PMATH 347 Groups and Rings, Solutions to Assignment 3

1: For $n \in \mathbb{Z}^{+}$, let $\mathbb{Z}_{n}[i]=\left\{a+i b \mid a, b \in \mathbb{Z}_{n}\right\}$, with addition and multiplication defined in the obvious way by $(a+i b)+(c+i d)=(a+c)+i(b+d)$ and $(a+i b)(c+i d)=(a c-b d)+i(a d+b c)$. You may assume, without proof, that $\mathbb{Z}_{n}[i]$ is a ring.
(a) Find all the units and all the zero divisors in the ring $\mathbb{Z}_{4}[i]$.

Solution: Let $a, b \in \mathbb{Z}_{4}$ with $a+i b \neq 0 \in \mathbb{Z}_{4}[i]$. When $a=b=0 \bmod 2$ we have $(a+i b)(a-i b)=a^{2}+b^{2}=$ $0+0=0$, so $a+i b$ is a zero divisor. When $a=b=1 \bmod 2$ we have $(a+i b)(a-i b)=a^{2}+b^{2}=1+1=2$, so $(a+i b)(2(a-i b))=0$, and so again $a+i b$ is a zero divisor. On the other hand, when $a \neq b$ mod 2 we have $a^{2}+b^{2}=0+1=1$, so $a+i b$ is a unit.
(b) Without proof, list all of the subrings of $\mathbb{Z}_{4}[i]$.

Solution: There are 9 subrings, namely $\{0\},\{0,2\},\{0,2 i\},\{0,2+2 i\},\{0,1,2,3\},\{0,2,2 i, 2+2 i\}$, $\{0,2,1+i, 3+i, 2 i, 2+2 i, 1+3 i, 3+3 i\},\{0,1,2,3,2 i, 1+2 i, 2+2 i, 3+2 i\}$ and $\mathbb{Z}_{4}[i]$.
(c) Find all primes p with $p<12$ such that $\mathbb{Z}_{p}[i]$ is a field.

Solution: Since $\mathbb{Z}_{p}[i]$ is a finite commutative ring with $1 \neq 0$, it is a field if and only if it has no zero divisors. Let $0 \neq a+i b \in \mathbb{Z}_{p}[i]$. Note that $a+i b$ is a zero divisor in $\mathbb{Z}_{p}[i] \Longleftrightarrow$ there exists $0 \neq x+i y \in \mathbb{Z}_{p}[i]$ such that $(a+i b)(x+i y)=0 \in \mathbb{Z}_{p}[i] \Longleftrightarrow$ there exists $0 \neq(x, y) \in \mathbb{Z}_{p}{ }^{2}$ such that $a x-b y=a y+b x=0 \in \mathbb{Z}_{p}$ $\Longleftrightarrow \operatorname{det}\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)=0 \in \mathbb{Z}_{p} \Longleftrightarrow a^{2}+b^{2}=0 \in \mathbb{Z}_{p}$. Thus we see that $\mathbb{Z}_{p}[i]$ has a zero divisor if and only if there exists $a, b \in \mathbb{Z}_{p}$ with $(a, b) \neq(0,0)$ such that $a^{2}+b^{2}=0 \in \mathbb{Z}_{p}$. For each prime $p<12$, we list all of the possible values for x^{2} and $-x^{2}$ and determine whether there exist $0 \neq a, b \in \mathbb{Z}_{p}$ with $a^{2}+b^{2}=0$. Note that for $p>2$ it suffices to consider $1<x<\frac{p-1}{2}$ since $(p-x)^{2}=(-x)^{2}=x^{2}$ in \mathbb{Z}_{p}.

\mathbb{Z}_{2}		\mathbb{Z}_{3}		\mathbb{Z}_{5}			\mathbb{Z}_{7}				\mathbb{Z}_{11}					
x	1	x	1	x	1	2	x	1	2	3	x	1	2	3	4	5
x^{2}	1	x^{2}	1	x^{2}	1	4	x^{2}	1	4	2	x^{2}	1	4	9	5	3
$-x^{2}$	1	$-x^{2}$	2	$-x^{2}$	4	1	$-x^{2}$	6	3	5	$-x^{2}$	10	7	2	6	8

We see that in \mathbb{Z}_{2} we have $1^{2}+1^{2}=0$ and in \mathbb{Z}_{5} we have $1^{2}+2^{2}=0$, so $\mathbb{Z}_{p}[i]$ is not a field when $p \in\{2,5\}$. On the other hand, when $p=3,7$ or 11 , the above tables show that there is no solution to $a^{2}+b^{2}=0$ with $0 \neq a, b \in \mathbb{Z}_{p}$, and so $\mathbb{Z}_{p}[i]$ is a field when $p \in\{3,7,11\}$.

