continuous, hence Riemann integrable, on [1, 2], we have $\lim_{n \to \infty} S_n = \int_0^1 f(x) dx$ and so

$$\lim_{n \to \infty} P(n) = \lim_{n \to \infty} S_n = \int_1^2 \frac{1}{x} dx = \left[\ln x \right]_1^2 = \ln 2.$$