Although question 1 (c) only asks us to consider primes $p<12$, it is interesting to consider the general case. In fact, for each prime p, there exists a solution to $a^{2}+b^{2}=0$ with $a, b \neq 0$ if and only if for every $k \in \mathbb{Z}_{p}$ there exists $a \in \mathbb{Z}_{p}$ with $a^{2}+k^{2}=0$, if and only if there exists $x \in \mathbb{Z}_{p}$ such that $x^{2}+1=0$. To prove this, suppose first that $a^{2}+b^{2}=0$ with $0 \neq a, b \in \mathbb{Z}_{p}$. Then taking $x=a b^{-1}$, we have $x^{2}=\left(a b^{-1}\right)^{2}=$ $a^{2}\left(b^{-1}\right)^{2}=-b^{2}\left(b^{-1}\right)^{2}=-1$ so $x^{2}+1=0$. Conversely, suppose that $x^{2}+1=0$ in \mathbb{Z}_{p}. Then given any $k \in \mathbb{Z}^{p}$ we can take $a=x k$ and then $a^{2}=(x k)^{2}=x^{2} k^{2}=(-1) k^{2}=-k^{2}$ so $a^{2}+k^{2}=0$.

Next we claim that for each prime $p>2$, there exist $x \in \mathbb{Z}_{p}$ such that $x^{2}+1=0$ if and only if $p=1 \bmod 4$, that is if and only if $\frac{p-1}{2}$ is even. To prove this, let $p>2$ and suppose first that $x^{2}+1=0$. Then by Fermat's Little Theorem we have $(-1)^{(p-1) / 2}=\left(x^{2}\right)^{(p-1) / 2}=x^{p-1}=1$ and so $\frac{p-1}{2}$ is even. Conversely suppose that there is no $x \in \mathbb{Z}_{p}$ such that $x^{2}+1=0$. Then we can group the non-zero elements of \mathbb{Z}_{p} into pairs $\left\{a_{i}, b_{i}\right\}$ with $a_{i} b_{i}=-1$. By Wilson's Theorem, we have $-1=(p-1)!=1 \cdot 2 \cdot \ldots \cdot(p-1)=$ $\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right) \cdots\left(a_{\frac{p-1}{2}} b_{\frac{p-1}{2}}\right)=(-1)^{(p-1) / 2}$ and hence $\frac{p-1}{2}$ is odd. To prove Wilson's Theorem (which states that $(p-1)!=-1$ in $\left.\mathbb{Z}_{p}\right)$ in the case $p>2$, let $f(x)=x^{p-1}-1$, note that $f(x)=0$ for all $0 \neq x \in \mathbb{Z}_{p}$ (by Fermat's Little Theorem) so we must have $f(x)=(x-1)(x-2) \cdots(x-(p-1))$, then note that $-1=f(0)=(-1)(-2) \cdots(-(p-1))=(-1)^{p-1}(p-1)!=(p-1)!$.

From these two claims it follows that $\mathbb{Z}_{p}[i]$ is a field if and only if there do not exist $0 \neq a, b \in \mathbb{Z}_{p}$ with $a^{2}+b^{2}=0$ if and only if there does not exist $x \in \mathbb{Z}_{p}$ with $x^{2}+1=0$ if and only if $p=3 \bmod 4$.

2: (a) Consider the ring $\mathcal{C}^{0}(\mathbb{R})$ of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ under addition and mutiplication. Prove that the units in $\mathcal{C}^{0}(\mathbb{R})$ are the nowhere zero functions, and the zero-divisors in $\mathcal{C}^{0}(\mathbb{R})$ are the functions which are not identically zero, but which are zero in some open interval.

Solution: Note that in the $\operatorname{ring} \mathcal{C}^{0}(\mathbb{R})$, the identity element is the constant function 1 and the zero element is the constant function 0 . Let $f \in \mathcal{C}^{0}(\mathbb{R})$. If f is nowhere zero, then the function $g=\frac{1}{f}$ is continuous, and we have $f g=1$, so f is a unit. If f is a unit with say $f g=1$, then for all $x \in \mathbb{R}$ we have $f(x) g(x)=1$ so $f(x) \neq 0$, and so f is nowhere zero. Suppose that $f \neq 0$ but $f(x)=0$ for all $x \in(a, b)$ where $a<b$. Define the function g by $g(x)=\left\{\begin{array}{cl}0 & , \text { if } x \notin(a, b) \\ (x-a)(b-x) & , \text { if } x \in[a, b] .\end{array}\right.$ Note that $g \neq 0, g \in \mathcal{C}^{0}(\mathbb{R})$ and $f g=0$. Thus f is a zero-divisor. Conversely, suppose that f is a zero divisor, say $f g=0$ with $f, g \neq 0$ and $g \in \mathcal{C}^{0}(\mathbb{R})$. Since $g \neq 0$ we can choose $a \in \mathbb{R}$ so that $g(a) \neq 0$. Since g is continuous, we can choose $\delta>0$ so that for all $x \in(a-\delta, a+\delta)$ we have $|g(x)-g(a)|<|g(a)|$ so that $g(x) \neq 0$. Then for all $x \in(a-\delta, a+\delta)$ we have $f(x) g(x)=0$ and $g(x) \neq 0$, and so $f(x)=0$.
(b) Let F be a field and consider the ring $F[[x]]$ of formal power series in x. Find all the units and all the zero divisors in $F[[x]]$.
Solution: Write $u=\sum_{i \geq 0} a_{i} x^{i}, v=\sum_{j \geq 0} b_{j} x^{j}$. We have $u v=1$ when

$$
\begin{gathered}
a_{0} b_{0}=1 \\
a_{1} b_{0}+a_{0} b_{1}=0 \\
a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}=0 \\
\vdots \\
a_{n} b_{0}+a_{n-1} b_{1}+\cdots+a_{1} b_{n-1}+a_{0} b_{n}=0
\end{gathered}
$$

To get $a_{0} b_{0}=1$ we must have $a_{0} \neq 0$. Given that $a_{0} \neq 0$ we can solve for $b_{0}, b_{1}, b_{2}, \cdots$ by taking $b_{0}=-\frac{1}{a_{1}}$, $b_{1}=-\frac{1}{a_{1}}\left(a_{1} b_{0}\right), b_{2}=-\frac{1}{a_{1}}\left(a_{2} b_{0}+a_{1} b_{1}\right), \cdots, b_{n}=-\frac{1}{a_{n}}\left(a_{n} b_{0}+a_{n-1} b_{1}+\cdots+a_{1} b_{n-1}\right), \cdots$ to get $u v=1$. Thus the units in $F[[x]]$ are the elements $u=\sum_{i \geq 0} a_{i} x^{i}$ with $a_{0} \neq 0$.
(c) Consider the group $S_{\infty}=\operatorname{Perm}\left(\mathbb{Z}^{+}\right)$of bijective maps $\sigma: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$under composition. Let H be the set of all elements of finite order in S_{∞}. Determine whether $H \leq G$.
Solution: H is not a subgroup of S_{∞}. For example, let $\alpha \in S_{\infty}$ be the permutation which interchanges $2 k-1$ with $2 k$ for all $k \in \mathbb{Z}^{+}$, and let $\beta \in S_{\infty}$ be the permutation which interchanges $2 k$ with $2 k+1$ for all $k \in \mathbb{Z}^{+}$ (with $\beta(1)=1$). Then $|\alpha|=|\beta|=2$, but for $\sigma=\beta \alpha$ we have $\sigma(1)=3, \sigma^{2}(1)=\sigma(3)=5, \sigma^{3}(1)=\sigma(5)=7$, and so on, so that in general $\sigma^{n}(1)=2 n+1$ so that $\sigma^{n} \neq e$ for any $n \in \mathbb{Z}^{+}$and hence $|\beta \alpha|=|\sigma|=\infty$.

3: (a) In S_{9}, let $\alpha=(1548)(2936)$ and $\beta=(16574)(38)$. Find $(-1)^{\alpha \beta}$ and $|\alpha \beta|$.
Solution: We have

$$
\alpha \beta=(1548)(2936)(16574)(38)=(1293)(45786)
$$

and so $(-1)^{\alpha \beta}=(-1)^{3+4}=-1$ and $|\alpha \beta|=\operatorname{lcm}(4,5)=20$.
(b) In S_{8}, let $\beta=(123)(456)$. Find every element $\alpha \in S_{8}$ such that $\alpha^{2}=\beta$.

Solution: We have $\alpha^{6}=\beta^{3}=(1)$, so $|\alpha|=1,2,3$ or 6 . We cannot have $|\alpha|=1$ since $\alpha \neq(1)$ (otherwise $\left.\alpha^{2}=(1) \neq \beta\right)$, and we cannot have $|\alpha|=2$ since $\alpha^{2}=\beta \neq(1)$. Thus $|\alpha|=3$ or 6 . Case 1 : if $|\alpha|=3$ then α is of the form $(a b c)$ or the form $(a b c)(d e f)$. If $\alpha=(a b c)$ then $\alpha^{2}=(a c b) \neq \beta$. If $\alpha=(a b c)(d e f)$ then $\alpha^{2}=(a c b)(d f e)$, and so $\alpha^{2}=\beta \Longleftrightarrow \alpha=(132)(465)$. Case 2: if $|\alpha|=6$ then α is of one of the following 5 forms: $(a b c)(d e),(a b c)(d e)(f g),(a b c)(d e f)(g h),(a b c d e f)$ or $(a b c d e f)(g h)$. If $\alpha=(a b c)(d e)$ or $(a b c)(d e)(f g)$ then $\alpha^{2}=(a c b) \neq \beta$. If $\alpha=(a b c)(d e f)(g h)$ then $\alpha^{2}=(a c b)(d f e)$ and so $\alpha^{2}=\beta \Longleftrightarrow \alpha=(132)(465)(78)$. If $\alpha=(a b c d e f)$ or $(a b c d e f)(g h)$ then $\alpha^{2}=(a c e)(b d f)$, so we have $\alpha^{2}=\beta \Longleftrightarrow \alpha=(142536)$, (152634) or (162435), or $\alpha=(142536)(78),(152634)(78)$ or $(162435)(78)$. Thus there are 8 elements $\alpha \in S_{8}$ with $\alpha^{2}=\beta$, namely

$$
\alpha \in\{(132)(465),(132)(465)(78),(142536),(152634),(162435),(142536)(78),(152634)(78),(162435)(78)\}
$$

(c) In S_{10}, let $\beta=(123)(456)(78)$. Find the number of elements $\alpha \in S_{10}$ such that $\alpha \beta=\beta \alpha$.

Solution: For $\alpha \in S_{10}$, we have $\alpha \beta=\beta \alpha$ when $\alpha \beta \alpha^{-1}=\beta$, and we know that, in cycle notation, we have

$$
\alpha \beta \alpha^{-1}=(\alpha(1), \alpha(2), \alpha(3))(\alpha(4), \alpha(5), \alpha(6))(\alpha(7), \alpha(8)) .
$$

In order to have $\alpha \beta \alpha^{-1}=\beta$, either $(\alpha(1), \alpha(2), \alpha(3))=(1,2,3)$ and $(\alpha(4), \alpha(5), \alpha(6))=(4,5,6)$, or vice versa, and $(\alpha(7), \alpha(8))=(7,8)$. There are 3 ways to choose $\alpha(1), \alpha(2), \alpha(3)$ so that $(\alpha(1), \alpha(2), \alpha(3))=$ $(1,2,3)$, and 3 ways to choose $\alpha(4), \alpha(5), \alpha(6)$ so that $(\alpha(4), \alpha(5), \alpha(6))=(4,5,6)$, giving 9 ways to $\alpha(1), \cdots, \alpha(6)$ to have both. There are another 9 ways to choose $\alpha(1), \cdots, \alpha(6)$ so that $(\alpha(1), \alpha(2), \alpha(3))=$ $(4,5,6)$ and $(\alpha(1), \alpha(2), \alpha(3))=(4,5,6)$, giving a total of 18 ways to select $\alpha(1), \cdots, \alpha(6)$. There are 2 ways to choose $\alpha(7)$ and $\alpha(8)$ to get $(\alpha(7), \alpha(8))=(7,8)$. There are also $2!=2$ ways to choose $\alpha(9)$ and $\alpha(10)$. Altogether, there are $18 \cdot 2 \cdot 2=72$ ways to choose α so that $\alpha \beta \alpha^{-1}=\beta$.

4: (a) Find the number of cyclic subgroups of A_{6}.
Solution: We make a table showing the possible forms for $\alpha \in S_{6}$ and determine which forms lie in A_{6} :

form of α	$(-1)^{\alpha}$	$\|\alpha\|$	\# of such α
$(a b c d e f)$	-1		
$(a b c d e)$	1	5	$\binom{6}{1} \cdot 4!=144$
$(a b c d)(e f)$	1	4	$\binom{6}{4} \cdot 3!=90$
$(a b c d)$	-1		
$(a b c)(d e f)$	1	3	$5 \cdot 4 \cdot 2=40$
$(a b c)(d e)$	-1		
$(a b c)$	1	3	$\binom{6}{3} \cdot 2!=40$
$(a b)(c d)(e f)$	-1		
$(a b)(c d)$ $(a b)$	1	2	$\binom{6}{4} \cdot 3=45$
(a)	1	1	1

Thus the number of cyclic subgroups is $\frac{144}{\varphi(5)}+\frac{90}{\varphi(4)}+\frac{40+40}{\varphi(3)}+\frac{45}{\varphi(2)}+\frac{1}{\varphi(1)}=\frac{144}{4}+\frac{90}{2}+\frac{80}{2}+\frac{45}{1}+\frac{1}{1}=167$.
(b) For $n \in \mathbb{Z}^{+}$, let $P(n)$ be the probability that when one of the $(2 n)$! elements $\sigma \in S_{2 n}$ is selected at random and written using cycle notation, one of the cycles has length $\ell>n$. Find $\lim _{n \rightarrow \infty} P(n)$.
Solution: First we note that when $\ell>n$, when a permutation $\sigma \in S_{2 n}$ is written in cycle notation, it has at most one ℓ-cycle. The number of $\sigma \in S_{2 n}$ which, when written in cycle notation, contain one (hence only one) ℓ-cycle, is equal to $\binom{2 n}{\ell}(\ell-1)!\cdot(n-\ell)!=\frac{(2 n)!}{\ell}$. The total number of elements $\sigma \in S_{2 n}$ is equal to $(2 n)!$, so we have

$$
P(n)=\frac{\frac{(2 n)!}{n+1}+\frac{(2 n)!}{n+2}+\cdots+\frac{(2 n)!}{2 n}}{(2 n)!}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}=\sum_{k=1}^{n} \frac{1}{n+k} .
$$

Let $f:[1,2] \rightarrow \mathbb{R}$ be given by $f(x)=\frac{1}{x}$. Let $X=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ be the partition of $[1,2]$ into n-equal sub-intervals, so $x_{k}=1+\frac{k}{n}$ and $\Delta_{k}=x_{k}-x_{k-1}=\frac{1}{n}$ for all k. Taking the sample points t_{k} to be the right endpoints of the sub-intervals, that is letting $t_{k}=x_{k}=1+\frac{k}{n}$, the resulting Riemann sum for f on X is

$$
S_{n}=\sum_{k=1}^{n} f\left(t_{k}\right) \Delta_{k} x=\sum_{k=1}^{n} \frac{1}{1+\frac{k}{n}} \cdot \frac{1}{n}=\sum_{k=1}^{n} \frac{1}{n+k}=P(n) .
$$

Since f is continuous, hence Riemann integrable, on [1, 2], we have $\lim _{n \rightarrow \infty} S_{n}=\int_{0}^{1} f(x) d x$ and so

$$
\lim _{n \rightarrow \infty} P(n)=\lim _{n \rightarrow \infty} S_{n}=\int_{1}^{2} \frac{1}{x} d x=[\ln x]_{1}^{2}=\ln 2 .
$$

